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Figure 1: We demonstrate the effects of Click-Pose in three keypoint annotation scenarios. For scenarios (a) and (b), the left
figures show the model-only’s initial keypoint localization, followed by the corrected keypoints (red points) obtained through
user clicks. The right figures display the final results obtained by Click-Pose after automatically refining other keypoints and
corresponding human boxes. For scenario (c), the left figure illustrates the original task of detecting 17 keypoints, while the
right figure shows the adaptability of Click-Pose in detecting additional 4 keypoints.

Abstract

This work proposes an end-to-end neural interactive key-
point detection framework named Click-Pose, which can
significantly reduce more than 10 times labeling costs of
2D keypoint annotation compared with manual-only anno-
tation. Click-Pose explores how user feedback can cooper-
ate with a neural keypoint detector to correct the predicted
keypoints in an interactive way for a faster and more ef-
fective annotation process. Specifically, we design the pose
error modeling strategy that inputs the ground truth pose
combined with four typical pose errors into the decoder and
trains the model to reconstruct the correct poses, which en-
hances the self-correction ability of the model. Then, we
attach an interactive human-feedback loop that allows re-
ceiving users’ clicks to correct one or several predicted
keypoints and iteratively utilizes the decoder to update all
other keypoints with a minimum number of clicks (NoC) for
efficient annotation. We validate Click-Pose in in-domain,
out-of-domain scenes, and a new task of keypoint adapta-
tion. For annotation, Click-Pose only needs 1.97 and 6.45
NoC@95 (at precision 95%) on COCO and Human-Art, re-
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ducing 31.4% and 36.3% efforts than the SOTA model (ViT-
Pose) with manual correction, respectively. Besides, with-
out user clicks, Click-Pose surpasses the previous end-to-
end model by 1.4 AP on COCO and 3.0 AP on Human-Art.

1. Introduction

Multi-person keypoint detection aims to localize 2D co-
ordinates of keypoints for each person in images, as in
Fig. 1. It has garnered significant attention in research and
industry, particularly in sports, entertainment, and surveil-
lance applications. The development of deep models for
various applications heavily depends on a large volume of
training data with labels (e.g., COCO [12, 23]). As the
amount of data increases, the manual annotations of dense
human keypoints are quite time-consuming, labor-intensive,
and cost-prohibitive. As demonstrated in Fig. 2, annotating
a single person with 17 keypoints would take about 230 sec-
onds. For a dataset of 50K images with an average of four
people per image, this process would require 532 hours.
Additionally, there may exist omissions, localization devia-
tion, and mislabeling in the manual annotation process.

To reduce the manual effort, an intuitive annotation pro-
cess can use a state-of-the-art (SOTA) model [42] to obtain
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From In-domain to Out-of-domain Datasets
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Figure 2: Comparison of the average time cost of keypoint
annotation per person using three strategies on two datasets.
Our proposed Click-Pose is more than 10 times faster than
manual annotation. Importantly, it significantly alleviates
model bias in out-of-domain annotation (e.g., on Human-
Art), reducing the time required by 83% compared to state-
of-the-art model annotation with manual correction.

a preliminary model-annotation result and then mannually
correct all wrong keypoints. However, this strategy heavily
relies on the performance of the model to reduce manual ef-
fort, which leads to the following problems: 1) model bias.
As shown in Fig. 2, for in-domain data, the SOTA model
(e.g., ViTPose-H) can accelerate the annotation process by
about four times due to its high prediction accuracy. How-
ever, its performance may be suboptimal when labeling an
out-of-distribution (OOD) dataset (e.g., Human-Art [13]) or
when dealing with new keypoints [40] that have not been
defined. In such cases, more manual efforts will be re-
quired. 2) performance bottleneck. The performance of
existing SOTA models is generally hard to be further im-
proved, which makes it challenging to further reduce man-
ual effort. Noticing that there exist inherent problems in
both the manual-only annotation and the model with man-
ual correction strategies, the following questions naturally
arise: how can we integrate manual correction with model
predictions in an interactive manner to enable faster, more
accurate, and more versatile keypoint annotation with min-
imal user correction?

To address this issue, we define a novel task called in-
teractive keypoint detection. It aims to effectively maxi-
mize benefits of the model to minimize manual effort, and
mitigate unfriendly consequences of model failures in out-
of-distribution and new-task annotations that increase the
need for manual intervention. Accordingly, we present the
first neural interactive keypoint detection framework, Click-
Pose, as a baseline for further research. It allows a user to
direct correct the positions of one or multiple keypoints and
incorporate this feedback to refine other keypoints in Fig. 1.

