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Abstract

Existing knowledge distillation methods typically work
by imparting the knowledge of output logits or intermediate
feature maps from the teacher network to the student net-
work, which is very successful in multi-class single-label
learning. However, these methods can hardly be extended
to the multi-label learning scenario, where each instance is
associated with multiple semantic labels, because the pre-
diction probabilities do not sum to one and feature maps of
the whole example may ignore minor classes in such a sce-
nario. In this paper, we propose a novel multi-label knowl-
edge distillation method. On one hand, it exploits the infor-
mative semantic knowledge from the logits by dividing the
multi-label learning problem into a set of binary classifi-
cation problems; on the other hand, it enhances the distinc-
tiveness of the learned feature representations by leveraging
the structural information of label-wise embeddings. Ex-
perimental results on multiple benchmark datasets validate
that the proposed method can avoid knowledge counter-
action among labels, thus achieving superior performance
against diverse comparing methods. Our code is available
at: https://github.com/penghui-yang/L2D.

1. Introduction
Multi-label learning (MLL) addresses problems where

each instance is assigned with multiple class labels simulta-
neously [32]. For example, as shown in Figure 1, an image
of a street scene may be annotated with labels bus, car and
person. To learn the complex object-label mapping, there
is always necessity of training large models to obtain desir-
able performance in MLL. While the remarkable successes
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Figure 1. Visualization of attention maps on different classes.
We compare our method with the following three baselines: 1)
Vanilla: the student trained without distillation; 2) ReviewKD [1]:
a feature-based method that achieves the state-of-the-art perfor-
mance; 3) Teacher: the pretrained model used in distillation. It
can be observed that: on the classes bus and car, L2D captures se-
mantic objects more precisely than the conventional KD method;
on the class person, although all of the methods focus on people,
only our method focuses on the same person as the teacher, which
validates that L2D can distill the “dark” knowledge [27] from the
teacher more effectively. The backbones of the teacher and stu-
dent models are respectively ResNet-101 and ResNet-34. More
visualization of attention maps can be found in Appendix.

have been made in MLL through the training of deep neural
networks (DNNs) [14, 23], it is hard to deploy these large
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models on lightweight terminals, e.g., mobile phones, under
the constraint of computational resource or requirement of
short inference time.

To mitigate this issue, knowledge distillation (KD) [10]
is needed which aims to improve the performance of a
small network (also known as the “student”) by requiring
the knowledge from a large network (also known as the
“teacher”) to guide the training of the student network. Typ-
ical KD methods focus on the multi-class classification, and
can be roughly divided into two categories: logits-based
methods and feature-based methods. The former minimizes
the difference between logits of the teacher model and the
student model [10, 34], while the latter distills knowledge
from feature maps of intermediate layers [19, 28, 1].

Although KD has been proven to be effective for im-
proving the performance of the student network in single-
label classification, it is still a challenging problem to di-
rectly extend existing KD methods to solve multi-label
knowledge distillation (MLKD) problems. Specifically,
logits-based methods often obtain the predicted probabili-
ties based on the softmax function; this function is not suit-
able for MLKD, because the sum of predicted probabilities
may not equal one in MLL. Feature-based methods often
perform KD based on the feature maps of a whole image
with multiple semantics, which makes the model focus on
the major objects while neglect minor objects. For exam-
ple, in Figure 1, Vanilla and ReviewKD wrongly focused
on the bus when the model queried the label car. Such a
phenomenon would cause the model to obtain sub-optimal
even undesirable distillation performance.

Recently, several attempts have been made to utilize
KD techniques for improving the performance of MLL
[15, 29, 25]. There are mainly two differences between
these works and our work. Firstly, these methods often re-
quired specifically-designed network architectures [15, 25]
or training strategies [29] to train the teacher and student
models, while our method focuses on studying MLKD in
general scenarios without any extra requirement. Secondly,
unlike the previous methods utilized KD as an auxiliary
technique to improve the performance of MLL, our goal is
to develop a tailored approach for MLKD. As a result, pre-
vious methods were mainly compared with MLL methods
in their original papers, we evaluate the KD performance of
our method by comparing it with state-of-the-art KD meth-
ods.

