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Abstract

In a video, an object usually appears as the trajectory,
i.e., it spans over a few spatial but longer temporal patches,
that contains abundant spatiotemporal contexts. However,
modern Video-Language BERTs (VDL-BERTs) neglect this
trajectory characteristic that they usually follow image-
language BERTs (IL-BERTs) to deploy the patch-to-word
(P2W) attention that may over-exploit trivial spatial con-
texts and neglect significant temporal contexts. To amend
this, we propose a novel TW-BERT to learn Trajectory-
Word alignment by a newly designed trajectory-to-word
(T2W) attention for solving video-language tasks. More-
over, previous VDL-BERTs usually uniformly sample a few
frames into the model while different trajectories have di-
verse graininess, i.e., some trajectories span longer frames
and some span shorter, and using a few frames will lose
certain useful temporal contexts. However, simply sam-
pling more frames will also make pre-training infeasible
due to the largely increased training burdens. To alleviate
the problem, during the fine-tuning stage, we insert a novel
Hierarchical Frame-Selector (HFS) module into the video
encoder. HFS gradually selects the suitable frames condi-
tioned on the text context for the later cross-modal encoder
to learn better trajectory-word alignments. By the proposed
T2W attention and HFS, our TW-BERT achieves SOTA per-
formances on text-to-video retrieval tasks, and comparable
performances on video question-answering tasks with some
VDL-BERTs trained on much more data. The code will be
available in the supplementary material.

1. Introduction
By witnessing the boom of BERT-like models in single

domains, e.g., vision or language[52, 44, 21], researchers

*Corresponding authors.

A boy is playing basketball.

(c) Patch based VDL-BERT

(e) TW-BERT Fine-Tuning

(a) RoI based IL-BERT (b) Patch based IL-BERT

(d) TW-BERT Pretraining

Figure 1. The comparisons of five different ways to build object-

word alignments. In (b), by patch-to-word (P2W) attention, im-

plicit object-word alignment can be built, e.g., the “ball region” is

aligned with basketball. While in (c), P2W attention may concen-

trate the attention of an object on only one frame, e.g., basketball

only attends over on the “ball region” of the first frame. (d) When

pre-training TW-BERT, the trajectory of an object is constructed,

e.g., the “ball trajectory” through 4 frames built. Note that we only

use 4 frames during pre-training, we show 8 frames for compar-

ing with (e) and the transparent ones denote that they are not input

into the model. (e) When fine-tuning TW-BERT, we use HFS to

select 4 frames from 8 and we can see that the selected frames are

different from the uniformly sampled ones in (d).

begin to build vision-language BERTs[3, 61, 10] for learn-

ing robust cross-modal associations. Compared with the

images, videos provide more details for building robust as-

sociations, e.g., the spatiotemporal contexts in videos can
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better describe the actions. However, directly addressing

dynamic videos may cost more storage and computation

resources. To circumvent such huge cost, researchers first

study image-language BERT (IL-BERT)[17, 25, 8, 27, 61]

and then exploit the research fruits to build the challeng-

ing, while more pragmatic, video-language BERT (VDL-

BERT)[47, 2, 26, 36, 13, 35, 46, 37, 54, 51].

Pioneering techniques are directly inherited from IL-

BERT into VDL-BERT, e.g., the image encoders are used

to embed sampled video frames [23, 62]. However, since

image encoders can hardly learn temporal contexts, the re-

sultant VDL-BERTs will degrade to IL-BERT even if they

are trained by video-text pairs. To ameliorate it, researchers

apply the video encoders [32, 4, 12, 24] to embed spa-

tiotemporal contexts. Though promising improvements are

observed, these VDL-BERTs still neglect or ill-consider a

significant factor in IL-BERT: the object-word alignment,

which helps learn robust associations.

To learn object-word alignments, as Figure 1(a) shows,

researchers use an RoI-based extractor to embed an image

into a series of RoI features [34, 27, 8]. However, this RoI-

based extractor is offline trained by object detection with

limited label inventory, which will weaken the IL-BERT

since the extractor will not be updated during large-scale

pre-training. To enable the end-to-end training, researchers

substitute the RoI-based extractor with visual transformers

whose outputs are a series of grid embeddings, which will

be used to build the cross-modal connections. Although

a single grid usually does not construct an integral object,

fortunately, the widely applied patch-to-word (P2W) atten-

tion of IL-BERT can softly seek the salient visual regions

for a given query word. Then the object-word alignments

can still be built between this softly detected object and the

word, e.g., as shown in Figure 1(b), the object “basketball”

can be implicitly attended by the corresponding word query.

Although the P2W attention remedies the loss of RoI-

level features for learning object-word alignments in IL-

BERT, its effectiveness is weakened in the video case. This

is because the objects usually act as the Trajectories which

span a few spatial while multiple temporal grids in the

videos. Thus, directly applying the P2W attention may

over-exploit the trivial spatial contexts while neglecting the

significant temporal contexts and then make the model at-

tend to only one or two frames. Figure 1(c) shows this lim-

itation that P2W attention only aligns the “ball” in the first

frame to the word ball.