Specifically, we build Click-Pose upon the end-to-end
SOTA model ED-Pose [43]. This model incorporates a
keypoint-to-keypoint refinement scheme through a regres-
sion head and updates keypoints layer-by-layer in the de-

coder, which allows receiving user-corrected positions at
the decoder instead of the input image. However, we em-
pirically find that the decoder in ED-Pose is extremely sus-
ceptible to variations in input keypoint positions. Even a
minor deviation can result in a significant deterioration in
performance. To tackle this limitation, we introduce two
unique technical contributions to its decoder. The first is
the pose error modeling that builds a reconstruction task to
enhance the robustness of the decoder and learn to refine
wrong keypoints by leveraging the correct keypoints as a
reference. The second is the interactive human-feedback
loop, which allows receiving users’ clicks to correct one or
several predicted keypoints and iteratively utilizes the de-
coder to update all other keypoints with minimal manual
corrections for efficient annotation.

Click-Pose incorporates the above two essential designs
into the training process, which improves +1.4 AP on
COCO val and +3.0 AP on HumanArt val compared
with the baseline model ED-Pose, achieving state-of-the-
art performance for end-to-end keypoint detection. More
importantly, as shown in Fig. 1, Click-Pose shows its ad-
vantages in various annotation scenarios, i.e., in-domain,
out-of-domain scenes, and a new task of keypoint adap-
tation. Specifically, Click-Pose only needs 1.97 and 6.45
NoC@95 (the average number of user clicks needed to an-
notate one person to achieve a precision of 95%) on COCO
and Human-Art, reducing 31.4% and 36.3% efforts than the
SOTA model with manual correction, respectively. More-
over, Click-Pose significantly reduces the average time cost
of single-person annotation, achieving over 5× speedup
compared to the SOTA model ViTPose with manual cor-
rection and more than a 10× speedup compared to manual-
only annotation, especially in out-of-domain scenarios.

Our contributions are: (1) We define a novel task called
interactive keypoint detection to pursue high-precision and
low-cost annotation, and present the first framework to ad-
dress this task, namely Click-Pose. (2) We incorporate the
pose error modeling and interactive human-feedback loop
into the training of Click-Pose, leading to a state-of-the-art
performance for end-to-end keypoint detection. (3) We pro-
vide a new metric (NoC) and extensively validate the effec-
tiveness and efficiency of Click-Pose in different annotation
scenes. We hope this work could inspire further research in
related fields.

2. Related work

2.1. Multi-Person Pose Estimation

Existing pose estimation models can be generally di-
vided into two-stage methods and one-stage methods. For
two-stage methods, there are top-down (TD) and bottom-
up (BU) strategies. Top-down methods [22, 27, 35, 38, 42]
have achieved high performance by first detecting each per-
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son in the image with an object detector and then conduct-
ing the single-person pose estimation with the proposed
model. However, these methods are limited by their in-
ability to handle missing person detections and their high
costs for crowd scenes. In contrast, bottom-up methods
[2, 5, 9, 26, 29] have demonstrated greater efficiency by first
estimating keypoints and then grouping them into individ-
ual human poses. Recently, the advent of end-to-end object
detectors DETR [3] has led to the development of one-stage
pose estimators, like PETR [32] and ED-Pose [43]. ED-
Pose is particularly notable in that it approaches this task
as two explicit box detection processes, leading to superior
performance and efficiency trade-offs. Additionally, some
refinement models [14, 28, 45, 46] also focus on pose cor-
rection. They take both the original image and an estimated
pose as inputs to refine a more accurate pose. However, de-
spite great efforts to achieve state-of-the-art models, such as
ViTPose [42] with ViT-Huge backbone [7], and other mod-
els [14, 28] that specialize in pose refinement, they still re-
quire manual correction to satisfy the precision requirement
of annotation, where even more manual effort is required to
compensate for the performance drop in out-of-distribution
annotation scenarios. In contrast, we attempt to address in-
teractive keypoint annotation with minimal manual efforts
using a fully end-to-end framework.

2.2. Human-in-the-Loop

Annotation is a typical application scenario for Human-
in-the-Loop (HITL) techniques, which aims to improve pre-
diction models’ accuracy while minimizing costs by lever-
aging human knowledge and experience. Existing works
mainly focus on two directions: (i) data processing via hu-
man feedback. For instance, one approach, known as ac-
tive learning [1, 16], seeks to minimize manual annotation
effort on a large dataset while maximizing the model’s per-
formance [8, 33, 39]; In specific, prior HITL methods for
pose estimation [8, 10, 24] have involved actively select-
ing and labeling informative images to facilitate effective
learning. (ii) interventional model training and inference
via human feedback. For instance, the interactive image
segmentation task is to extract an accurate target mask with
minimal user interaction [4, 25, 34, 41]. This is a popular
research area over the past years. Existing deep learning-
based approaches usually input both the image and user an-
notations in the model training and testing stages or con-
duct various inference-time optimization schemes [11, 19],
which suffer from high computation costs and slow speeds
for each annotation. A prior study [15] introduces an inter-
active image segmentation pipeline designed for heatmap-
based interactive keypoint annotation in X-ray images. Ad-
ditionally, researcher [6] has delved into the realm of inter-
and extrapolated annotations across frames. Remarkably,
no work has yet explored how to enable effective interac-

tion between deep models and human feedback to improve
end-to-end multi-person keypoint annotation accuracy with
fewer costs and manual efforts. In this work, inspired by
the concept of HITL, we first investigate how to combine
human feedback with a deep model in an interactive man-
ner for human body keypoint annotation.