In this paper, to perform MLKD, we propose a new
method consisting of multi-label logits distillation and
label-wise embedding distillation (L2D for short). Specif-
ically, to exploit informative semantic knowledge com-
pressed in the logits, L2D employs the one-versus-all re-
duction strategy to obtain a set of binary classification prob-
lems and perform logits distillation for each one. To en-
hance the distinctiveness of learned feature representations,

L2D encourages the student model to maintain a consistent
structure of intra-class and intra-instance (inter-class) label-
wise embeddings with the teacher model. By leveraging
the structural information of the teacher model, these two
structural consistencies respectively enhance the compact-
ness of intra-class embeddings and dispersion of inter-class
embeddings for the student model. Both of these two com-
ponents lead L2D to achieve better distillation performance
than conventional KD methods as shown in Figure 1.

Our main contributions can be summarized as follows:

• A general framework called MLKD is proposed. To our
best knowledge, the framework is the first study spe-
cially designed for knowledge distillation in the multi-
label learning scenario.

• A new approach for MLKD called L2D is proposed. It
performs multi-label logits distillation and label-wise em-
bedding distillation simultaneously. The former provides
informative semantic knowledge while the latter encour-
ages the student model to learn more distinctive feature
representations.

• Extensive experimental results on benchmark datasets
demonstrate the effectiveness of our proposed method.

2. Related Work
The concept of knowledge distillation (KD) proposed by

Geoffrey Hinton et al. [10] defines a learning framework
that transfers knowledge from a large teacher network to
a small student network. Existing works can be roughly
divided into two groups, i.e., logits-based methods and
feature-based methods. Logits-based methods mainly fo-
cus on designing effective distillation losses to distill knowl-
edge from logits and softmax scores after logits. DML [33]
introduces a mutual learning method to train both teach-
ers and students simultaneously. TAKD [18] proposes a
new architecture called “teacher assistant”, which is an
intermediate-sized network bridging the gap between teach-
ers and students. Besides, a recent study [34] proposes a
novel logits-based method to reformulate the classical KD
loss into two parts and achieves the state-of-the-art per-
formance by adjusting weights for these two parts. Some
other methods focus on distilling knowledge from interme-
diate feature layers. FitNet [24] is the first approach to
distill knowledge from intermediate features by measuring
the distance between feature maps. Attention transfer [31]
achieves better performance than FitNet by distilling knowl-
edge from the attention maps. PKT [20] measures the KL
divergence between features by treating them as probabil-
ity distributions. RKD [19] utilizes the relations among in-
stances to guide the training process of the student model.
CRD [28] incorporates contrastive learning into knowledge
distillation. ReviewKD [1] proposes a review mechanism
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which uses multiple layers in the teacher to supervise one
layer in the student. ITRD [17] aims to maximize the cor-
relation and mutual information between the students’ and
teachers’ representations.

Multi-label learning has increasingly attracted a lot of
interest recently. Existing solutions for solving MLL prob-
lems can be categorized into three directions. The first
type attempts to design novel loss functions for tackling
the intrinsic positive-negative imbalance issue in multi-label
classification tasks. For example, ASL [22] uses different
weights to re-weight positive and negative examples for the
balanced training. The second type focuses on modeling
the label correlations, which provides prior knowledge for
multi-label classification. Among them, MLGCN [3] is a
representative method that employs a graph convolutional
network to model correlation matrix. CADM [2] constructs
a similar graph based on class-aware maps. To handle the
multiple semantic objects contained in an image, the last
type of methods aims to locate areas of interest related to se-
mantic labels by using attention techniques. Among them,
C-Tran [12] first utilizes the transformer to retrieve embed-
dings from visual features for each label. Query2Label [14]
uses several stacked transformer encoders to identify inter-
esting areas. ML-Decoder [23] simplifies transformer en-
coders in Query2Label. ADDS [30] introduces encoders
from CLIP [21] in order to get better textual and visual
embedding inputs to the classification head. In addition,
ADDS adds a multi-head cross-attention layer and a skip-
ping connection from the query input to the query output
based on ML-Decoder.