To address this limitation, we propose to learn

Trajectory-to-Word alignments to solve video-language

tasks and name this model as TW-BERT. Specifically, such

alignment is learnt by a novel designed trajectory-to-word

T2W attention, which first uses the word as the query to

seek the salient parts of each frame and the sought parts are

sequenced to form the trajectory. Then the query word at-

tends over the trajectories again for capturing cross-modal

associations. In this way, the trivial spatial regions are

weakened and the temporal contexts will be strengthened,

e.g., as shown in Figure 1(d), the attention weights of the

word will be concentrated on the object trajectory instead

of only one frame as in (c). In the implementation, we fol-

low most VDL-BERTs to set up the network: two single-

modal encoders for the video and text and one cross-modal

encoder, which is sketched in Figure 2. For the cross-modal

encoder, since our T2W attention does not have the same

structure as the word-to-patch (W2P) attention, our cross-

modal encoder is asymmetric.

Moreover, previous VDL-BERTs usually uniformly

sample a few frames into the model, which contains two

drawbacks. Firstly, using a few frames may lose temporal

context and secondly, uniform sampling can hardly capture

the varying graininess of the trajectories, i.e., some trajec-

tories span longer frames and some span shorter. However,

simply sampling more frames will largely increase the pre-

training burdens that are beyond the computation resources

we own. To alleviate this problem, in the fine-tuning
stage, we sample more frames into the video encoder while

only keeping the most relevant frames according to the cor-

responding text by a novel designed Hierarchical Frame-

Selector (HFS). For example, as shown in Figure 1(e), 4

frames are selected by HFS from the 8 uniformly sam-

pled ones for learning trajectory-word alignment. Specif-

ically, HFS inserts a few lightweight layers into the video

encoder and these layers can gradually filter frames condi-

tioned on the language context. In this way, HFS learns

the coarse-grained trajectory-word alignments, i.e., frame-

word alignments, to help the later T2W attention learn more

fine-grained trajectory-word alignments.

To sum up, our contributions are:

• We propose a novel perspective to consider the videos

that are composed of moving object trajectories, which

may inspire the researchers to build more advanced

VDL-BERTs.

• We propose a simple while effective T2W attention to

learn Trajectory-to-Word alignments.

• We propose a novel hierarchical frame-selector (HFS)

in TW-BERT during fine-tuning to capture the varying

graininess of the trajectory while not largely increasing

the training burdens.

• We achieve SOTA performances compared with other

VDL-BERTs trained by the same amount of data.

2. Related Work
2.1. Image-Language BERT (IL-BERT)

Recently, various techniques have been proposed in IL-

BERT to learn vision-language connections. Most of them

aim at capturing robust object-word alignments since such
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alignments construct the foundations of visual reasoning.

In the beginning, a pre-trained Faster-RCNN [41] is used to

extract a series of RoI poolings, where each one contains

one or a few salient objects, to facilitate building object-

word alignments [34, 48, 8, 27]. However, this Faster-

RCNN is usually pre-trained by the object annotations from

COCO [7] and VG [20], whose concept space is much

narrower than the data used to train IL-BERT, which can

be almost unlimitedly collected from the websites. More-

over, this Faster-RCNN is not updated during the end-to-

end training of the IL-BERT, which means that the visual

encoder may hardly learn novel knowledge from the web-

collected data. Thus the performances of these IL-BERTs

are limited.

To further release the potential of hugely web-collected

data, the offline Faster RCNN is switched into vision Trans-

formers [11, 32] and thus a homogeneous IL-BERT, i.e.,

all the components are transformer-based, is built, which

is more easily trained end-to-end [34]. Compared with the

RoI-based encoder, the vision Transformer outputs a series

of patch embeddings and thus may lose object-level knowl-

edge. To remedy such loss, various strategies are proposed

to improve the vision-language alignments. For example,

the align-before-fuse strategy [25] aligns the paired image-

text embeddings before cross-modal fusion for facilitating

the subsequent fusion. And the fine-grained contrastive

objective [58] amplifies the local details for learning the

object-word alignments.