3. Methodology

3.1. Motivation

Interactive Keypoint Detection. Interactive keypoint
detection aims to obtain accurate keypoint annotations with
minimal user interactions. For example, if a network pre-
dicts an incorrect pose, such as a flipped pose, the user may
only need to correct one keypoint by clicking on it. Sub-
sequently, the network can use this human feedback to fur-
ther refine the remaining keypoint positions and determine
the correct pose. To address this task, the network should
incorporate a pose-to-pose refinement scheme that can re-
ceive modified keypoint positions from the user and output
further refined positions.

Preliminary Study of ED-Pose [43]. ED-Pose ad-
dresses the task of keypoint detection by explicitly refor-
mulating 4D keypoint boxes as queries and progressively
refining them layer by layer in the decoder through a re-
gression head. It achieves SOTA performance compared
with existing end-to-end models and improves the inference
speed. When considering only the 2D coordinate, ED-Pose
can be seen as providing a keypoint-to-keypoint refinement
scheme, thus conceptually satisfying the aforementioned ar-
chitectural requirement for interactive keypoint detection.
As shown in Fig. 3-(a), it consists of an Encoder, a Human
decoder, and a Human-to-Keypoint decoder. Specifically, it
extracts image features using a backbone and passes them
through the Encoder with positional embedding to obtain
refined image features F. In the Human decoder, ED-Pose
leverages human queries QH to search for human objects,
where QH contains position queries Qp

H (i.e., human box
positions) and content queries Qc

H (i.e., human content em-
bedding). Then, it utilizes the updated human queries Q′

H

to initialize keypoint queries QK , where QK also includes
position queries Qp

K (i.e., keypoint positions) and content
queries Qc

K (i.e., keypoint content embedding). Finally, it
attaches the Human-to-keypoint decoder to refine the hu-
man box and keypoints of each person to Q′′

H and Q′
K .

Non-interactive Issue in ED-Pose. As mentioned
above, the Human-to-Keypoint decoder of ED-Pose can be
viewed as a keypoint-to-keypoint refinement process. It is
natural to consider whether human feedback (e.g., a cor-
rected keypoint) can be directly incorporated in the decoder
without any further modification. However, extensive pre-
liminary experiments have shown that the decoder is highly
sensitive to the input keypoint position query Qp

K and is
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Figure 3: Comparison of (a) ED-Pose [43] with (b) the proposed Click-Pose. Click-Pose follows the same architecture
as ED-Pose while introducing two key techniques to the Human-to-Keypoint decoder. Firstly, we introduce a training-only
strategy, namely Pose Error Modeling. It builds a reconstruction task to self-correct error-keypoint queries QE to Q′

E , which
enhances the robustness of the model and learns to refine wrong keypoints by leveraging correct keypoints as a reference.
Secondly, we attach an Interactive Human-Feedback Loop to allow the user to correct one or several keypoints positions
in Q′

K and generate the modified keypoint queries QL. Then the Human-to-Keypoint decoder could take the predicted boxes
Q′′

H and QL as input again and further refine human boxes and all keypoints to Q′′′
H and Q′

L based on user corrections.

unable to effectively utilize human feedback. For exam-
ple, during the inference, we randomly add a small dis-
turbance (∆x,∆y) to each keypoint coordinate (x, y) in
Qp

K . We ensure that |∆x| < ωx and |∆y| < ωy , where
ωx, ωy ∈ (0, 0.1). This operation results in a sharp drop in
accuracy from 71.6AP to 11.8AP. There are two main rea-
sons for this sensitivity: Firstly, the Human-to-Keypoint de-
coder effectively learns the contextual information of each
keypoint, which leads to a strong coupling between the po-
sition query Qp

K and the content query Qc
K . Once Qp

K

changes, this misalignment can cause the final results to
drop off. Secondly, the Human-to-Keypoint decoder also
creates a contextual coupling relationship among different
keypoints, meaning that adjusting the input position of one
keypoint may severely harm the update of the others.

3.2. The Overview of Click-Pose

Introduction to Click-Pose. As illustrated in Fig. 3-
(b), Click-Pose adopts the same modules as ED-Pose to ob-
tain the person box Q′′

H and keypoints Q′
K from an input

image. Furthermore, Click-Pose introduces two key tech-
niques to the Human-to-Keypoint Decoder, which makes
the model interactive and robust. Firstly, we additionally
introduce error-keypoint queries QE in the training stage,
which includes four typical pose errors defined by [30]. We
feed them into the Human-to-Keypoint decoder to recon-
struct the accurate pose Q′

E . This operation enhances the
self-correction ability of the Human-to-Keypoint decoder.
We call it Pose Error Modeling (see Sec. 3.3). Secondly,
we introduce the user interaction in an attached Human-

to-Keypoint decoder via proposed Interactive Human-
Feedback Loop (see Sec. 3.4). In this process, the user can
correct one or several keypoints positions in Q′

K and gener-
ate the modified keypoint queries QL. Then, the Human-to-
Keypoint decoder could take Q′′

H and QL as input iteratively
and further refine human boxes to Q′′′

H and all keypoints to
Q′

L based on the modified keypoints. This process can fur-
ther improve the self-correction ability of the model during
the training and successfully allow the user clicks to be in-
tegrated into the inference phase.

