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Abstract

Continual semantic segmentation (CSS) aims to extend
an existing model to tackle unseen tasks while retaining its
old knowledge. Naively fine-tuning the old model on new
data leads to catastrophic forgetting. A common solution is
knowledge distillation (KD), where the output distribution
of the new model is regularized to be similar to that of the
old model. However, in CSS, this is challenging because of
the background shift issue. Existing KD-based CSS meth-
ods continue to suffer from confusion between the back-
ground and novel classes since they fail to establish a re-
liable class correspondence for distillation. To address this
issue, we propose a new label-guided knowledge distilla-
tion (LGKD) loss, where the old model output is expanded
and transplanted (with the guidance of the ground truth la-
bel) to form a semantically appropriate class correspon-
dence with the new model output. Consequently, the useful
knowledge from the old model can be effectively distilled
into the new model without causing confusion. We con-
duct extensive experiments on two prevailing CSS bench-
marks, Pascal-VOC and ADE20K, where our LGKD sig-
nificantly boosts the performance of three competing meth-
ods, especially on novel mIoU by up to +76%, setting new
state-of-the-art. Finally, to further demonstrate its gen-
eralization ability, we introduce the first CSS benchmark
for 3D point cloud based on ScanNet, along with several
re-implemented baselines for comparison. Experiments
show that LGKD is versatile in both 2D and 3D modali-
ties without requiring ad hoc design. Codes are available
at https://github.com/Ze-Yang/LGKD.

1. Introduction
Fully supervised semantic segmentation has witnessed

tremendous success [33, 63, 27, 8, 16, 22, 47, 65, 9] in re-
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Figure 1. Illustration of knowledge distillation (KD) strategies in
continual semantic segmentation. Standard KD and unbiased KD
reduce the new class (bicycle) dimension(s) of the probabilities
output by the new model via remove and combine respectively,
which collapses the class correspondence across incremental steps
and raises confusion between background and new classes (see
Sec. 1). In contrast, our label-guided KD uses the ground truth
label as guidance to expand the probabilities predicted by the old
model. It builds a reliable class correspondence across different
learning steps without discrepancy (ILT) or entanglement (MiB)
(see Sec. 3.2). A mimic

===⇒ B: encourage A to be similar to B.

cent years. These algorithms generally assume a fixed num-
ber of classes to be learned. However, in real-world appli-
cations, it is often expected that a deployed model can be
continuously generalized to handle new classes while not
forgetting the old ones. A simple solution is to expand the
original dataset with newly available samples and retrain a
new model from scratch, dubbed as Joint Training. Ob-
viously, this is computationally expensive and requires an
increasing amount of space to store the old data over time.
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Further, it may raise privacy issues in some circumstances,
e.g., medical images and face data.

To address this problem, continual semantic segmenta-
tion (CSS) has been proposed by [35] as an emerging re-
search direction, where the training scheme is separated
into several steps with each step tackling a set of unseen
classes. Specifically, given the old model and new training
data (only new classes are labeled while others are treated
as background), the new model is supposed to recognize
both old and new classes. Under this scenario, naively fine-
tuning the old model on new data tends to suffer from catas-
trophic forgetting [17, 26], where the recognition capability
of old classes is quickly lost.

Knowledge distillation (KD), first proposed in image
classification [19], has recently been introduced to CSS [35,
4] to mitigate the forgetting issue. As Fig. 1 shows, ILT [35]
removes new class probabilities (green bar) predicted by the
new model, and simply distill old classes and background
accordingly. However, they ignore the background shift
problem [4], where the new class bicycle at current step t
was labeled as background at last step t − 1. As a result,
the old model, which regards bicycle as background, will
output a high background score for the new class bicycle
pixels. Via KD, it will mislead the new model to misclas-
sify new classes as background. Obviously, this KD strategy
hinders the learning of new classes because the class corre-
spondence for distillation is corrupted, i.e., naively mapping
the new background to the old background.

This issue was highlighted in MiB [4] where they pro-
posed a new class correspondence by combination. Con-
cretely, they combined new classes with the new back-
ground via probability summation (Fig. 1) to form a pseudo
class, which was treated as the counterpart to the old back-
ground for distillation. However, this strategy, though al-
leviating class mis-correspondence, entangles new classes
with the new background and tends to misclassify back-
ground as new classes, as detailed in Sec. 3.2. In this paper,
we term the error of mistaking background for new (novel)
classes or vice-versa as novel-background confusion.