Several previous studies have applied KD techniques to
improve the performance of MLL. For example, Yongcheng
Liu et al. [15] and Jiazhi Xu et al. [29] simply minimized
mean squared error (MSE) loss between teacher logits and
student logits. Liangchen Song et al. [25] designed a par-
tial softmax function by combining a positive label with all
other negative labels. Then, the conventional KD loss can
be computed for each positive label. Although these meth-
ods made the pioneering attempts of combining KD and
MLL, they cannot be directly applied general MLKD sce-
narios, and also fail to evaluate their KD performance by
comparing with KD methods.

3. The Proposed Approach
Let x ∈ X be an instance and y ∈ Y be its correspond-

ing label vector, where X ⊂ Rd is the input space with d
dimensions and Y ⊂ {0, 1}q is the target space with q class
labels. We further use yj to denote the j-th component of
y. For a given instance x, yj = 1 indicates the j-th label is
relevant to the instance; yj = 0, otherwise. In multi-label
learning, each instance may be assigned with more than one
label, which means

∑q
j=1 I(yj = 1) ≥ 1, where I(·) is the

indicator function. We also denote by [q] the integer set

{1, 2, · · · , q}.
In this paper, we use a classification model consisting

of three components, i.e., a visual backbone f , which ex-
tracts a feature map f(x) for the input x, a label-wise
embedding encoder g [12, 14], which produces a label-
wise embedding ek = gk(f(x)) with respect to the k-
th class based on the feature map f(x), and a multi-label
classifier h, which predicts multi-label probabilities ŷ =
[σ(h1(e1)), σ(h2(e2)), ..., σ(hq(eq))], where σ(·) denotes
the sigmoid function. It is noteworthy that the used model
is very general, which can be built by equipping commonly
used backbones, e.g., ResNet [9], with a label-wise embed-
ding encoder g. For the notations mentioned above, we use
the superscripts T (or S) to denote the teacher (or student)
model. For example, we use eTk and eSk to denote the label-
wise embeddings for teacher and student models.

In multi-label learning, a popular method is to employ
the one-versus-all reduction strategy to transform the origi-
nal task into multiple binary problems. Among the various
loss functions, the most commonly used one is the binary
cross entropy (BCE) loss. Specifically, given a batch of ex-
amples {(xi,yi)}bi=1 and the predicted probabilities ŷ, the
BCE loss can be defined as follows:

LBCE = −1

b

b∑
i=1

q∑
k=1

yik log(ŷik) + (1− yik) log(1− ŷik).

(1)
Figure 2 illustrates the distillation process of the pro-

posed L2D framework. For a batch of training examples,
we feed them into the teacher/student model to obtain the
label-wise embeddings and predicted probabilities. In or-
der to train the student model, besides the BCE loss, we
design the following two distillation losses: 1) multi-label
logits distillation loss LMLD to exploit informative semantic
knowledge compressed in the logits, 2) label-wise embed-
ding distillation lossLLED to leverage structural information
for enhancing the distinctiveness of learned feature repre-
sentations. The overall objective function can be presented
as

LL2D = LBCE + λMLDLMLD + λLEDLLED, (2)

where λMLD and λLED are two balancing parameters.

3.1. Multi-Label Logits Distillation

Traditional logits-based distillation normally minimizes
the Kullback-Leibler (KL) divergence between the pre-
dicted probabilities, i.e., the logits after the softmax func-
tion, of teacher and student model. However, the method
cannot be directly applied to the MLL scenario, since it de-
pends on a basic assumption that the predicted probabilities
of all classes should sum to one, which hardly holds for
MLL examples.

To mitigate this issue, inspired by the idea of one-versus-
all reduction, we propose a multi-label logits distillation
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Figure 2. An illustration of the L2D framework. The framework simultaneously performs multi-label logits distillation and label-wise
embedding distillation to improve the performance of the student model.