Training Optimization Processes of Click-Pose. Click-
Pose is an end-to-end trainable framework that extends the
ED-Pose training process (the loss as Lg). Firstly, Pose Er-
ror Modeling uses ground-truth keypoints to generate er-
roneous poses and creates a pose reconstruction task, in-
troducing the loss as Lr. Secondly, Interactive Human-
Feedback Loop uses the ground-truth keypoints to simulate
user clicks for correcting a few wrong keypoints in model
predictions and loop decoder to refine other wrong key-
points and the corresponding human boxes, introducing the
loss as Ll. Finally, the overall training pipeline of Click-
Pose can be written as follows,

L = Lg + Lr + Ll, (1)

where we employ a set-based Hungarian matching to ensure
a unique prediction for each ground-truth pose [3, 32, 43].
Following ED-Pose, Lg and Ll include human classification
loss, human box regression loss, and human pose regression
loss. Lr is the L1 loss for pose reconstruction.

Inference Pipeline of Click-Pose. Given an image,
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Click-Pose first performs an end-to-end inference to obtain
all human boxes Q′′

H and keypoint locations Q′
K without

any troublesome post-processing. Notably, QE is not re-
quired in inference. In annotation scenes, the user can di-
rectly correct the wrong keypoints in model predictions Q′

K

to QL and loop decoder to refine human boxes Q′′′
H and all

keypoints QL until the annotation is completed.

3.3. Pose Error Modeling

Pose Error Modeling aims to enhance the robustness
of the Human-to-Keypoint decoder via a reconstruction
scheme [20]. To achieve this, we introduce error-keypoint
queries QE by adding four typical error types into ground-
truth keypoints, and then we feed QE into the Human-to-
Keypoint decoder to reconstruct the accurate poses Q′

E .
In specific, QE consists of position queries Qp

E and con-
tent queries Qc

E , where the former can be initialized by the
2D coordinates of keypoints and the latter can be initialized
by the keypoint label embedding via a learnable codebook
B ∈ RK×C . K is the number of defined keypoints, and C
is the channel dimension. Then, we simulate four typical
error types of the keypoint, i.e., jitter, miss, swap and inver-
sion defined by [28,30], and add them into the ground-truth
keypoints for the initialization of Qp

E and Qc
E .

For localization issues, i.e., jitter, miss, and swap, we
perturb the ground-truth keypoints with different magni-
tudes of position disturbance to initial Qp

E . Specifically, we
add a random disturbance (∆x,∆y) to the (x, y) of the key-
point and make sure that |∆x| < λxw

2 and |∆y| <
λyh
2 ,

where λx, λy ∈ (0, 1). Such disturbance constrains the
keypoints with pose errors to remain within the bounding
box. In addition, we use B directly to embed ground-truth
keypoint labels to initialize the Qc

E . Moreover, inversion
is a complex error that involves mislabeling and mislocat-
ing body parts within the same person (e.g., confusing the
left and right elbow). As perturbing positions of ground-
truth keypoints to initialize Qp

E , we have a hyper-parameter
α (e.g., 0.4) to randomly flip the labels of the left and
right body parts for the initialization of Qc

E . Such keypoint
flipping introduces a misalignment between Qp

E and Qc
E ,

which compels the model to recognize the interdependence
between the position and label of the body parts. At last, we
preserve a subset of ground-truth keypoints in QE . This en-
ables the model to learn how to leverage the correct ground-
truth keypoints as a reference to refine wrong keypoints.

3.4. Interactive Human-Feedback Loop

Interactive Human-Feedback Loop aims to interact with
user clicks, minimize manual corrections and enable effi-
cient annotation. It allows the model to receive user clicks
for correcting a few predicted keypoints and iteratively uti-
lize the proposed decoder to update all other keypoints and
human boxes.

Initialization of Modified Queries QL. Given the pre-
dicted keypoints Q′

K , which contains position queries Qq′
K

and content queries Qc′
K , the user can click the one or several

keypoints in Qq′
K to obtain the modified position queries Qp

L

of QL, where Qp
L only have a few keypoints corrected by

the user (e.g., 1 click). Since the modified position queries
Qp

L and the originally predicted content queries Qc′
K are

misaligned, we initialize the modified content queries Qc
L

through label embedding using the codebook B , which is
shared with the pose error modeling process.