The key insight to overcome the novel-background con-
fusion is to build a reliable class correspondence across dif-
ferent learning steps without corruption or entanglement.
To this end, we devise a novel Label-Guided Knowledge
Distillation (LGKD) loss, where the class probabilities pre-
dicted by the old model are expanded to have the same di-
mension as the output of the new model (see the blue block
in Fig. 1). The background probability is then transplanted
to the corresponding ground truth label (class) of the in-
put pixels. In this way, the knowledge from the old back-
ground at the last step can be correctly distilled into its cor-
responding semantic class at the current step, i.e., either the
new background or a novel class. Note that our LGKD
is a generic regularization term with negligible computa-

tional cost and can be easily incorporated into existing arts.
We validate its effectiveness on two prevailing CSS bench-
marks Pascal-VOC and ADE20K, where our LGKD consis-
tently yields promising improvements upon three compet-
ing methods, especially on novel (new class) mIoU (up to
+76%), setting new state-of-the-art. To further demonstrate
the generalization ability of our approach, we establish a
challenging CSS benchmark based on ScanNet for 3D point
cloud and re-implement multiple baselines for comparison.
To our best knowledge, this is the first work to conduct CSS
on 3D point cloud. Extensive experiments showcase that
our LGKD loss is capable to handle both 2D and 3D modal-
ities with no ad hoc design.
The main contributions of this paper can be summarized as:

• We propose a new label-guided knowledge distillation
(LGKD) loss for CSS, which builds a reliable class
correspondence across incremental steps and alleviates
novel-background confusion.

• LGKD is a generic regularization term with negligi-
ble computational cost, which can be readily com-
bined with existing methods. Extensive experiments
on two prevailing CSS benchmarks, Pascal-VOC and
ADE20K, showcase that LGKD significantly improves
three competitive methods, particularly on novel mIoU
by up to +76%, setting new state-of-the-art.

• To further demonstrate its generalization capability, we
establish the first CSS benchmark for 3D point cloud
based on ScanNet and re-implement multiple baselines
for comparison. Experiments illustrate that our LGKD
is versatile in both 2D and 3D modalities without any
ad hoc design.

2. Related Works

Semantic Segmentation, aiming to perform pixel-level
classification, has witnessed great advancement [63, 6, 7,
53, 22, 16] in recent years since the pioneering work
Fully Convolutional Network (FCN) [33]. Among the
above methods, the DeepLab series [6, 7] is well-known
for their effective designs, e.g., atrous spatial pyramid
pooling (ASPP) [6], atrous convolution in cascade [7].
DeepLabv3 [7] is commonly used as the segmentation
framework in prior CSS works [4, 13, 61].

In 3D point cloud modality, PointNet [38] is a pioneering
work to directly process unstructured point cloud. Subse-
quent work PointNet++ [39] learns to capture local struc-
tures and recognize fine-grained patterns via a hierarchi-
cal neural network that applies PointNet recursively. While
more complicated techniques have been proposed in recent
works [46, 45, 62, 68, 10], we employ PointNet++ as our
3D segmentation model for its simplicity and efficiency.
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Figure 2. Illustration of our LGKD loss. At learning step t, an input sample x is fed into the old (top) and new (bottom) models to obtain the
class probabilities for each element i ∈ I (pixel or point). These elements are then separated into the novel and background sets according
to their ground truth label available at the current step t (yellow and green as novel set). Finally, to build up a reliable class correspondence,
we extend the old probabilities (output by the old model) to have the same dimension as the new ones by expand and transplant (for novel
set only), such that useful prior knowledge from the old model can be effectively distilled into the new model to facilitate learning new
classes. We highlight that our LGKD can effectively alleviate the novel-background confusion issue as occurs in [35, 4].

Continual Learning aims at training a deep neural network
to learn multiple tasks in sequence continually. Distinct
from one-step incremental learning [50, 51, 55, 56, 59, 58,
30, 60, 29, 57, 31, 44], continual learning generally con-
fronts more severe forgetting issues during multiple-step
learning. Numerous works tackle the catastrophic forget-
ting issue and they can be classified into three categories.
The model growing category [2, 48, 52] tackles this prob-
lem by dynamically extending model capacity. The memory
replay approaches retain the old-class knowledge by keep-
ing a small amount of old-class data in current training.
Those data can be raw data [41, 40, 3], features [18, 23]
or generated data [24, 42, 32]. The regularization ap-
proaches constrain the model by regularizing the parame-
ters [26, 1, 54], the gradients [21, 5], logits [40, 3, 4] or the
features [20, 12, 14] of the model.

Continual Semantic Segmentation. Existing CSS meth-
ods can be divided into two categories: 1) replay-based.
RECALL [34] rehearses old-class data obtained by web-
crawling or generative models. Similarly, [49] utilizes an
iterative relabeling strategy with rehearsal-based incremen-
tal learning. Following [4], replay-based methods are out
of the scope of this paper since accessing old data violates
the conventional CSS assumption. 2) regularization-based.
ILT [35] is the first work to introduce KD into CSS. MiB [4]
raises the background shift problem in CSS and proposes an
unbiased KD to tackle it. PLOP [13] distills both short- and
long-range spatial relations via local pooled output distilla-

tion. SDR [36] leverages prototype matching, feature spar-
sification and contrastive learning to enforce feature con-
sistency and discrimination. Most recently, class similar-
ity KD, representation compensation, structure-preserving
loss and feature projection, and the biased context are in-
vestigated by REMINDER [37], RCIL [61], SPPA [28] and
RBC [64] respectively. However, the above approaches
tend to suffer from the novel-background confusion prob-
lem since their distillation term lacks an appropriate class
correspondence. Therefore, we propose a generic distilla-
tion term, dubbed LGKD, with a reliable class correspon-
dence to alleviate this confusion issue.

