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Figure 1. Diagram of one-shot generative domain adaptation. Left: The overall framework, where a GAN model pre-trained on the
large-scale source data is transferred to the target domain with as few as only one training sample. A lightweight attribute adaptor and
attribute classifier are introduced to the frozen generator and discriminator, respectively. Right: Realistic and highly diverse synthesis
results after adapting the pre-trained model to two reference images of a kid and Van Gogh’s self portrait.

Abstract

This work aims to transfer a Generative Adversarial
Network (GAN) pre-trained on one image domain to an-
other domain referred to as few as just one reference
image. The challenge is that, under limited supervision,
it is extremely difficult to synthesize photo-realistic and
highly diverse images while retaining the representative
characters of the target domain. Different from existing
approaches that adopt the vanilla fine-tuning strategy, we
design two lightweight modules in the generator and the
discriminator respectively. We first introduce an attribute
adaptor in the generator and freeze the generator’s original
parameters, which can reuse the prior knowledge to the
most extent and maintain the synthesis quality and diversity.
We then equip the well-learned discriminator with an
attribute classifier to ensure that the generator with the
attribute adaptor captures the appropriate characters of
the reference image. Furthermore, considering the very

limited diversity of the training data (i.e., as few as only
one image), we propose to constrain the diversity of the
latent space through truncation in the training process,
alleviating the optimization difficulty. Our approach brings
appealing results under various settings, substantially sur-
passing state-of-the-art alternatives, especially in terms of
synthesis diversity. Noticeably, our method works well even
with large domain gaps and robustly converges within a
few minutes for each experiment. Code and models are
available at https://genforce.github.io/genda/.

1. Introduction

Generative Adversarial Network (GAN) [4], consisting
of a generator and a discriminator, has significantly ad-
vanced image synthesis yet relies on training with a large
number of images [5, 7, 8, 1]. Many attempts have been
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made to train GANs from scratch with limited data [27,
32, 30, 6, 25], but it still requires hundreds or thousands
of images to get a satisfying synthesis result. Sometimes,
however, we may have only a few images, or in extreme
cases only one single image as the reference, like the
masterpiece Mona Lisa by Leonardo da Vinci. Under such
a case, learning a generative model with both good quality
and high diversity seems impossible.

Domain adaptation is a commonly used technique that
applies a model trained on one data domain to another [2].
Prior works [23, 13, 22, 12, 29, 10, 16] have introduced
this technique to GAN training to alleviate the requirement
on the data scale. Typically, they first train a large-scale
model in the source domain with adequate data, and then
transfer it to the target domain with only a few samples.
A common practice is to fine-tune both the generator and
the discriminator on the target dataset until the generator
produces samples conforming to the target domain. To
stabilize the fine-tuning process and improve the genera-
tion quality and diversity, existing approaches propose to
tune partial parameters [13, 12, 16] and introduce some
regularizers [10, 14], but the overall adaptation strategy
stays the same. When there is only one image from the
target domain, these methods would fall short of synthesis
diversity, producing very similar images.

Remember that the pre-trained model can produce highly
diverse images in the source domain. Then what does cause
the diversity drop in the adaptation process? We find that
directly tuning the model weights results in the loss of the
prior knowledge gained from the large-scale data due to the
model parameter’s collapse into one mode. However, when
adapting the model to the target domain, most variation
factors (e.g., gender, and pose of human faces) should be
reused as much as possible. These observations lead to a
question: is it possible to simply focus on the most repre-
sentative characters of the reference image while inheriting
all the other knowledge from the source domain?