Training and Inference Strategies. For training, we
employ Hungarian matching to obtain the predicted poses
that are matched with ground-truth poses in an image. Then,
we can directly modify the corresponding predicted key-
points Qq′

K using the ground-truth to simulate the user click
operation and obtain the modified queries QL. We loop de-
coder to refine human boxes Q′′

H and all keypoints QL to
Q′′′

H and QL′, which are supervised by ground-truth boxes
and keypoints. For inference, to obtain quantitative results,
we evaluate the effectiveness and efficiency of Click-Pose
for annotation on existing datasets in a manner similar to
the training procedure. In real annotation scenarios, Click-
Pose enables users to provide direct feedback to complete
annotation with minimal effort.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our methods on four bench-
marks: COCO [23], Human-Art [13], OCHuman [47] and
CrowdPose [21]. COCO consists of about 250K person
instances with 17 keypoints, and provides diverse human
poses in natural scenarios. On the other hand, Human-
Art comprises 123K person instances with 21 keypoints, of
which 17 are the same as COCO. It provides rich human
poses in out-of-distribution artistic scenes. OCHuman has
8110 human pose instances that have occlusions with the
maxIOU≥0.5, where 32% instances are more challenging
with the maxIOU≥0.75. CrowdPose provides 80000 hu-
man poses with 14 labeled keypoints in the crowded scenes.

Evaluation Metrics. Inspired by interactive segmenta-
tion [25, 34], we introduce a new metric called the Num-
ber of Clicks (NoC), which measures the average number
of clicks needed to annotate one person to achieve a spe-
cific target average precision (AP). We set the target AP to
85%, 90%, and 95%, denoting the corresponding measures
as NoC@85, NoC@90, and NoC@95, respectively. The av-
erage NoC is calculated over images that contain person in-
stances in the COCO val set or Human-Art val set for
evaluation. Moreover, we report the overall AP when re-
stricting the number of clicks per person, such as C1 and
C3, which aims to evaluate the performance that different
methods can achieve with the same human effort.
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Time cost (s) Manual-only ViTPose+C Ours
COCO 230±56 52±10 14±5

Human-Art 250±55 132±41 23±8

Table 1: Comparisons of the average and stan-
dard deviation time cost required for single-
person annotation by three annotation strategies:
manual-only, SOTA model with manual correction,
and our Click-Pose.

Method Backbone NoC@85 ↓ NoC@90 ↓ NoC@95 ↓
COCO val
ViTPose ViT-Huge 1.46 2.15 2.87
Click-Pose ResNet-50 0.95 1.48 1.97
Human-Art val
ViTPose ViT-Huge 9.12 9.79 10.13
Click-Pose ResNet-50 4.82 5.81 6.45

Table 2: Comparisons of Number of Clicks (NoC) metrics for inter-
active keypoint detection.

Implementation Details. Following [3,43], the training
images are augmented by random cropping, flipping, and
resizing with the shorter sides in [480, 800] and the longer
sides less or equal to 1333. The number of queries QK is set
to 50. We use the AdamW optimizer with a weight decay
of 1 × 10−4. Our model is trained on Nvidia A100 GPUs
with a batch size of 16 for 40 epochs on COCO. The initial
learning rate is 1×10−4 and is reduced by a factor of 0.1 at
the 38th epoch on COCO. The channel dimension C is set
to 256. The testing images are resized to have shorter sides
of 800 and longer sides less than or equal to 1333. All com-
pared DETR-based models use the ResNet-50 backbone.

4.2. Annotation Comparisons

We investigate the advantages of Click-Pose in dif-
ferent annotation scenes, i.e., in-domain natural scene
(COCO), out-of-domain artificial scene (Human-Art), and
crowded scenes (OCHuman and CrowdPose). The com-
pared pose estimators comprehensively include top-down
(TP), bottom-up (BU), and one-stage (OS) models.

Time Cost Comparisons. In Tab. 1, we compared Click-
Pose with two other annotation schemes, one using manual-
only annotation, and the other using ViTPose [42] to de-
tect initial predictions, followed by manual correction for
incorrect keypoints. We conduct a study where ten users an-
notate the same ten images (which proved challenging for
direct prediction via various methods) using different strate-
gies, and we calculate the average and variance time it took
to annotate a single person. The results show Click-Pose
significantly reduces the annotation time cost, especially in
the out-of-domain annotation scene, achieving a speedup of
10 times compared to manual-only annotation and 5 times
compared to the SOTA model with manual correction.

NoC Metric Comparisons. Tab. 2 shows the perfor-
mance of Click-Pose and ViTPose in terms of the NoC met-
ric. Our results demonstrate that Click-Pose with a much
smaller backbone can require fewer human corrections to
achieve different AP requirements compared to ViTPose,
reducing manual effort by 31.4% and 36.3% when the target
AP is set to 95 (NoC@95) for COCO and Human-Art, re-
spectively. Non-interactive deep models tend to suffer from
model bias and fail on OOD annotation scenes, while Click-
Pose can significantly mitigate this problem.

4.3. In-domain Keypoint Detection

We verify the effectiveness of Click-Pose in comparison
to other state-of-the-art methods in the in-domain scene in
Tab. 3 and 4, where we train our models on COCO train
set and validate them on COCO val set.