2.2. Video-Language BERT (VDL-BERT)

Since the spatiotemporal contexts in videos can hardly

be learnt by image extractors, only inheriting the techniques

which are successful in IL-BERT to VDL-BERT is not

enough. Thus, based on the fruits of IL-BERT, most VDL-

BERTs aim at exploiting more spatiotemporal contexts to

build cross-modal associations. One straightforward way is

to learn such spatiotemporal contexts through video Trans-

formers [4, 28]. Besides this, some more advanced tech-

niques are proposed, e.g., VIOLET [12] tokenizes the dy-

namic video patches and predicts the labels of these tokens;

BridgeFormer [14] erases the words (nouns or verbs) from

the text and learn to match the visual embeddings queried

by the erased words and the remained texts; or ALPRO [24]

computes the similarities between the video embeddings

with the generated entity prompts. TS2-Net [31] shifts to-

ken features and selects informative tokens in both tem-

poral and spatial dimensions to produce the fine-grained

spatial-temporal video representation. Although substan-

tial improvements are observed, these methods use video

patches in the cross-modal encoder, which neglects that an

object usually acts as the trajectory in the videos, and thus

they may over-exploit the trivial spatial contexts. To ame-

liorate this limitation, we propose TW-BERT to capture

Figure 2. The architecture of TW-BET, which contains two single-

modal encoders and one asymmetric cross-modal encoder. Totally

three losses in the grey blocks are used to train the whole model:

Lvtc, Lmlm, and Lvtm. Note that HFS is only used in the fine-

tuning stage.

trajectory-word alignments for more robust vision-language

alignment.

3. TW-BERT
Figure 2 sketches TW-BERT, which has two single-

modal encoders for embedding the video and text (cf.

Sec. 3.1) and one cross-modal encoder for learning video-

language associations (cf. Sec. 3.2). Different from the pre-

vious VDL-BERTs, our cross-modal encoder is an asym-

metric one that contains a classic word-to-patch (W2P) at-

tention and a novel proposed trajectory-to-word (T2W) at-

tention (cf. Sec. 3.2) for learning trajectory-word align-

ments. In Sec. 3.3, we introduce how to use Hierarchical

Frame-Selector (HFS) in the fine-tuning stage to gradually

filter the frames for capturing coarse-grained frame-word

alignments. Lastly, we introduce the losses used to train

our TW-BERT in Sec. 3.4.

3.1. Single-Modal Encoders

Video Encoder. For a video, we sample a few 224 × 224
frames and input them into the 12-layer TimeSformer [4,

24] for embedding. TimeSformer first partitions each frame

into 14 × 14 non-overlapping patches, which are flattened

and fed to a linear projection layer to produce a sequence

of patch tokens. Then TimeSformer applies self-attention

along the temporal and spatial dimensions to calculate per-

frame features. These features are further mean-pooled

along the height and width dimensions. Learnable spatial

positional embeddings are added to each video token in the

same spatial location of different frames. The final out-

put embedding set is V = {vcls,v1, ...,vNV −1}, where

vn ∈ R
d and vcls is the global [CLS] embedding.

Text Encoder. For a text, we use a 6-layer transformer to

embed it and the output is X = {xcls,x1, ...,xNX−1},

where xn ∈ R
d and xcls is the global [CLS] embedding.

Similar to the video encoder, we also add positional embed-
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dings to the text tokens.

3.2. Asymmetric Cross-Modal Encoder

After embedding videos and texts, a cross-modal en-

coder is used to fuse them by calculating bi-directional as-

sociations: vision-to-language and language-to-vision. No

matter what the direction is, the motivation is to assign

semantic knowledge from one domain to another. Since

a single word contains integral semantic knowledge, we

follow previous VDL-BERT [24, 2, 23, 47] to set a tradi-

tional word-to-patch (W2P) attention to assign the words to

a patch. However, different from the word, only the object

instead of one grid conveys integral semantic knowledge.

In videos, an object usually spans both spatial and tempo-

ral axes and thus the previously used patch-to-word (P2W)

attention may fail to transfer the semantic knowledge. To

amend this, we design a novel Trajectory-to-Word (T2W)

attention for transferring semantic knowledge from videos

to texts. Since W2P and T2W attentions have diverse struc-

tures, our cross-encoder is asymmetric.

Specifically, both W2P and T2W attentions are built on

the Multi-Head Attention (MHA) operation, here we first

formalize MHA and then introduce how to use it to build

W2P and T2W attentions. Formally, MHA is*:

Input: Q,K,V

Att: Ai = Softmax(
QWQ

i (KWK
i )T√

d
)

Head : Hi = AiVWV
i ,

Multi-Head: H = [H1,H2, ...,Hh]WH ,

Output: Z = LN(H+Q),

(1)

where WQ
i ,WK

i ,WV
i , WH

i are all trainable matrices; h is

the head number and dh = d/h; Ai is the i-th attention

matrix corresponding to the i-th head matrix; [·] is the con-

catenation operation; and LN is the Layer Normalization.

Word-to-Patch (W2P) Attention. To calculate the W2P

alignment, we apply the conventional W2P attention [24]:

ZW2P = MHA(Q = V ,K = V = X), (2)

where V ∈ R
NV ×D,X ∈ R

NX×D are respectively video

and word embedding sets got from two single-modal en-

coders. By setting the query Q to the video patch embed-

dings, Eq. (2) learns to assign suitable words to each video

patch and thus captures the W2P alignment.