(MLD) loss, which decomposes the original multi-label task
into multiple binary classification problems and minimizes
the divergence between the binary predicted probabilities of
two models. Formally, the MLD loss can be formulated as
follows:

LMLD =
1

b

∑b

i=1

∑q

k=1
D
(
[ŷTik, 1− ŷTik]‖[ŷSik, 1− ŷSik]

)
,

(3)
where [·, ·] is an operator used to concatenate two scalars
into a vector, and D is a divergence function. The
most common choice is the KL divergence DKL(P‖Q) =∑

x∈X P (x) log
(

P (x)
Q(x)

)
, where P and Q are two different

probability distributions. The MLD loss aims to improve
the performance of student model by sufficiently exploiting
informative knowledge from logits.

3.2. Label-wise Embedding Distillation

The MLD loss performs distillation on the predicted
probabilities that can be regarded as a high-level represen-
tation, i.e., the final outputs of model. The knowledge dis-
tilled from the teacher model by only using the MLD loss
would be insufficient to train a student model with desir-
able performance due to the limited information carried by
the logits. To further strengthen the effectiveness of dis-
tillation, we design the label-wise embedding distillation
(LED) loss, which aims to explore the structural knowl-
edge from label-wise embeddings. The main idea is to cap-
ture two types of structural relations among label-wise em-
beddings: 1) class-aware label-wise embedding distillation
(CD) loss LCD, which captures the structural relation be-
tween any two intra-class label-wise embeddings from dif-
ferent examples; 2) instance-aware label-wise embedding
distillation (ID) loss LID, which models the structural re-

lation between any two inter-class label-wise embeddings
from the same example. In the following content, we intro-
duce these two distillation losses in detail.

3.2.1 Class-Aware Label-Wise Embedding Distillation

Class-aware label-wise embedding distillation aims to im-
prove the distillation performance by exploiting the struc-
tural relations among intra-class label-wise embeddings.
Generally, the same semantic objects from two different im-
ages often differ from each other by their individual charac-
teristics, such as two cars with different colors and diverse
styles (see the left side in Figure 3). Since our goal is to
distinguish between car and other semantic classes instead
of identifying different cars, these distinctiveness would be
confusing information for the corresponding classification
task. Due to the powerful learning capacity, the large model
is able to capture the highly abstract semantic representa-
tions for each class label by neglecting the useless individ-
ual information. From the perspective of learned feature
representations, as shown in the left side of Figure 3, the
teacher model tends to obtain a more compact structure of
intra-class label-wise embedding, which often leads to bet-
ter classification performance. By transferring the structural
knowledge from the teacher model to the student model, CD
encourages the student model to enhance the compactness
of intra-class label-wise embeddings, which can improve its
classification performance.

For a batch of examples, let {eTik}bi=1 and {eSik}bi=1

respectively denote the intra-class label-wise embeddings
with respect to class k ∈ [q] generated by the teacher and
student models. Then, we can capture the structural relation
between any two intra-class label-wise embeddings eTik and
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Figure 3. An illustration of class/instance-aware label-wise embedding distillation. Class-aware label-wise embedding distillation (CD)
captures structural relations among intra-class label-wise embeddings from different examples, while instance-aware label-wise embedding
distillation (ID) explores structural relations among intra-instance (inter-class) label-wise embeddings.

eTjk by measuring their distance in the embedding space:

φCD(e
T
ik, e

T
jk) =

{
‖eTik − eTjk‖2 yik = 1, yjk = 1,

0 otherwise.
(4)

It is worth to note that we only consider the structural
relation between any two valid label-wise embeddings, i.e.,
the embeddings with respect to positive labels. Similar to
Eq.(4), for any two intra-class label-wise embeddings eSik
and eSjk, we can obtain the structural relation φCD(e

S
ik, e

S
jk)

for the student model.
By enforcing the teacher and student structural relations

to maintain the consistency for each pair of intra-class label-
wise embeddings, we can achieve the class-aware structural
consistency as follows:

LCD =
∑q

k=1

∑
i,j∈[b]

`(φCD(e
T
ik, e

T
jk), φCD(e

S
ik, e

S
jk)),

(5)
where ` is a function to measure the consistency between
the teacher and student structural relations. In experiments,
we use the following Huber loss function as a measurement:

`(a, b) =

{
1
2 (a− b)

2 |a− b| ≤ 1,

|a− b| − 1
2 otherwise.