Comparison with Model+Manual Correction meth-
ods: We simulate manual correction on the output results
by replacing worse keypoints with ground-truth. The re-
sults show that Click-Pose can achieve better performance
compared to ED-Pose, Poseur and ViTPose, with the same
amount of human effort. For instance, when modifying 4 in-
correct keypoints per person, Click-Pose achieves 96.4 AP,
which is 8.1 AP higher than ViTPose.

Comparison with Model-Only methods: Click-Pose-
C0, which does not require user corrections, achieves state-
of-the-art results using the same ResNet-50 backbone in a
fully end-to-end manner. This remarkable performance is
attributed to the effective training facilitated by pose error
modeling. Notably, Click-Pose-C0 outperforms ED-Pose
by 1.4 AP with a faster inference time.

4.4. Out-of-domain Keypoint Detection

To demonstrate the generalization ability of Click-Pose,
we further evaluate it in the OOD scene, where we train our
models on COCO train set and validate them on Human-
Art val set (only 17 keypoints here) in Tab. 5 and 6.

Comparison with Model+Manual Correction meth-
ods: In Tab. 5 and 6, Click-Pose demonstrates robust per-
formance in such out-of-domain scenario, outperforming
ViTPose by 29.5 AP, Poseur by 35.2 AP and ED-Pose by
18.3 AP when clicking 3 keypoints per-person. Further-
more, Click-Pose’s performance remains consistent across
other settings as well.

Comparison with Model-Only methods: Click-Pose-
C0 outperforms all two-stage or one-stage approaches, sig-
nificantly surpassing the SOTA ViTPose model by 11.8 AP.
It also achieves an improvement of 3.0 AP over ED-Pose.

4.5. Crowded Scene Keypoint Detection

Tab. 7 and 8 investigates the effectiveness of Click-Pose
in the crowded scene. Here, we compare our Click-Pose
to the baseline model ED-Pose with the same ResNet-50
backbone. Specifically, Click-Pose-C0 outperforms ED-
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Method Backbone AP↑ AP50↑ AP75↑ APM↑ APL↑ Time [ms]↓
Model-Only
ViTPose† [42] (TP) ViT-Huge 79.1 91.7 85.7 71.9 82.0 45+286
HRNet† [36] (TP) HRNet-w32 74.4 90.5 81.9 70.8 81.0 45+112
HrHRNet† [5] (BU) HRNet-w32 67.1 86.2 73.0 61.5 76.1 322
PETR [32] (OS) ResNet-50 68.8 87.5 76.3 62.7 77.7 105
ED-Pose [43] (OS) ResNet-50 71.6 89.6 78.1 65.9 79.8 51
Click-Pose-C0 (OS) ResNet-50 73.0↑1.4 90.4 80.0 68.1 80.5 48↓3

Model+Manual Correction
ViTPose-C1 ViT-Huge 82.3 90.8 86.6 78.8 87.9 -
ViTPose-C2 ViT-Huge 85.3 91.9 89.5 83.6 89.4 -
ViTPose-C3 ViT-Huge 86.7 93.8 90.3 86.7 89.4 -
ViTPose-C4 ViT-Huge 88.3 95.2 92.4 90.9 89.5 -
Neural Interactive
Click-Pose-C1 ResNet-50 83.2 (+1.8) 96.5 (+3.4) 89.7 (+2.3) 80.1 (+2.8) 87.9 (+0.2) -
Click-Pose-C2 ResNet-50 90.3 (+2.7) 97.8 (+3.1) 95.2 (+4.1) 88.1 (+3.1) 93.9 (+1.9) -
Click-Pose-C3 ResNet-50 94.1 (+3.4) 98.9 (+3.4) 96.6 (+3.8) 92.6 (+3.5) 96.5 (+2.8) -
Click-Pose-C4 ResNet-50 96.4 (+3.9) 99.0 (+3.3) 97.9 (+4.3) 95.3 (+3.8) 97.8 (+3.3) -

Table 3: Comparison with representative SOTAs on COCO val set. C1-C4 limits the number of clicks on a single
person. Click-Pose-C0 is a fully end-to-end framework without user clicks. The red arrow indicates its improvement over
ED-Pose [43]. The number in parentheses is the interactive model improvement via the loop refinement (ignoring the manual
improvement). † denotes the flipping test. The inference time of all model-only methods is tested on an A100, except for the
detector of the top-down methods, which is referred from the MMdetection (i.e., 45ms).

Method C0↑ C1↑ C2↑ C3↑ C4↑ NoC@95↓
Poseur [27] (TP) 74.2 80.9 84.8 86.4 88.6 3.15
ED-Pose [43] (OS) 71.6 80.1 84.4 86.9 88.5 5.40
Click-Pose (OS) 73.0 83.2 90.3 94.1 96.4 1.97

Table 4: Comparison with DETR-based models on
COCO val set.