3. Method

3.1. Problem Definition and Setups

Before introducing the continual learning setting, we
first present the setups of the standard semantic segmen-
tation task. To ensure the generality, let X ∈ RN×Cin de-
note the input space (e.g., image, point cloud, etc.), where
N is the number of input elements and Cin is the number
of input channels (typically Cin = 3, i.e., RGB, for im-
age and Cin >= 3, e.g., XYZ, RGB, normals, for point
cloud). Let Y ∈ CN denote the output label space, where
C is a label set that contains all classes including the back-
ground class b ∈ C. Note that each sample x ∈ X com-
prises a set of elements I (e.g., pixels, points, etc.) of cor-
responding label y ∈ Y with constant cardinality |I| = N .
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Given a training set T ⊂ X × Y , the target of semantic
segmentation is to learn a model fθ parametrized by θ that
maps the input space X to a set of class probability vec-
tors fθ : X 7→ RN×|C|. The output segmentation mask is
then computed as ŷ = {argmaxc∈C fθ(x)[i, c]}Ni=1, where
fθ(x)[i, c] is the probability of element i belonging to cate-
gory c.

As opposed to the standard training scheme where the
model can access and learn from the full training set T ⊂
X × CN all at once, continual learning, instead, involves
several learning steps {t}Tt=0 each with a subset of label
Ct. More specifically, at training step t, the previous label
set C0:t−1 will be expanded with a set of unseen classes
Ct to form a new label set C0:t = C0:t−1 ∪ Ct. Then a
training set T t ⊂ X×(Ct)N will be provided along with the
last model fθt−1 : X 7→ RN×|C0:t−1| to obtain an updated
model fθt : X 7→ RN×|C0:t|. Note that the training set
T t may contain element i ∈ I from either previous classes
C0:t−1 or future classes Ct+1:T , though the annotations are
collapsed into the background class b at the current step t.
This is referred to as overlapped [4] setting. Following the
standard incremental setup, we assume that the label sets of
each step are disjoint from each other except for the special
background class, i.e., Ci ∩ Cj = b (i ̸= j).

3.2. Revisiting Knowledge Distillation Loss

A naive way to tackle the continual learning problem is
to initialize a new model fθt with the weights of the last
model fθt−1 and then optimize the network with the train-
ing set T t. However, this will lead to the catastrophic for-
getting of old classes C0:t−1. since no old class samples
with annotation are available at the current step.
Standard knowledge distillation. To alleviate the forget-
ting problem, knowledge distillation [19] is a common so-
lution to preserve old knowledge by regularizing the output
class probability distribution of the new model fθt to be
close to that of the old model fθt−1 given the same input
sample. Formally, the standard knowledge distillation loss
ℓkd adopted in CSS by ILT [35] can be formulated as:

ℓθ
t

kd(x, y) = − 1

|I|
∑
i∈I

∑
c∈C0:t−1

qt−1
x (i, c) log q̂tx(i, c) , (1)

where q̂tx(i, c) refers to the probability of class c for element
i predicted by fθt but re-normalized over all old classes:

q̂tx(i, c) = qtx(i, c)/
∑

k∈C0:t−1
qtx(i, k) . (2)

However, there exists a discrepancy issue in the standard
distillation loss. Concretely, it fails to leverage prior knowl-
edge to cope with the new classes, as the new class proba-
bilities qtx(i, c) (c ∈ Ct \ b) are not incorporated in distilla-
tion (Eq. 1). Moreover, it wrongly enhances the background

probability for novel class elements due to the background
shift [4]. Hence, it tends to mistake the novel classes for the
background (refer to supp. material for detailed discussion).
Unbiased knowledge distillation. To overcome the above
issue, MiB [4] proposes an unbiased knowledge distillation
loss for CSS by revising q̂tx(i, c) in Eq. 2 as:

q̂tx(i, c) =

{
qtx(i, c) if c ̸= b∑

k∈Ct qtx(i, k) if c = b ,
(3)

where they compare the old background probability
qt−1
x (i, b) with the probability of being either a novel class

or the new background, i.e.,
∑

k∈Ct qtx(i, k), rather than di-
rectly with its counterpart qtx(i, b). Such class probability
combination mechanism is meant to facilitate distilling the
knowledge from the old background class defined at step
t − 1 to the novel classes at step t. Nevertheless, it en-
tangles the novel classes with the new background due to
the probability combination. As a consequence of entangle-
ment, the probabilities of novel classes will be undesirably
enhanced when the distillation loss only intends to improve
the probabilities of the new background, and vice versa. As
opposed to ILT [35], this leads to the other confusion —
misclassifying background as novel classes.