(6)

where a and b are two different structural relations.

3.2.2 Instance-Aware Label-Wise Embedding Distilla-
tion

Instance-aware label-wise embedding distillation (ID) aims
to improve the distillation performance by exploring the

structural relations among inter-class label-wise embed-
dings from the same image. Generally, one can hardly dis-
tinguish between two different semantic objects occurring
in an image due to the high similarities they share. For ex-
ample, in the upper left corner of Figure 3, an image anno-
tated with both sky and sea makes it difficult to distinguish
between the semantic objects, as they share the same color
and similar texture. A feasible solution is to exploit other
useful information, such as their spatial relation, i.e., sky
is always above sea. Due to the powerful learning capac-
ity, the large model is able to distinguish between the simi-
lar semantic objects by exploiting such implicit supervised
information. From the perspective of learned feature repre-
sentations, as shown in the right side of 3, the teacher model
tends to learn a dispersed structure of inter-class label-wise
embedding, which is beneficial for improving its discrimi-
nation ability. By distilling the structural knowledge from
the teacher model, ID enforces the student model to enhance
the dispersion of inter-class label-wise embeddings, which
can improve its discrimination ability.

For a given instance xi, let {eTik}
q
k=1 and {eSik}

q
k=1 re-

spectively denote the label-wise embeddings generated by
teacher and student models. Then, we can capture the struc-
tural relation between any two inter-class label-wise embed-
dings eTik and eTil by measuring their distance in the embed-
ding space:

φID(e
T
ik, e

T
il ) =

{
‖eTik − eTil ‖2 yik = 1, yil = 1,

0 otherwise.
(7)

Note that in Eq.(7), we only consider the structural re-
lation between any two valid label-wise embeddings, i.e.,
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Table 1. Results on MS-COCO where teacher and student models are in the same architectures.
Teacher RepVGG-A2 ResNet-101 WRN-101 Swin-S

Student RepVGG-A0 ResNet-34 WRN-50 Swin-T

Metrics mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1

Teacher 72.71 74.11 68.63 73.62 73.89 68.61 74.70 75.56 70.73 81.70 80.48 77.12
Student 70.02 72.49 66.77 70.31 72.49 66.82 74.45 75.43 70.61 79.59 79.18 75.42

RKD 70.08 72.39 66.73 70.13 72.44 66.78 74.70 75.71 70.84 79.63 79.19 75.57
PKT 70.11 72.47 66.80 70.43 72.64 66.68 74.54 75.47 70.58 79.64 79.09 75.39

ReviewKD 70.00 72.35 66.82 70.39 72.62 66.76 74.03 75.29 70.36 79.81 79.18 75.55
MSE 70.26 72.54 66.99 70.54 72.75 66.85 74.53 75.60 70.71 79.67 79.20 75.52
PS 70.65 72.89 67.60 70.86 72.66 67.12 75.12 76.05 71.63 79.96 79.64 76.20

MLD 70.74 72.81 67.46 70.68 72.69 67.19 74.92 75.75 71.21 80.11 79.68 76.44
L2D 72.81 74.59 69.49 72.87 74.45 69.43 76.61 77.08 72.79 81.59 81.03 77.86

Table 2. Results on MS-COCO where teacher and student models are in the different architectures.
Teacher ResNet-101 Swin-T ResNet-101 Swin-T

Student RepVGG-A0 ResNet-34 MobileNet v2 MobileNet v2

Metrics mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1

Teacher 73.62 73.89 68.61 79.43 78.77 75.07 73.62 73.89 68.61 79.43 78.77 75.07
Student 70.02 72.49 66.77 70.31 72.49 66.82 71.85 73.59 68.26 71.85 73.59 68.26