Method Backbone AP APM APL

Model-Only
ViTPose (TP) ViT-Huge 28.7 1.6 31.8
HRNet (TP) HRNet-w48 22.2 1.6 24.5
HrHRNet (BU) HRNet-w48 34.6 5.6 38.1
ED-Pose (OS) ResNet-50 37.5 7.6 41.1
Click-Pose-C0 (OS) ResNet-50 40.5↑3.0 8.3 44.2
Model+Manual Correction
ViTPose-C3 ViT-Huge 32.1 5.1 34.8
ViTPose-C5 ViT-Huge 36.1 12.3 38.3
ViTPose-C7 ViT-Huge 40.3 19.0 42.3
ViTPose-C9 ViT-Huge 47.5 28.9 49.1
Neural Interactive
Click-Pose-C3 ResNet-50 61.6 (+13.4) 30.8 (+16.7) 65.1 (+13.3)
Click-Pose-C5 ResNet-50 71.8 (+19.8) 45.1 (+26.4) 74.5 (+19.2)
Click-Pose-C7 ResNet-50 78.5 (+24.1) 54.7 (+32.9) 80.9 (+23.3)
Click-Pose-C9 ResNet-50 83.7 (+27.6) 63.1 (+38.1) 85.9 (+27.0)

Table 5: Comparison with representative SOTAs on
Human-Art val set. All the models are trained on COCO
and tested on Human-Art as out-of-distribution data.

Method C0↑ C1↑ C2↑ C3↑ C4↑ NoC@95↓
Poseur [27] (TP) 21.2 23.1 24.9 26.4 28.0 12.19
ED-Pose [43] (OS) 37.5 40.1 42.0 43.3 44.3 9.88
Click-Pose (OS) 40.6 47.1 54.9 61.6 67.1 6.45

Table 6: Comparison with DETR-based models on
Human-Art val set.

Pose by 2.5 AP on OChuman and 0.7 AP on Crowd-
Pose in the model-only setting, showing its robustness in
crowded scenes. Compared with ED-Pose+manual correc-
tion, Click-Pose exhibits significant improvements when re-
ceiving user clicks. This is because it not only adjusts the

Method AP AP50 AP75 NoC@95

Model-Only
ED-Pose (OS) 31.4 39.5 35.1 -
Click-Pose-C0 (OS) 33.9↑2.5 43.4 37.5 -
Model+Manual Correction
ED-Pose-C1 33.0 39.6 35.5 13.50ED-Pose-C2 33.7 39.6 35.6
Neural Interactive
Click-Pose-C1 83.0 (+46.4) 92.4 (+49.0) 88.0 (+49.0) 1.93
Click-Pose-C2 90.9 (+52.4) 96.3 (+52.5) 93.3 (+53.4)

Table 7: Comparison with baseline models on the
crowded scene, where all the models are trained on COCO
and tested on OCHuman test set.

Method C0↑ C1↑ C2↑ C3↑ C4↑ NoC@95↓
ED-Pose (OS) 69.9 77.6 82.3 84.8 86.1 6.37
Click-Pose (OS) 70.6 79.1 86.1 91.3 94.5 1.47

Table 8: Comparison with baseline models on the
crowded scene, where all the models are trained and tested
on CrowdPose with defined 14 keypoints.

classification scores for all candidate predictions but also
enhances localization accuracy. Both of these enhance-
ments greatly contribute to improving annotation efficiency.

4.6. Ablation Study

Two Key Components. We evaluate the effectiveness of
the proposed two key components on the COCO val set,
as shown in Table 9. First, Click-Pose incorporates pose
error modeling to enhance the self-correction ability of the
model. Our results demonstrate that this training strategy
can lead to a 1.2 AP improvement and reduce the conver-
gence time from 60 to 40 epochs compared to the baseline
model [43]. Second, the human-feedback loop training can
also provide an additional improvement of 0.9 AP by en-
hancing the model’s robustness.
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Pose Error Loop AP APM APL Epoch
70.9 65.2 79.2 60e

✓ 72.1 66.5 80.3 45e
✓ ✓ 73.0 68.1 80.5 40e

Table 9: Impact on key components of
Click-Pose-C0.

Strategies C2 C4 C6 C8
Random 84.2 90.1 94.1 96.5
Low score 88.5 93.0 95.6 97.6
Worse 90.3 96.4 98.1 98.7

Table 10: Ablation study on three
click strategies.

Strategies C2 C4 C6 C8
Only Once 90.1 95.2 97.4 98.6
Progressive 90.3 96.4 98.1 98.7

Table 11: Ablation study on two loop
strategies.
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Figure 4: Visualization of the effects of the proposed Click-Pose with only one user click per person from in-domain scenes
to out-of-domain scenes (directly test on them). The red dots in row (b) represent user clicks for Click-Pose-C0.

Method AP@21 AP@17 AP@4 Correctable Range
Training on COCO
Click-Pose-C0 25.1 40.5 0 -
Interactive training with 100 annotated images
Click-Pose-C0 47.1↑22.0 52.0↑11.5 29.1↑29.1 -
Click-Pose-C2 58.2 (+5.4) 64.8 (+5.6) 33.2 (+4.1) 1-17
Click-Pose-C2 59.0 (+3.7) 61.1 (+3.3) 56.3 (+8.9) 1-21
Interactive training with 1000 annotated images
Click-Pose-C0 55.0↑29.9 58.8↑18.3 40.9↑40.9 -
Click-Pose-C2 69.2 (+6.4) 74.7 (+6.8) 45.4 (+4.5) 1-17
Click-Pose-C2 70.4 (+5.9) 71.0 (+5.5) 67.1 (+7.5) 1-21

Table 12: Effect on adaptation 17 to 21 keypoints from
COCO (17 keypoints) to Human-Art (21 keypoints).