To answer the question above, we develop a novel
method, called GenDA, for one-shot Generative Domain
Adaptation. In particular, we design a lightweight module
connecting the latent space and the synthesis network. We
call this module an attribute adaptor since it helps adapt the
generator with the attributes of the target image. Unlike the
conventional fine-tuning strategy, we freeze the parameters
of the original generator and merely optimize the attribute
adaptor during training. Thereby, we manage to reuse the
prior knowledge learned by the source model and hence
inherit the synthesis quality and, more importantly, the
diversity. Meanwhile, we employ the discriminator to
compete with the generator via a domain-specific attribute
classification. In this way, the generator is forced to capture
the most representative attributes from the reference; other-
wise, the discriminator would spot the discrepancy. How-

ever, instead of directly tuning the original discriminator,
we freeze its entire backbone’s parameter and introduce a
lightweight attribute classifier on top of that. Similar to the
generator, the discriminator has also learned rich knowledge
in its pre-training. Since the synthesized images before
and after adaptation share most visual concepts (e.g., a
face model would still produce faces after domain transfer),
the discriminator can be reused as a well-learned feature
extractor. Therefore, we simply train the attribute classifier
to help guide the generator. Furthermore, since there is
only one training sample (which means no diversity in the
target domain), we propose to also constrain the diversity of
the generative domain by truncating the latent distribution
during training. Intuitively, learning a one-to-one mapping
would be easier than learning a many-to-one mapping. Such
a design mitigates the optimization difficulty and further
improves the synthesis quality.

We evaluate our approach through extensive experiments
on synthesizing faces and outdoor scenes. Given only
one training image, GenDA can adapt the source model
to the target domain with sufficiently high quality and
diversity. Such an adaptation is successful at both the
attribute level and the style level, shown in Fig. 1. Our
method outperforms the state-of-the-art competitors by a
substantial margin both qualitatively and quantitatively. We
also show that when the number of samples available in the
target domain increases, GenDA can filter out the individual
attributes and capture their common characters (see Fig. 4).
Noticeably, GenDA can work on some extreme cases where
there is a large domain gap, like transferring the characters
of Mona Lisa to churches (see Fig. 5), creating interesting
visual special effect.

2. Related Work
Training Generative Models with Limited Data. Many
attempts have been taken to train a generative model on
limited data. For one thing, some of the prior approaches
proposed to leverage the data augmentation to prevent
the discriminator from overfitting. Specifically, Zhang
and Khoreva [27] introduced a type of progressive aug-
mentations. Zhao et al. [32] investigated the effects of
various augmentations during the training. Theoretical
analysis was conducted by Tran et al. [21] for several data
augmentations. Zhao et al. [30] proposed to apply the
augmentations to both the real and synthesized images in a
differentiable manner. Karras et al. [6] designed an adaptive
discriminator augmentation that does not leak to stabilize
the training process. For another, multiple regularizers were
also introduced to provide extra supervision. For instance,
Zhao et al. [31] involved the consistency regularization for
GANs which shows competitive performances with limited
data. Yang et al. [25] incorporated contrastive learning as
an extra task to improve the data efficiency. Karras et al. [6]
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also pointed out that decreasing the number of parameters of
generators and introducing the dropout [19] could alleviate
the overfitting problems. Shaham et al. [17] and Sushko et
al. [20] designed different frameworks which learn from a
single natural image or video. However, when the number
of available images is less than 10, they usually lead to
unsatisfying diversity. Different from these works which
learn from scratch, we focus on the generative domain
adaptation, a practical alternative that first pre-trains a
source model on the large-scale dataset and then transfers
it on a target domain with the one-shot image.
Few-shot Generative Domain Adaptation. Generative
domain adaptation has attracted a considerable number of
interests due to its practical importance. Wang et al. [23]
proposed to use the same objective for adaptation. Noguchi
and Harada et al. [13] fine-tuned the batch statistics merely
for the few-shot adaption. Wang et al. [22] transformed the
original latent space and tuned the entire parameters for the
target domain. Mo et al. [12] froze the lower-level represen-
tations of the discriminator to prevent overfitting. Zhang et
al. [29] revealed that low-level filters of both the generator
and discriminator can be transferred via a new adaptive
filter modulation. Li et al. [10] penalized certain weights
identified by Fisher information. Robb et al. [16] learned
to adapt the singular values of the pre-trained weights while
freezing the corresponding singular vectors. Ojha et al. [14]
proposed the cross-domain consistency as a regularization
to maintain the diversity. Recent work [33, 28, 9, 3] also
leveraged the powerful CLIP [15] to help the one-shot and
few-shot domain adaptation. Concurrent work [28] decou-
pled the domain adaptation into two parts: style and entity
transfer. Different from prior work, we manage to reuse
the prior knowledge to the most extent (i.e., only training
one layer in the generator and the discriminator each), and
empirically confirm that such an efficient scheme indeed
facilitates generative domain adaptation and substantially
outperforms existing alternatives. In this way, our study
offers a simple yet strong baseline for the follow-up work
regarding one-shot and few-shot domain adaptation. More
analyses and discussions can be found in Supplementary
Material.