RKD 70.08 72.35 66.72 70.00 72.34 66.64 71.76 73.68 68.40 71.74 73.68 68.37
PKT 69.99 72.35 66.56 70.26 72.39 66.82 71.88 73.60 68.35 71.84 73.76 68.37

ReviewKD 70.00 72.33 66.62 70.29 72.39 66.58 71.92 73.73 68.48 71.73 73.71 68.36
MSE 70.07 72.50 66.85 70.33 72.57 66.72 71.91 73.68 68.28 71.80 73.74 68.38
PS 70.30 72.61 67.10 70.94 72.93 67.57 72.11 73.89 68.42 72.42 74.14 68.94

MLD 70.48 72.77 67.10 71.14 72.99 67.63 72.17 73.84 68.52 72.35 74.10 68.91
L2D 72.14 74.08 68.78 73.42 74.97 70.20 73.24 74.85 69.72 74.21 75.72 70.87

the embedding with respect to positive labels. Similar to
Eq.(7), for any two inter-class label-wise embeddings eSik
and eSil, we can obtain the structural relation φID(e

S
ik, e

S
il)

for the student model.
By encouraging the teacher and student model to main-

tain the consistent structure of intra-instance label-wise
embeddings, we can minimize the following LID loss to
achieve the instance-aware structural consistency where `(.)
is Huber loss as defined in Eq.(6):

LID =
∑b

i=1

∑
k,l∈[q]

`(φID(e
T
ik, e

T
il ), φID(e

S
ik, e

S
il)).

(8)
Finally, the overall objective function of L2D (Eq.(2))

can be re-written as follows:

LL2D = LBCE + λMLDLMLD + λCDLCD + λIDLID, (9)

where λMLD, λCD and λID are all balancing parameters.

4. Experiments
Datasets. We perform experiments on three bench-

mark datasets Pascal VOC2007 [8] (VOC for short), MS-

COCO2014 [13] (MS-COCO for short) and NUS-WIDE
[4]. VOC contains 5,011 images in the train-val set, and
4,952 images in the test set. It covers 20 common objects,
with an average of 1.6 labels per image. MS-COCO con-
tains 82,081 training images and 40,137 test images. It
covers 80 common objects, with an average of 2.9 labels
per image. NUS-WIDE contains 161,789 training images
and 107,859 test images. It covers 81 visual concepts, with
an average of 1.9 labels per image.

Metrics. Following existing works [32, 14, 26], we
adopt the mean average precision (mAP) over all classes,
overall F1-score (OF1) and average per-class F1-score
(CF1) to evaluate the performance. We choose OF1 and
CF1, since they consider both recall and precision and thus
are more comprehensive.

Comparing Methods. To validate the proposed method,
we compare it with the following sota KD methods: RKD
[19], which captures the relations among instances to guide
the training of the student model; PKT [20], which mea-
sures KL divergence between features by treating them as
probability distributions; ReviewKD [1], which transfers
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knowledge across different stages instead of just focusing
on features in the same levels; as well as the modified
KD techniques that have been applied to MLL: MSE [29],
which minimizes the MSE loss between logits of teacher
and student model; PS [25], which minimizes KL diver-
gence of logits after a partial softmax function.

Implementation Details. We use the models pretrained
on ImageNet [6] as the backbones. We resize the resolution
of all images to 224× 224 and set the batch size as 64. For
each training image, we adopt a weak augmentation con-
sisting of random horizontal flipping and a strong augmen-
tation consisting of Cutout [7] and RandAugment [5]. We
use the Adam optimization method [11] to train the model
for 80 epochs. The one-cycle policy is used with a maximal
learning rate of 0.0001 and the weight decay [16] of 0.0001.
For all experiments, we set λMLD = 10, λCD = 100, and
λID = 1000. Parameter sensitivity analysis in Appendix
shows that the performance of L2D are insensitive to all of
our balancing parameters. For the comparing methods, we
set their parameters as suggested in the original papers. Es-
pecially, for all feature-based methods, we just deploy them
on the feature maps which is output from the visual back-
bone f . All the experiments are conducted on GeForce RTX
2080 GPUs. More details about the used models and imple-
mentation of the label-wise embedding encoder are attached
in Appendix.