3.3. Label-Guided Knowledge Distillation

Class separation. Unlike standard KD and unbiased KD,
which apply the same KD strategy to all input elements, we
propose to separate the input elements into two sets accord-
ing to the ground truth label available at the current step,
namely the background set Sb = {i|i ∈ I, yi = b} and
the novel set Sn = {i|i ∈ I, yi ∈ Ct \ b}. In this way,
we can customize the distillation strategy for each class set
and establish a more accurate class correspondence, which
facilitates more effective knowledge distillation.
Class correspondence. As opposed to revising the class
probabilities of the new model qtx(i, c) as in [4], we in-
stead resort to correcting the class probabilities of the old
model qt−1

x (i, c) according to the ground truth label yi. Our
design is inspired by the wireless communication system.
In order to improve the useful information captured by the
receiver, one should ensure that the signal released by the
transmitter is correct and that both transmitter and receiver
share the same communication protocol. Likewise, in our
case, the objective is to assure the class probabilities (sig-
nal) predicted by the old model fθt−1 (transmitter) con-
tain correct class semantics (after background shift) and are
well-aligned with (protocol) the output class space of the
new model fθt (receiver). Protocol: For the elements from
the novel set Sn, we expand the output of the old model
qt−1
x (i, c) with zero probability assigned to the extra novel

classes c ∈ Ct \ b such that it has the same output class
space dimensions with the new model. Signal: Due to the
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background shift, we transplant the probability of the back-
ground to the corresponding ground truth novel class and
set the background probability to zero while maintaining
the others unchanged. The final corrected probability distri-
bution to be distilled from can be formulated as:

q̄t−1
x (i, c) =


0 if c ∈ Ct and c ̸= yi

qt−1
x (i, b) if c = yi

qt−1
x (i, c) otherwise ,

(4)

where i ∈ Sn. We highlight that, this novel set distillation
strategy can preserve the knowledge from fθt−1 for the old
classes while also correcting the class probabilities from the
old model for the new classes given the ground truth label
yi as guidance. As for the case of the background set i ∈
Sb, it can be treated in a similar yet simpler way by merely
expanding zero probability for the extra novel classes as:

q̄t−1
x (i, c) =

{
0 if c ∈ Ct \ b
qt−1
x (i, c) otherwise ,

(5)

In summary, our distillation loss can be given as:

ℓθ
t

kd(x, y) = λn · ℓ̄θ
t

kd(x, y,Sn) + λb · ℓ̄θ
t

kd(x, y,Sb) , (6)

where λn and λb balances the contribution of the novel set
Sn and background set Sb; ℓ̄θ

t

kd(x, y,S) is the distillation
loss defined within set S as:

ℓ̄θ
t

kd(x, y,S) = − 1

N

∑
i∈S

∑
c∈C0:t

q̄t−1
x (i, c) log qtx(i, c) . (7)

The overall training objective is then computed as:

L(θt) = 1

|T t|
∑

(x,y)∈T t

(
λℓθ

t

ce(x, y) + ℓθ
t

kd(x, y)
)
, (8)

where ℓθ
t

ce(x, y) is the cross-entropy loss. λ is the hyperpa-
rameter to balance the importance of the two terms, and is
set as λ = 1 in experiments.

4. Experiment
4.1. Benchmarking 3D Continual Segmentation

Existing CSS methods have mainly been evaluated on
2D CSS benchmarks, leaving a significant gap in the ex-
ploration of 3D CSS. In order to validate the versatility of
LGKD across different modalities, we introduce the first 3D
CSS benchmark based on ScanNet [11] and present several
baseline methods for comparison.

ScanNet contains 1201 and 312 indoor scenes in the
training and validation set respectively with 20 classes in to-
tal, including a special class for “other furniture”, i.e. back-
ground in the standard segmentation task. In Fig. 3, we

Figure 3. The scene-wise class frequency statistics of our proposed
ScanNet benchmark for 3D continual semantic segmentation.

provide the scene-wise class frequency statistics of Scan-
Net [11], including both train and validation sets. The
scene-wise class frequency indicates the number of scenes
that a certain class appears in. Surprisingly, we find that
ScanNet exhibits a challenging long-tail category distribu-
tion. Additionally, we provide the point-wise class fre-
quency statistics and demonstrate the difficulty of our pro-
posed benchmark in the supp. material. For a challeng-
ing CSS benchmark, we split the entire class set into mul-
tiple subsets according to the descending order of scene-
wise class frequency as in Fig. 3, with the tail classes con-
stituting the novel sets for continual learning. This means
that the novel classes to be learned in each step are set to
be those rare ones, a.k.a. tail classes in the long-tail field.
Following the Pascal-VOC 2012 CSS benchmark [35, 4],
we define three different incremental scenarios: adding one
class (18-1), adding five classes simultaneously (14-5) and
sequentially (14-1). Take 14-5 setting for instance, the last
five rare classes, i.e., counter, refrigerator, bookshelf, bath-
tub, shower curtain, form the novel class set, and likewise
for the other settings.