Click Strategies. In experiments, we take the users to
correct a worse keypoint by default. Besides, we explore
two other strategies: random clicking and clicking on the
keypoint with a low confidence score. In Tab. 10, Click-
Pose shows consistent improvement under all three click
strategies. Correcting the worse keypoint is the most in-
tuitive annotation way and yields the best performance.

Loop Strategies. During inference, we set the progres-
sive loop by default, where we only modify one worst key-
point in each loop iteration. We also explore the effective-
ness of directly modifying multiple keypoints in a single
loop iteration. Tab. 11 gives the performance trends of the
two strategies for different numbers of clicks, showing that
using the progressive loop strategy can obtain great results,
and it is also more intuitive and user-friendly in practice.

4.7. Adaptation to Different Keypoints

We investigate the adaptability of Click-Pose in han-
dling additional keypoints that are not included in the orig-
inal training dataset. Specifically, we train the model us-
ing COCO with 17 labeled keypoints and finetune it on a
small set of images (e.g., 100 and 1000) in Human-Art la-
beled with 21 keypoints, including 4 additional keypoints
that are not defined in COCO. Tab. 12 reports AP@21 for all
21 keypoints, AP@17 for 17 keypoints defined by COCO,
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(a) Click-Pose-C1 (AP=70.0) (b) Click-Pose-C2 (AP=82.9) (c) Click-Pose-C3 (AP=95.0)

1 
click

2 
clicks

3 
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Figure 5: Visualization of the effects of the proposed Click-Pose with varying numbers of clicks (e.g., one to three). The AP
of Click-Pose-C0 is 40.0 AP, while Click-Pose-C3 could refine its results based on three clicks to achieve 95.0 AP.

and AP@4 for 4 additional keypoints that require adapta-
tion. Moreover, we provide two options for the range of cor-
rectable keypoints, i.e., 1-17 and 1-21. The results demon-
strate that when the user corrects keypoints within the 17
keypoints defined by COCO, Click-Pose can refine an ad-
ditional 4 keypoints. Furthermore, when expanding the
range of correctable keypoints to include all 21 keypoints,
the AP@4 score is further improved. Importantly, Click-
Pose with limited annotated images can improve 22.0 AP to
about 30.0 AP for AP@21 without manual correction.

4.8. Qualitative Results

Fig. 4 illustrates the effectiveness of the proposed Click-
Pose in both natural in-domain and artificial out-of-domain
scenes when receiving only one user click. By leveraging
the human feedback loop, Click-Pose can refine other in-
correct keypoints and boxes with user interaction. We show
four typical pose error corrections, indicating the effective-
ness and efficiency of our proposed method. Moreover,
Fig. 5 shows how Click-Pose achieves increasingly better
results with increasing clicks in challenging scenarios. As
the number of clicks increases from 1 to 3, the AP score
dramatically increases from 40 to 95.

5. Conclusion and Future Work
Conclusion. This work proposes a novel interactive

keypoint detection task incorporating a human-in-the-loop
strategy and presents Click-Pose, an end-to-end neural in-
teractive keypoint detector. Click-Pose introduces two key
components: a pose error modeling scheme and an inter-
active human-feedback loop. By effectively combining the
model with user clicks, Click-Pose reduces labeling costs
by over ten times compared to manual annotation. We hope
this work will benefit the community by highlighting the
importance of interaction between models and users.

Future Work. This work mainly focuses on multi-
person 2D human pose estimation. There are some poten-
tial directions for future work. (I) Interactive Whole-body
Annotation: Our work simply considers the mainstream 17
or 21 body keypoints. When dealing with more complex
and dense keypoints (e.g., 133 keypoints [12, 44]), annotat-
ing small and blurry areas, like hands and faces, presents
greater challenges. Importantly, these densely labeled body
parts often exhibit locally structured spatial relationships
that can be leveraged, making the task of labeling dense
keypoints quite promising. (II) Interactive Multi-task An-
notation: Our work has focused on annotating human body
keypoints and their potential assistance in annotating body
boxes (please see supplementary material). Similar to re-
cent SAM [17], a more exciting direction is combining an-
notations from different tasks (like 2D/3D pose estimation,
body parsing, and textual descriptions). A unified model
could extract shared features and use different branches to
obtain user inputs and estimate various annotations. Chang-
ing one annotation could affect others, offering a versatile
and comprehensive annotation approach. (III) Interactive
3D Annotation: Annotating 3D needs high-cost devices
and complex processing. Could we annotate 3D informa-
tion (e.g., point cloud, mesh, keypoints) in the 2D space
effectively [18, 31, 37]? This is an intriguing opportunity to
expand this approach into the 3D domains.
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