Trajectory-to-Word (T2W) Attention. As shown in Fig-

ure. 3 (b), we propose the T2W attention that uses two steps

to learn the T2W alignment: it first constructs a trajectory

for a given word and then uses the word as the query to at-

tend over the trajectory for capturing the associations. For

*To avoid symbol confusions, we use the calligraphic font (\mathcal

commend in LaTex) to denote the built-in variables of the MHA module.

Time

(a): Patch-to-Word Attention (b): Trajectory-to-Word Attention

Time

yy
yy yy

Time
yy yy yy

Figure 3. The comparisons between Patch-to-Word (P2W) and

Trajectory-to-Word (T2W) attentions, where the green block de-

notes a query word and the blue blocks denote the video patches.

In P2W attention, the word attends over all the video patches and

may only concentrate on one frame, while in T2W attention, the

salient red parts of each frame are found to construct a trajectory,

which are connected by the red lines, e.g., y1,y2,y3.

convenience, we introduce how the T2W attention calcu-

lates the fusion embedding zT2W for a single word x and it

is straightforward to extend it to a sequence of the words.

In the first step, T2W attention uses x as the query to

find the salient parts for each frame and then sequence these

parts to construct the trajectory. Assuming Vt is the embed-

ding set of the t-th frame, the salient part yt is got as:

yt = MHA(Q = x,K = V = Vt). (3)

Then the salient parts at different time frames construct a

continuous flow Y = {y1, ...,yT }, which is the trajectory

of the given word.

In the second step, to get the trajectory-to-word fusion

embedding zT2W , we treat x as the query again while using

the trajectory Y as the key and value in MHA:

zT2W = MHA(Q = x,K = V = Y ). (4)

By Eq. (3), T2W attention finds the salient parts for the

given word at each frame, which enforces Eq. (4) to attend

over the continuous frames instead of concentrating the at-

tention only on one or some episodic frames as the previous

P2W attentions. In this way, the whole T2W block exploits

more temporal contexts to build vision-language associa-

tions, which facilitates the video reasoning tasks that usu-

ally require the correct recognition of the temporal patterns.

Figure. 3 compares P2W and T2W attentions.

3.3. Hierarchical Frame-Selector

During fine-tuning, to improve the performance, previ-

ous studies tend to sample more frames than pre-training

for introducing more temporal information. However, on

the one hand, using too many frames will dramatically in-

crease the computational resources, which causes infeasible

training. On the other hand, in a video, different trajectories

have varying graininess, e.g., some trajectories may cover

longer frames and some cover shorter. In this way, uni-

form sampling may introduce redundant temporal informa-

tion for these longer trajectories and deficient information

for the shorter ones. Interestingly, the time duration of the

trajectory is also reflected in the corresponding text. In this

way, we can use the text to choose suitable frames and then
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Figure 4. The architecture of the proposed Hierarchical Frame-Selector. At beginning, four frames are input into the video encoder and the

first frame-selector behind the 6-th layer filters out the 2-nd frame. At last, only the tokens of the 1-st and 4-th frames are preserved.

only input them into the cross-modal attention for learning

trajectory-word alignments.

Motivated by this, we propose a novel Hierarchical
Frame-Selector (HFS) that can gradually select the most

relevant video frames to reduce the computational burdens

while providing more temporal knowledge. Figure 4 il-

lustrates the architecture of our proposed frame-selector

module. HFS contains a few frame selector layers which

have the same structure with different parameters. For

each frame-selector layer, given a sequence of video frame

[CLS] tokens Vcls = {v1
cls,v

2
cls, ...,v

T
cls} ∈ R

T×D, we

concatenate the text [CLS] embedding xcls with each vt
cls:

ft = [vt
cls,xcls] ∈ R

2D(1 ≤ t ≤ T ) and feed them into a

scorer network including a FC layer and a softmax layer:

s = Softmax(FC(f)) ∈ R
T×1. (5)

Here, T denotes the number of frames input into the video

encoder, and s ∈ R
T is the score vector of T frames. Then

for this frame selector, we keep the tokens of k frames with

the top-k st for the further embedding in the subsequent

video Transformer layers. During training, we employ the

perturbed maximum method [5] to construct a differentiable

Top-K operator. In the video encoder, we totally insert 2

selector layers and insert them in the 6-th and 12-th layers

as in Figure 4.

3.4. Training Objectives

To train TW-BERT, as the grey blocks shown in Figure 2,

we totally use three losses which are masked language mod-

eling (MLM), video-text matching (VTM), and video-text

contrastive loss (VTC).

Masked language Modeling (MLM) [26, 24, 12, 50].
MLM aims to predict the masked word tokens given both

the video and the text contexts. To get it, we first randomly

replace the input text tokens with the [MASK] token with

a probability of 15% and then use the [MASK] embedding

output from the cross-modal encoder to predict the masked

word by calculating a cross-entropy loss:

LMLM = E(V,X̂)∼DH(ymsk, pmsk(V, X̂)) (6)

where X̂ is the masked text, H is the cross-entropy loss,

ymsk/pmsk are the ground-truth/predicted masked tokens.