We form the training set by including all the scenes that
contain at least one point from the novel classes at the cur-
rent step, with the others (either previous or future classes)
annotated as “other furniture”. The validation set is estab-
lished in a similar way except that the label of the previous
classes C0:t−1 are maintained, as the model is required to
predict all seen classes up to the current step. Finally, we
report the old-, new- and all-class mIoU metrics as well as
the background IoU at the end of all incremental steps.

4.2. Baselines and Setups

To validate the effectiveness of our approach, we con-
duct thorough comparison with the latest state-of-the-art
CSS methods as well as baselines. FT is a straightforward
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Method 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
0 1-19 20 all 0 1-15 16-20 all 0 1-15 16-20 all

FT† - 6.8 12.9 - - 2.1 33.1 - - 0.2 1.8 -
EWC† [26] - 26.9 14.0 - - 24.3 35.5 - - 0.3 4.3 -
LwF-MC† [40] - 64.4 13.3 - - 58.1 35.0 - - 6.4 8.4 -
ILT† [35] - 67.1 12.3 - - 66.3 40.6 - - 4.9 7.8 -
ILT* [35] 88.6 66.2 8.3 64.5 89.2 65.2 38.1 59.9 77.7 3.7 7.9 8.2
SDR* [36] 90.0 68.9 24.2 67.8 90.1 76.6 50.9 71.1 83.9 34.1 13.0 31.5
REMINDER* [37] 91.9 75.6 33.9 74.4 90.2 75.1 49.1 69.6 83.3 65.2 27.0 57.0
SPPA [28] - - 36.2 74.6 - - 52.9 72.1 - - 23.3 56.0

MiB† [4] - 70.2 22.1 - - 75.5 49.4 - - 35.1 13.5 -
MiB* [4] 90.3 71.5 23.2 70.1 89.6 74.2 46.3 68.3 83.2 38.0 13.9 34.5
LGKD+MiB (Ours) 91.4 72.1 40.4 71.5 91.6 75.2 54.8 71.1 79.7 39.3 17.0 35.9

PLOP* [13] 92.1 75.3 36.1 74.2 89.7 74.2 47.5 68.6 84.7 64.6 21.0 55.2
LGKD+PLOP (Ours) 92.9 76.5 42.9 75.7 91.4 78.7 56.1 73.9 89.3 69.3 30.9 61.1
RCIL* [61] 90.1 73.6 24.5 72.1 88.9 75.9 48.4 70.0 83.9 67.9 23.1 58.0
LGKD+RCIL (Ours) 92.8 76.5 37.5 75.5 91.4 77.6 54.3 72.7 89.4 69.0 29.1 60.5

Joint 93.7 77.6 78.1 78.4 93.7 79.0 73.6 78.4 93.7 79.0 73.6 78.4
Table 1. Continual Semantic Segmentation performance (mIoU) on Pascal-VOC 2012 under different incremental scenarios. † indicates
the results are excerpted from [4]. * suggests the results are reproduced with the official codes. 0 stands for the background class and all
represents the mIoU over all classes including the background. Best results are highlighted in Red while runner-up in Blue.

lower-bound baseline, which simply finetunes the model
with the newly available data at each step. On the contrary,
Joint, training a standard segmentation model on all classes
within a single step, may serve as an upper bound for CSS
approaches, though not always true if the CSS benchmark
shows a long-tail nature with tail classes as new classes
(e.g., ScanNet). For completeness, we include two general
continual learning methods [26, 40] that are not specifically
designed for semantic segmentation. Further, we mainly
benchmark against the recent state-of-the-art methods tay-
lored for segmentation [35, 4, 13, 36, 37, 61]. Following
[4], we do not consider replay-based methods, e.g., [40]) in
our comparison as the access to previous annotated data vi-
olates the standard class-incremental learning assumption.
For the sake of generalization, we conduct experiments on
both 2D image modality, i.e., Pascal-VOC 2012 [15] and
ADE20K [66], and 3D point cloud modality, i.e. Scan-
Net [11]. Besides the old-, new- and all-class (including the
background class) mIoU, we additionally report the back-
ground IoU because it is a special category under CSS with
its semantic content varying across different learning steps.

CSS protocols. As for the label masking policy for the in-
cremental steps, [4] follows and adapts two different CSS
protocols, namely disjoint [35] and overlapped [43]. Both
protocols assume that only the novel classes at the current
step are labeled while the others are masked out as back-
ground. However, in the disjoint protocol, input samples for
step t should only contain elements (i.e., pixels or points)
that belong to either current or previous classes, i.e., C0:t.
On the contrary, the overlapped protocol allows the input
samples to contain either previous, current or future classes,
i.e., C0:T . The disjoint protocol makes a strong assumption
that the current training data should not contain any samples

of the class we would like to learn in the future, which is
impracticable. Therefore, we adopt the more realistic over-
lapped protocol throughout our experiments.