4.1. Comparison Results

Table 1 and Table 2 report comparison results on MS-
COCO with the same and different architectures of student
and teacher models. From Table 1, it can be observed that:
1) Conventional feature-based distillation methods only
achieve minor improvements in performance when com-
pared with the student model (without distillation). This
indicates these methods do not work in multi-label sce-
narios due to their disability to capture multiple semantics
occurred in feature maps. 2) MLD can outperform con-
ventional feature-based distillation methods in most cases,
which indicates by performing one-versus-all reduction,
the logits-based distillation can be adapted into multi-label
knowledge distillation. 3) The proposed L2D significantly
outperforms all other methods and achieves comparable
performance with the teacher model. In particular, when
WRN is used as the backbone, the performance of L2D is
even better than that of teacher model. One possible reason
is that L2D can effectively alleviate the over-fitting issue
occurred to the teacher model. More results about reversed
knowledge distillation where the Vanilla student model out-
performs the teacher can be found in Appendix. From Ta-
ble 2, we can see that compared with the same architecture,
the performance gap between teacher and student model is
larger for different architectures, which indicates the corre-
sponding distillation task becomes harder. Our method sig-

Table 3. Comparison results of the comparing methods on VOC in
terms of AP and mAP (%), where the backbones of teacher and
student model are respectively ResNet-50 and ResNet-18. The
best performance is highlighted in red, and second best perfor-
mance is highlighted in blue.

Methods Vanilla RKD PKT MSE MLD L2D

bottle 57.18 59.01 57.29 58.26 58.32 59.71
pottedplant 67.43 67.01 66.16 68.02 68.88 70.52

chair 70.35 71.31 71.16 70.68 71.12 74.77
sofa 73.17 72.86 73.22 72.06 73.77 75.01

diningtable 76.14 76.90 76.89 77.93 78.65 78.93
cow 82.65 81.11 81.75 81.06 84.60 83.87

tvmonitor 82.30 81.70 81.95 82.36 82.42 84.13
bus 85.53 84.79 85.06 86.03 86.41 85.45

sheep 84.16 84.77 83.66 83.72 83.77 85.67
motorbike 88.38 88.86 88.73 88.30 88.58 89.83

dog 90.18 90.03 90.10 90.46 90.78 90.60
bird 90.65 91.65 91.31 90.60 91.02 91.48

bicycle 91.40 91.53 91.77 91.58 91.92 91.90
cat 90.67 91.86 91.83 91.07 91.63 92.14

boat 92.54 92.53 92.35 91.64 92.25 92.57
car 92.72 92.06 92.07 92.01 92.34 93.40

horse 94.22 93.97 93.12 94.05 94.53 94.67
person 95.73 95.88 95.80 95.69 96.04 96.46
train 96.09 97.08 96.99 97.13 96.97 96.81

aeroplane 97.27 97.00 97.09 97.10 97.30 97.39

mAP 84.01 84.18 83.86 84.23 84.48 85.71

Table 4. Ablation studies on MS-COCO.
MLD CD ID mAP OF1 CF1

70.31 72.49 66.82
X 70.68 72.69 67.19
X X 71.91 73.74 68.76
X X 71.79 73.62 68.43

X X X 72.87 74.45 69.43

nificantly outperforms all the comparing methods by a sig-
nificant margin in all cases. These results provide a strong
empirical validation for the effectiveness of the proposed
method.

Table 3 illustrates the performance of the proposed meth-
ods and other comparing methods on VOC in terms of AP
and mAP. It is noteworthy that the performance is ranked in
descending according to the performance of student model.
From the figure, it can be observed that: 1) Our proposed
L2D achieves the best performance and significantly out-
performs the comparing methods in terms of mAP. 2) L2D
consistently achieves superior performance to the compar-
ing methods in most classes and the performance gap is
large especially for classes that the student model achieves
poor performance. This observation discloses that L2D im-
proves the performance of hard classes by enhancing the
distinctiveness of feature representations. These experi-
mental results demonstrate the practical usefulness of the
proposed method. More results on VOC and NUS-WIDE
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Book, Person, Remote Book, Person, RemoteBook, Person, Remote Book, Person , Remote Book, Person , Remote Book, Person , RemoteBook, Person, Remote Book, Person, RemoteBook, Person, Remote Book, Person, RemoteBook, Person, Remote