Video-text Matching (VTM) [24, 12, 50]. VTM calculates

whether the given video and text are matched or not. To get

it, for a given video-text pair, we first randomly replace the

text with the ones from a different video in the same batch.

Then we concatenate the video and text [CLS] embeddings

output from the cross-modal encoder and input the concate-

nated embedding into a binary classifier to judge whether

the given video-text pair is matched or not:

LV TM = E(V,X)∼DH(yvtm, pvtm(V,X)) (7)

where yvtm/pvtm(V,X) are the ground-truth/predicted val-

ues indexing whether V and X are matched or not.

Video-text Contrastive (VTC) [24, 50, 49, 14, 15, 2, 29].
As detailed in Section 3, VTC contrasts the outputs of two

single-modal encoders to pull close their embedding space

to help the subsequent cross-modal encoder build more ro-

bust vision-language associations. Suppose sij denotes the

similarity score of the i-th video and the j-th text, for each

video and text, we calculate the softmax-normalized video-

to-text and video-to-image similarity as:

pv2tij (V ) =
exp(sij/τ)∑
j exp(sij/τ)

, pt2vij (X) =
exp(sij/τ)∑
i exp(sij/τ)

(8)

where τ is a learnable temperature parameter. Let yv2t(V )
and yt2v(X) denote the ground-truth one-hot similarity.

This loss contains two symmetric parts, where the left term

forces the i-th text embedding to be close to the i-th video

embedding compared with the other texts and the right term

has a similar effect:
LV TC =

1

2
E(V,X)∼D[H(yv2t(V ), pv2t(V )) + H(yt2v(X), pt2v(X))]

(9)

In the implementation, we follow [25] to use the momentum

queue as a continuously-evolving teacher to provide more

negative samples.

4. Experiments
4.1. Pre-training Dataset

Following recent work [24, 14, 15, 49, 2], we pre-train

TW-BERT on Google Conceptual Captions (CC3M) [45]

containing 3.3M image-text pairs and WebVid-2M [2] con-

taining 2.5M video-text pairs. For CC3M, the image

is treated as a one-frame video data during pre-training.

Note that due to the limited storage and computation re-

sources, we do not use some much larger datasets like

HowTo100M [38] containing 136M video-text pairs as [26,
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55]. Also, we do not distill knowledge from CLIP [39],

which is pre-trained on 400M image-text pairs, as [36].

4.2. Downstream Tasks

Text-to-Video Retrieval. (i) MSRVTT contains 10K

YouTube videos with 200K descriptions. We follow [56] to

use 9K train+val videos for training and report results on the

1K test split. (ii) DiDeMo [16] contains 10K Flickr videos

annotated with 40K sentences. (iii) LSMDC consists of

118,081 video clips sourced from 202 movies, where the

validation set and the test set contain 7,408 and 1,000

videos. (iv) ActivityNet Caption contains 20K YouTube

videos annotated with 100K sentences. The training set

contains 10K videos, and we use val1 set with 4.9K videos

to report results. For MSRVTT and LSMDC, we perform

standard text-to-video retrieval. For DiDeMo and Activi-

tyNet Caption, we concatenate all the text captions in the

same video as a single query and evaluate paragraph-to-

video retrieval. For two tasks, we measure the performances

by average recall at K(R@K) and Median Rank on zero-

shot and fine-tune setups.

Video Question Answering. (i) MSRVTT-QA [53] is built

upon videos and captions from MSRVTT [56], which con-

tains 10K videos with 243K open-ended questions and 1.5K

answer candidates. (ii) MSVD [6] contains 50K question-

answer pairs with 2423 answer candidates. We use standard

train/val/test splits for the two tasks, and report accuracy.

4.3. Implementation Details

We initialize our video encoder by ViT-B/16 [42] and

the text encoder by the first six BERT-Base layers [9]. For

the cross-modal encoder, the self-attentions in all 3 cross-

modal attentions (W2P contains 1 and T2W contains 2) are

initialized by the last 6 BERT-Base layers [9]. The model is

trained end-to-end during both pre-training and fine-tuning.

In pre-training, the feature dimension is set to 256 when

calculating the contrastive losses and the temperature is set

to 0.05. For the momentum queue, the momentum value

is 0.995 and the size of the queue is 65,536. The above

implementation details follow the recent work [25, 24]

for a fair comparison. We pre-train the model on CC3M

and WebVid-2M for 10 epochs on 8 NVIDIA A100 GPUs

where the batch size is 128. We use AdamW [18] optimizer

with a weight decay of 0.001 and betas (0.9, 0.98). The

learning rate is first warmed-up to 1e-4 and then decays fol-

lowing a linear decay schedule.