4.3. Implementation Details

In 2D image modality, we follow the framework
DeepLabv3 [7] and training hyperparameters of the base-
lines when building our LGKD upon them, except that
we adopt synchronized batch normalization with different
batch size and learning rate settings. In 3D point cloud
modality, we use PointNet++ [39] with multi-scale group-
ing as our base model. We use Adam [25] with an initial
learning rate 10−2 for the first step and 5 × 10−3 for the
subsequent steps and set the weight decay to 0. The learn-
ing rate is decayed by 0.7 every 100 epochs. We train our
network for 500 epochs with a batch size of 32. We re-
move possible duplicated points before calculating the IoU
metric. For all benchmarks, we report the mIoU results
on the standard validation set. We run our experiments on
two NVIDIA RTX 3090 GPUs for Pascal VOC 2012 and
ADE20K while one for ScanNet. More details can be found
in the supp. material.

4.4. Performance

Pascal-VOC 2012 consists of 10,582 images for training
and 1449 images for validation with 20 foreground cate-
gories. Following [4], we conduct three different continual
learning scenarios, i.e., adding one class (19-1), five classes
simultaneously (15-5) and sequentially (15-1). The split of
the class set for each class-incremental step follows the al-
phabetical order. Table 1 shows comprehensive results of
our method along with other baselines. Clearly, FT per-
forms poorly across all the incremental settings as the old
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Method 100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)
0 1-100 101-150 all 0 1-100 101-150 all 0 1-50 51-150 all

ILT† [35] 10.9 18.4 14.4 17.0 8.5 0.0 3.1 1.1 8.6 3.4 12.9 9.7
MiB† [4] 19.7 40.7 17.2 32.8 0.0 38.6 11.1 29.2 0.0 46.5 21.0 29.3
REMINDER* [37] 26.6 42.1 16.1 33.4 24.0 38.9 20.3 32.6 24.2 48.0 20.1 29.4
SPPA [28] - 42.9 19.9 - - 41.0 12.5 - - 49.8 23.9 -

PLOP* [13] 26.7 42.1 14.6 32.9 23.9 39.4 14.5 31.1 24.5 48.2 20.7 29.8
LGKD+PLOP (Ours) 27.4 43.6 25.7 37.5 26.0 42.1 22.0 35.4 25.3 49.4 29.4 36.0
RCIL* [61] 26.3 41.7 17.3 33.5 0.0 37.2 14.9 29.5 21.2 47.8 23.0 31.2
LGKD+RCIL (Ours) 26.7 43.3 25.1 37.2 24.0 42.2 20.4 34.9 25.7 49.1 27.2 34.4

Joint 29.1 42.6 28.2 37.7 29.1 42.6 28.2 37.7 29.1 49.2 32.1 37.7
Table 2. The mIoU(%) of the last step on the ADE20K dataset for different overlapped continual learning scenarios. † indicates the results
are excerpted from [13]. * suggests the results are reproduced with the official codes. Best results are highlighted in Red while runner-up
in Blue.

Method 18-1 (2 steps) 14-5 (2 steps) 14-1 (6 steps)
0 1-18 19 all 0 1-14 15-19 all 0 1-14 15-19 all

FT 19.2 0.0 28.6 2.4 18.6 0.0 44.3 12.0 19.2 0.0 7.8 2.9
ILT [35] 23.8 14.9 25.8 15.9 26.7 22.2 43.4 27.7 19.3 0.0 18.5 5.6
MiB [4] 55.1 55.0 32.2 53.8 52.9 57.8 45.5 54.5 45.5 56.5 29.7 49.2
LGKD+MiB (Ours) 55.2 55.5 40.8 54.8 54.3 57.6 49.0 55.3 51.9 55.7 38.4 51.2
Joint 53.2 55.0 40.9 54.2 53.2 56.7 47.5 54.2 53.2 56.7 47.5 54.2

Table 3. Continual Semantic Segmentation performance (mIoU) on ScanNet under different incremental scenarios. 0 stands for the back-
ground class and all represents the mIoU over all classes including the background. All results are obtained with our implementation.

class pixels are masked as background under CSS setup,
and the model is explicitly taught to wrongly predict the
old classes as background. EWC [26] yields similar results
for novel classes while fairly outperforming the FT baseline
in terms of base mIoU. Significant improvement on base
classes across all settings can be observed when knowledge
distillation is introduced in [40, 35]. MiB [4] obtains con-
sistent improvement on both base and novel performance
across different settings, due to addressing the background
shift problem in CSS. Recent approaches [14, 61] obtain
drastically higher performance against MiB when multiple
incremental steps are involved (15-1). Despite their promis-
ing performance, our LGKD is able to further boost their
performance by a large margin, especially on novel perfor-
mance. For instance, LGKD+MiB achieves +74% (40.4 vs.
23.2) improvement against MiB on novel mIoU under 19-1
setting. These promising novel class results along with the
improved background performance prove that our LGKD
loss can effectively alleviate the novel-background confu-
sion problem.