Dog, Fire Hydrant Dog, Fire Hydrant Dog, Fire Hydrant Dog, Fire Hydrant Dog, Fire Hydrant Dog, Fire HydrantDog, Fire HydrantDog, Fire Hydrant Dog, Fire Hydrant Dog, Fire Hydrant Dog, Fire Hydrant

Query ReviewKD L2D

Figure 4. Top-5 returned images with the query image. The returned results on the left are based on ReviewKD, while the results on the
right are based on L2D. All results are sorted in the ascending order according to the distance from the query image. Red labels indicate
that they are not included in the returned images’ labels, while green labels are shared by the query image and the returned one.

can be found in Appendix.

4.2. Ablation Study

In this section, to further analyze how the proposed
method improves distillation performance, Table 4 reports
results of ablation studies on MS-COCO (teacher: ResNet-
101, student: ResNet-34). The first line in Table 4 reports
the performance of student model without knowledge distil-
lation. It can be observed that the distillation performance is
improved slightly by only conducting multi-label logits dis-
tillation. Compared with MLD, label-wise embeddings dis-
tillation achieves the major improvement for the proposed
method. It can be observed that by performing CD and
ID, the mAP performance achieves 1.6% and 1.48% incre-
ments, respectively. Finally, we also examine the combi-
nation of these techniques. By incorporating these com-
ponents together, the fusing method achieves the best per-
formance and significantly outperforms each other method.
These results demonstrate that all of three components are
of great importance to the performance of the proposed
L2D.

4.3. Performance on Image Retrieval

To further evaluate if our method can learn better rep-
resentations, we conduct an image retrieval experiment.
Specifically, we use the k-NN algorithm to perform content-
based image retrieval, and choose the student model trained
by ReviewKD as the baseline, which has achieved the best
performance among all conventional KD methods. Figure 4
illustrates the top-5 images returned by both methods. The
labels under each image are colored in green if they are
shared by both the query image and the returned one, and
otherwise in red. These images are sorted in the ascend-
ing order based on the distance to the query image in the
representation space. From the figures, we can see that our
method returns the images that match the query image bet-
ter than ReviewKD. This indicates our approach can obtain
better representations than conventional KD methods.
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Figure 5. The differences between correlation matrices of student
and teacher predicted probabilities on MS-COCO.

4.4. Distilling Inter-class Correlations

As discussed in the previous works [10], the conven-
tional supervised learning losses, e.g., BCE loss, often ne-
glects the correlations among class predictions, which act
as a foundational element in MLL. To validate whether the
correlations can be captured by L2D effectively, Figure 5
illustrates the differences between correlation matrices of
student and teacher predicted probabilities on MS-COCO.
From the figure, it can be observed that: 1) The representa-
tive comparing method ReviewKD shows a large difference,
which discloses that the conventional KD methods are inef-
fective to capture the correlations in multi-label scenarios.
2) MLD does not show a reduced difference, which indi-
cates that the information of logits is not enough for captur-
ing precise correlations. 3) L2D shows significant matching
between the teacher and student correlations. By enhancing
the distinctiveness of label-wise embeddings, L2D can ob-
tain more correct predicted probabilities, leading to a more
precise correlation estimation.
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5. Conclusion

The paper studies the problem of multi-label knowledge
distillation. In the proposed method, the multi-label log-
its distillation explores the informative semantic knowledge
compressed in the teacher logits to obtain more semantic
supervision. Furthermore, the label-wise embedding dis-
tillation exploits the structural knowledge from label-wise
embeddings to learn more distinctive feature representa-
tions. Experimental results on benchmark datasets validate
the effectiveness of the proposed method. In future, we plan
to improve the performance of MLKD by exploiting other
abundant structural information.
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