During fine-tuning text-to-video retrieval, We sample 20

frames and use HFS to preserve 8 frames to feed into the

cross-modal encoder. The model is trained with both VTC

and VTM losses, and we obtain similarity scores from the

output of the VTM head during inference. For video ques-

tion answering, we sample 32 frames per video and pre-

serve 16 frames. Since MSRVTT-QA and MSVD-QA [53]

are open-ended VQA, in which the answers are in free-form

natural language, it is common to convert the task to a clas-

sification task by predicting the answer’s label. We input

the concatenation of the video and question [CLS] tokens

into a two-layer MLP [9] for calculating the cross-entropy

loss. All the fine-tuning experiments are conducted on 8

NVIDIA V100 GPUs.

4.4. Ablation Studies

We conduct comprehensive ablation studies to evaluate

the effectiveness of the proposed trajectory-to-word (T2W)

attention and Hierarchical Frame-Selector (HFS) module.

Comparing Methods. Base: We use a symmetric cross-

modal encoder that contains patch-to-word (P2W) and

word-to-patch (W2P) attentions. T2W: We replace P2W

attention in Base by our T2W attention. MeanP: Another

simple way to consider temporal knowledge is to mean pool

the embeddings along the temporal axis. Specifically, we

simply average {y1, ...,yT }. These three ablations are im-

plemented using the zero-shot setting.

[L1,L2]: We insert frame-selector layer into the L1-

th and L2-th layers. F@T: We sample T frames into the

model. F@T1-T2-T3: We use Hierarchical Frame Selec-

tor where “F@T1-T2-T3” denotes that T1 frames are orig-

inally input into the model and then T2 and T3 frames are

respectively remained by the first and second frame-selector

layers. All these ablations are implemented using the fine-

tuning setting.

Quantitative Results. Table 1 compares the performances

of diverse baselines. From this table, we can see that T2W

outperforms Base, e.g., T2W achieves 3.6% R@5 improve-

ments on MSRVTT for zero-shot evaluation, which sug-

gests that our T2W attention can exploit more temporal con-

texts to better solve video-language tasks.

Also, T2W achieves higher scores than MeanP on dif-

ferent tasks, e.g., T2W achieves 28.4% of R@1 score in

DiDeMo zero-shot text-to-video retrieval task while MeanP

only has 27.4%. Applying mean-pooling strategy indeed

fuse all the temporal knowledge, however, simply averaging

all yt also means that the contexts over the whole time axis
are used, while lots of objects may only span a few frames
and using all the temporal contexts may introduce trivial

or even harmful noises. This proves that our T2W attention

can capture more important cross-modal associations in this

asymmetric cross-modal encoder case.

We further analyze the impact of the layer settings and

frame number on the Hierarchical Frame-Selector module.

As shown in Table 2, frame-selector in deep layers (e.g. 6-

th and 12-th layers) brings better performances on both re-

trieval and QA tasks. Moving frame-selector module into

shallower layers deteriorates the scores. For example, the

accuracy drops 0.9% when the frame-selector module is

placed before the third layer. We hypothesize that discard-
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Figure 5. Visualizations of the attention maps from cross-modal encoder. Sample (a) and (b) are from MSRVTT [56], (c) and (d) are from

DiDeMo [16] retrieval dataset. TW-BERT attends to the patches related to given query word by Trajectory-to-Word attention.

Table 1. Performances of various baselines. R@K and MedR respectively denote recall (%) with K retrieval efforts and median ranking for

retrieved videos where higher R@K and lower MedR indicate better performance.

Method
MSRVTT-ZS DiDeMo-ZS MSVD-QA

R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓ Acc.

Base 25.1 46.4 57.3 7.0 26.6 52.8 62.7 5.0 47.4

T2W 26.8 50.0 59.9 5.0 28.4 52.9 64.5 4.0 48.2
MeanP 25.8 47.9 58.0 6.0 27.4 53.1 64.0 5.0 48.0

Table 2. Performances comparison with different layer settings of

the HFS in fine-tuning.

layers
MSRVTT-FT MSVD-QA

R@1↑ R@5↑ R@10↑ MedR↓ Acc.

[2,4] 36.7 63.2 74.9 3.0 46.2

[3,6] 37.4 63.7 75.4 3.0 46.9

[4,8] 38.1 64.6 76.2 3.0 47.8

[5,10] 38.2 64.9 76.3 3.0 48.3

[6,12] 38.4 65.1 76.6 3.0 48.5

Table 3. Performances comparison with different frame settings of

the HFS in fine-tuning.

Frame
MSRVTT-FT

Frame
MSVD-QA

R@1↑ R@5↑ R@10↑ MedR↓ Acc.