ADE20K [67] is a challenging dataset consisting of 20,210
training and 2000 testing images of complex scenes. Sim-
ilar to VOC, we conducted three different CSS scenarios,
i.e., 100-50, 100-10 and 50-50, as shown in Table 2. Specif-
ically, we build our LGKD upon two competitive methods,
i.e., PLOP [13] and RCIL [61], where LGKD achieves con-
siderable improvement, especially on novel mIoU (up to
+76% from 14.6 to 25.7 with PLOP under 100-50 setting),
setting new state-of-the-art across all incremental scenarios.

ScanNet. As shown in Table 3, we compare our method
with FT baseline, ILT [35] and MiB [4] on our proposed
ScanNet benchmark to illustrate the generality of LGKD in
3D modality. Similar to their performance in 2D modality,
FT and ILT suffer from catastrophic forgetting when learn-
ing new classes. However, MiB significantly outperforms
the former methods across all three settings and metrics,
in particular, the base class performance, which once again
demonstrates the effectiveness of tackling the background
shift in CSS. Compared with MiB, our LGKD further im-
proves the novel performance by a large margin: +27%
(40.8 vs. 32.2) and +29% (38.4 vs. 29.7) relative improve-
ment of novel mIoU against MiB are obtained under 18-1
and 14-1 settings respectively, which proves the consider-
able importance of overcoming the background shift with
correct class correspondence. It is also noteworthy that our
approach also outperforms joint training, which shows that
LGKD is also effective in alleviating long-tail issues.

4.5. Ablation Study

Unless otherwise stated, all ablative studies are con-
ducted upon VOC 15-5 setting with PLOP [13] as the base-
line. Refer to the supp. material for the rationale.
Expand & Transplant. We compare three different de-
signs for novel set distillation in Table 5. Firstly, One-hot is
a hard-label distillation with all the class probabilities trans-
planted to the ground truth novel class, making the proba-
bility of the ground truth class equal to one. In this case, the
distillation loss is equivalent to the standard one-hot cross-
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VOC 15-5 (2 steps) VOC 15-1 (6 steps)
0 1-15 16-20 all 0 1-15 16-20 all

PLOP [13] 89.7 74.2 47.5 68.6 84.7 64.6 21.0 55.2
+Standard KD [35] 90.7 74.4 49.2 69.2 88.4 66.4 13.4 54.8
+Unbiased KD [4] 90.2 77.1 51.8 71.7 86.3 67.1 22.6 57.4
+LGKD (Ours) 91.4 78.7 56.1 73.9 89.3 69.3 30.9 61.1

ADE20k 100-50 (2 steps) ADE20k 100-10 (6 steps)
0 1-100 101-150 all 0 1-100 101-150 all

PLOP [13] 26.7 42.1 14.6 32.9 23.9 39.4 14.5 31.1
+Standard KD [35] 27.4 42.5 13.6 32.8 23.2 39.8 13.5 31.0
+Unbiased KD [4] 27.0 42.6 14.5 33.2 23.7 39.8 15.1 31.5
+LGKD (Ours) 27.4 43.6 25.7 37.5 26.0 42.1 22.0 35.4

Table 4. Effect of different knowledge distillation terms. Standard KD is adopted in ILT [35] while unbiased KD is adopted in MiB [4].

0 1-15 16-20 all

One-hot 91.4 76.7 51.9 71.5
Expand only 90.4 78.5 30.9 67.7
Expand & Transplant 91.4 78.7 56.1 73.9

Table 5. Effect of our novel set distillation design including expand
and transplant operations.

λb λn 0 1-15 16-20 all

0 0 90.5 75.5 53.6 71.0
1 0 91.3 76.9 53.1 71.9
2 0 91.6 77.3 53.1 72.2
5 0 91.8 77.9 52.0 72.4
10 0 91.8 78.3 49.8 72.2

5 0.5 91.6 78.6 55.7 73.8
5 1 91.4 78.7 56.1 73.9
5 2 91.0 78.6 55.5 73.7

Table 6. Effect of the weighted factors λn and λb.

entropy loss, discarding all the old class probabilities pre-
dicted by the old model. As expected, the base performance
is slightly compromised compared with Expand & Trans-
plant since the old class knowledge is not distilled. Never-
theless, the novel performance also drops since using hard
labels for the novel class pixels will develop a bias toward
novel classes, resulting in false positive predictions. This
illustrates the significance of retaining the old class proba-
bilities during transplant. Secondly, Expand only will en-
courage the new model to misclassify a novel class into ei-
ther background or an old class. Thus, a sharp drop in novel
mIoU from 56.1 to 30.9 is observed. This uncovers the im-
portance of correcting the old model output by transplant
to handle the background shift. Finally, transplanting the
background probability into the corresponding ground truth
novel class while retaining the old class probabilities can
establish an appropriate class correspondence and facilitate
learning new classes, hence yielding the best novel perfor-
mance.

Weighted factor. As table 6 shows, increasing λb leads to

higher base performance, but it will compromise the novel
performance when λb becomes too large, e.g., λb = 10.
It indicates that the background set distillation is mainly re-
sponsible for retaining old knowledge. We set λb = 5 as the
optimal solution as it obtains promising base mIoU while
not sacrificing the novel mIoU severely. With the novel
set distillation kicking in, the novel mIoU is significantly
improved from 52.0 to 56.1 with λn = 1. Meanwhile, it
also boosts the base mIoU from 77.9 to 78.7. This suggests
that the novel set distillation facilitates learning new classes
while maintaining the old class knowledge distilled from
the old model.
Effect of different KDs. To validate the superiority of
LGKD, we compare our LGKD with other knowledge dis-
tillation (KD) terms on both VOC and ADE20k upon the
same baseline PLOP [13] (Fig. 4), since PLOP does not
adopt class probability-wise KD. Firstly, PLOP can hardly
benefit from adding the standard KD [35], probably due to
its tendency to misclassify new classes as the background
(see Sec. 3.2). Secondly, though unbiased KD [4] yields
a moderate boost on VOC, it makes almost no difference
on the more challenging benchmark ADE20k. In contrast,
LGKD consistently surpasses standard KD and unbiased
KD by a significant margin, especially in terms of novel
mIoU. Concretely, LGKD yields +8.3 / +11.2 / +6.9 points
improvement against unbiased KD on 15-1 / 100-50 / 100-
10 setting.

4.6. Error Analysis

We carry out comprehensive error analysis on both
Pascal-VOC 2012 and ScanNet datasets to validate the
effectiveness of our LGKD in mitigating the novel-
background confusion problem.
2D image. As Fig. 4 shows, under the VOC 15-5 incre-
mental scenario, naive finetuning completely forgets the old
class bird while also mistaking the background for the novel
class potted plant. Thanks to KD mechanism, ILT [35], RE-
MINDER [37], MiB [4], PLOP [13] and RCIL [61] are ca-
pable to retain the old knowledge (bird and chair). Nev-
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REMINDER Joint GTFT ILTRGB

LGKD+PLOP RCIL LGKD+RCILLGKD+MiB PLOPMiB

Old classes:
bird
chair

New classes:
potted plant
Sofa

Figure 4. Error analysis of baselines along with our LGKD under VOC 15-5 setting. MiB [4], PLOP [13] and RCIL [61] tend to mistake
weed and suitcase (background—things of no interest) for potted plant and sofa (novel classes) respectively. Such confusion is effectively
alleviated when equipped with our LGKD, except for the bird image with RCIL, where the confusion is slightly mitigated.

Figure 5. Error analysis of MiB [4] vs. LGKD+MiB on step 4
(with bathtub depicted in pink as the novel class) of the ScanNet
14-1 incremental scenario. Our LGKD effectively alleviates the
confusion made by MiB (see the black boxes) — mistaking the
background (dark purple) for the novel class bathtub. Meanwhile,
LGKD+MiB achieves decent accuracy on the novel class bathtub
(see the red boxes).

ertheless, these methods are consistently prone to misclas-
sifying the background (weed and suitcase—things of no
interest) as novel classes (potted plant and sofa). On the
contrary, when incorporating our LGKD into MiB, PLOP
and RCIL, the above novel-background confusion is effec-
tively suppressed, except for the bird image with RCIL,
where the confusion is slightly alleviated. The above ex-
amples demonstrate the effectiveness of LGKD in tackling
the novel-background confusion issue. More visualization
results can be found in the supp. material.

3D point cloud. We show the error results in Fig. 5 for
step 4 of the ScanNet 14-1 setting, where the current novel
class is bathtub depicted in pink. Clearly, our method effec-

tively corrects the false prediction made by MiB [4] (see the
black boxes), where the background points (highlighted in
dark purple) are mistaken for the novel class bathtub. Mean-
while, our LGKD does not sacrifice the capability to recog-
nize the true bathtub points (see red boxes).

5. Conclusion
In this work, we identify a key issue in continual seman-

tic segmentation (CSS)—novel background confusion. This
is generally caused by the corrupted class correspondence
during knowledge distillation. To alleviate such confusion,
we propose a novel solution termed Label-Guided Knowl-
edge Distillation (LGKD), which can establish an appropri-
ate class correspondence between the output of the old and
the new model for distillation, guided by the ground truth la-
bel. We validate its effectiveness on both existing 2D bench-
marks and our proposed 3D CSS benchmark, where LGKD
can consistently outperform competing methods by a large
margin, especially on novel mIoU, setting new state-of-the-
art. Finally, we hope this work will inspire further in-depth
exploration of 3D CSS in the future.
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