F@1 35.8 63.3 74.2 3.0 F@8 47.2

F@4-2-1 35.9 63.2 73.9 3.0 F@20-14-8 47.2

F@4 37.1 63.9 75.3 3.0 F@12 47.7

F@8-6-4 37.5 64.2 75.5 3.0 F@24-18-12 47.9

F@8 38.1 64.9 76.0 3.0 F@16 48.2

F@20-14-8 38.4 65.1 76.6 3.0 F@32-24-16 48.5

ing frames too early would result in a lack of temporal

knowledge in subsequent ViT layers. We thus choose to

insert the frame-selector module in the 6-th and 12-th lay-

ers in the following experiments. In terms of frame num-

ber, as shown in Table 3, on the one hand, as the number

of frame we sample increases, both retrieval and QA per-

formance obtain improvements. For example, in MSRVTT

fine-tuning text-to-video retrieval task, F@20-14-8 outper-

forms F@8-6-4 by 0.9% on R@1 or on MSVD video ques-

tion answering task, F@32-24-16 outperforms F@24-18-

12 by 0.6%, which suggests that more temporal knowledge

benefit our model whether using uniform sampling or our

proposed HFS. On the other hand, using HFS gets higher

scores than uniform sampling, e.g., F@20-14-8 achieves

38.4% of R@1 score in MSRVTT retrieval task while F@8

only has 38.1%, or on MSVD video question answering

task, F@32-24-16 outperforms F@16 by 0.3%, which vali-

dates the power of HFS module.

Qualitative Results. We show the heat maps of the atten-

tions of Base and TW-BERT in Figure 5. We see that

TW-BERT can select the most relevant frames according

to the whole text, then it implicitly form a trajectory among

these frames for a given query word to avoid over-exploiting

the trivial spatial contexts as in Base. For example, in (a),

TW-BERT first discards the 1-st and 8-th frames which is

completely irrelevant to the text, then tracks the hand of the

girl in each frame that it keeps according to the query word

“practising” while Base cannot avoid impact of the irrele-

vant frames, and in those relevant frames, it only attends

to the larger while trivial regions about the whole body of

the girl. Moreover, in (d), TW-BERT keeps the 6-th and 7-

th frames for these two frames show the dog’s action more
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Table 4. Experiments of text-to-video retrieval on MSRVTT, DiDeMo and LSMDC datasets. “#PT Pairs” lists the number of video-text

pairs for pre-training. We show results with zero-shot evaluation (top) and fine-tuning evaluation (bottom). R@A is the average of R@1,

R@5 and R@10.

Method #PT Pairs
DiDeMo LSMDC MSRVTT

R@1↑ R@5↑ R@10↑ R@A↑ MedR↓ R@1↑ R@5↑ R@10↑ R@A↑ MedR↓ R@1↑ R@5↑ R@10↑ R@A↑ MedR↓
Frozen [2] 5.5M 21.1 46.0 56.2 41.1 7.0 9.3 22.0 30.1 20.5 51.0 18.7 39.5 51.6 36.6 10.0

VIOLET [12] 186M 23.5 49.8 59.8 44.4 - - - - - - 25.9 49.5 59.7 45.0 -

OA-Trans [49] 5.5M 23.5 50.4 59.8 44.6 6.0 - - - - - 23.4 47.5 55.6 42.2 8.0

ALPRO [24] 5.5M 23.8 47.3 57.9 43.0 6.0 - - - - - 24.1 44.7 55.4 41.4 8.0

BridgeFormer [14] 5.5M 25.6 50.6 61.1 45.8 5.0 12.2 25.9 32.2 23.4 42.0 26.0 46.4 56.4 42.9 7.0

MILES [15] 5.5M 27.2 50.3 63.6 47.0 5.0 11.1 24.7 30.6 22.1 50.7 26.1 47.2 56.9 43.4 7.0

TW-BERT 5.5M 28.4 52.9 64.5 48.6 4.0 14.2 30.4 36.0 26.9 28.0 26.8 50.0 59.9 45.6 5.0

Frozen [2] 5.5M 31.0 59.8 72.4 54.4 3.0 15.0 30.8 39.8 28.5 20.0 31.0 59.5 70.5 53.7 3.0

VIOLET [12] 186M 32.6 62.8 74.7 56.7 - 16.1 36.6 41.2 31.3 - 34.5 63.0 73.4 57.0 -

ALPRO [24] 5.5M 35.9 67.5 78.8 60.7 3.0 - - - - - 33.9 60.7 73.2 55.9 3.0

OA-Trans [49] 5.5M 34.8 64.4 75.1 58.1 3.0 18.2 34.3 43.7 32.1 18.5 35.8 63.4 76.5 58.6 3.0

BridgeFormer [14] 5.5M 37.0 62.2 73.9 57.7 3.0 17.9 35.4 44.5 32.6 15.0 37.6 64.8 75.1 59.2 3.0

MILES [15] 5.5M 36.6 63.9 74.0 58.2 3.0 17.8 35.6 44.1 32.5 15.5 37.7 63.6 73.8 58.4 3.0

TW-BERT 5.5M 41.8 71.1 81.2 64.7 2.0 21.0 38.8 49.2 36.3 11.0 38.4 65.1 76.6 60.0 3.0

Table 5. ActivityNet Caption with fine-tuning setting.

Method #PT Pairs R@1↑ R@5↑ R@10↑ MedR↓
Dense [19] - 14.0 32.0 - 34.0

FSE [60] - 18.2 44.8 - 7.0

CE [30] - 18.2 47.7 - 6.0

HSE [60] - 20.5 49.3 - -

Clipbert [23] 5.6M 21.3 49.0 63.5 6.0

TW-BERT 5.5M 31.7 62.3 74.9 3.0
Table 6. Experiments of video question answering on MSRVTT

and MSVD datasets in top-1 accuracy (%).

Method #PT Pairs MSRVTT MSVD

Clipbert [23] 5.6M 37.4 -

ALPRO [24] 5.5M 42.1 45.9

SINGULARITY [22] 5.5M 42.7 45.9

LGDN [33] 15.2M 43.1 -

SSML [1] 100M 35.1 35.1

JustAsk [57] 69M 41.5 46.3

MERLOT [59] 180M 43.1 -

VIOLET [12] 186M 43.9 47.9

TW-BERT 5.5M 43.6 48.5
clearly. Then TW-BERT attends to the part where the dog

is in contact with the cone according to the query word

“picks” while Base only focuses on the body of the dog.

4.5. Comparisons with SOTA

We compare TW-BERT with previous methods on two

frequently applied tasks: video-text retrieval (VDTR) and

video question answering (VDQA). Table 4 and 5 report the

performances of VDTR on MSRVTT [56], DiDeMo [16],

LSMDC [43], and ActivityNet Caption [19], respectively,

where the former three datasets contain both zero-shot and

fine-tuning setups and the last one only has fine-tuning

setup. Table 6 reports the VDQA on MSRVTT [56] and

MSVD [6]. Among the compared models, MILES [15],

BridgeFormer [14], OA-Trans [49], Clipbert [23] and VIO-

LET [12] are SOTA models proposed in recently 1-2 years.

Note that VIOLET [12] and ALPRO [24] distill knowledge

from additional large-scale BERTs while we do not. Also,

we show the number of pre-training video-text pairs in these

tables for more clear comparisons.

From these tables, we can find that when the pre-training

data is in the same scale, TW-BERT achieves the best

performance compared with all the other models on both

VDTR and VDQA. For example, on DiDeMo VDTR, TW-

BERT outperforms BridgeFormer by 4.8% on R@1, or on

MSVD VDQA, TW-BERT outperforms ALPRO by 2.6%.

Moreover, compared with the models trained on much more

data, TW-BERT can still achieve the best performances on

various tasks, e.g., on LSMDC VDTR, TW-BERT outper-

forms VIOLET by 8.0% on R@10 or on MSRVTT VDQA,

TW-BERT outperforms MERLOT [59] by 0.5%.

Note that the videos in LSMDC are longer than

MSRVTT and DiDeMo, which means that the videos in

this dataset contain more temporal contexts than the other

datasets. Then as shown in Table 4, the improvements of

TW-BERT over other SOTAs are larger than the improve-

ments on the other datasets. For example, compared with

BridgeFormer, TW-BERT has an average 3.5% improve-

ment in the zero-shot setting, while on DiDeMo dataset, the

corresponding average improvement over MILES is only

1.6%. Such comparisons further validate the effectiveness

of TW-BERT in exploiting temporal contexts.

Among these SOTAs, only when compared with VIO-

LET, which uses an additional large-scale model DALL-

E [40] and 32 more times pre-training data than ours (180M

VS. 5.5M), TW-BERT cannot comprehensively surpass VI-

OLET on all the tasks. For example, on MSRVTT VDQA,

VIOLET achieves 0.3% higher than TW-BERT, while such

marginal improvements are got at the cost of much more

training resources. Furthermore, TW-BERT still outper-

forms VIOLET on the other tasks, e.g., on DiDeMo VDTR,

TW-BERT outperforms VIOLET by 9.2% on R@1 or on

MSVD VDQA, TW-BERT outperforms VIOLET by 0.6%.

These comparisons confirm the effectiveness of the pro-

posed TW-BERT.
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5. Conclusion

We propose a novel Trajectory-Word BERT (TW-
BERT) that builds Trajectory-to-Word alignments for solv-

ing video-language tasks. In particular, we introduce an

asymmetric cross-modal encoder that contains word-to-

patch (W2P) and Trajectory-to-Word (T2W) to capture

cross-modal associations. Moreover, a novel Hierarchi-

cal Frame-Selector (HFS) module is proposed in the fine-

tuning stage to filter out irrelevant frames to help the later

T2W attention learn better trajectory-word alignments. Ex-

tensive experiments across diverse tasks confirm the effec-

tiveness of the proposed TW-BERT.
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