3. Methodology
The primary goal of this work is to transfer a pre-trained

GAN to synthesize images conforming to a new domain
with as few as only one reference image. Due to the limited
supervision, it is challenging to ensure both high quality
and large diversity of the synthesis. Intuitively, according
to the rationale of GANs (i.e., adversarial training between
the generator and the discriminator), the discriminator can
simply memorize the only the reference image as real and
all the others as fake. In this case, to fool the discriminator,
the generator may have to learn to produce images highly

alike the reference, resulting in a poor synthesis diversity.
To mitigate this problem, we propose a new adaptation
algorithm, which is different from the previous fine-tuning
scheme. Concretely, we first interpose an attribute adaptor
between the latent space and the generator to search the
most representative characters of target image in a new
intermediate feature space; We then augment the discrim-
inator backbone with an attribute classifier to guide the
generator to make appropriate adjustments; and We finally
propose a diversity-constraint training strategy. Before
going into technical details, we first give some preliminaries
of GANs.

3.1. Preliminaries

Generative Adversarial Network (GAN) [4] is formu-
lated as a two-player game between a generator and a
discriminator. Given a collection of observed data {xi}Ni=1

with N samples, the generator G(·) aims at reproducing the
real distribution X via randomly sampling latent codes z
subject to a pre-defined latent distribution Z . As for the
discriminator D(·), it targets at differentiating the real data
x and the synthesized data G(z) as a bi-classification task.
These two models are jointly optimized by competing with
each other, as

LG =− Ez∈Z [log(D(G(z)))], (1)
LD =− Ex∈X [log(D(x))]

− Ez∈Z [log(1−D(G(z)))]. (2)

After the training converges, the generator is expected to
produce images as realistic as the training set, so that the
discriminator cannot distinguish them anymore.

In this work, we start with a GAN model that is well
trained on a source domain X src, and aim at adapting it to
a target domain X dst = {xdst} that has only one image.
In fact, it is ambiguous to define a “domain” using one
image. We hence expect the model to acquire the most
representative characters from the reference image. Taking
face synthesis as an example, the characters may include
facial attributes (e.g., age or wearing sunglasses) and artistic
styles, as shown in Fig. 1.

3.2. One-Shot Generative Domain Adaptation

A common practice to transfer GANs is to simultane-
ously tune the generator and the discriminator on the target
dataset [23]. However, as discussed above, the transferring
difficulty increases drastically when given only one training
sample. Existing methods attempt to address this issue by
reducing the number of learnable parameters [12, 16] and
introducing training regularizers [14]. Even so, the overall
fine-tuning scheme (i.e., directly tuning G(·) and D(·))
remains and the diversity is low. Differently, we propose a
new adaptation strategy to preserve the synthesis diversity,
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which includes an attribute adaptor, an attribute classifier,
and a diversity-constraint training strategy. Technical de-
tails are introduced as follows.

Attribute Adaptor. Prior works have found that a well-
learned generator is able to encode rich semantics to
produce diverse images [18, 26]. For instance, a face
synthesis model could capture the variation factors like
gender, age, wearing glasses, lighting, etc. Ideally, this
knowledge should be sufficiently reused as much as pos-
sible in the target domain, and then the synthesis diversity
can be preserved accordingly. In this approach, even given
few samples, the generator can focus on transferring the
most distinguishable characters of the reference, instead
of learning the common variation factors repeatedly and
result in overfitting. Such an approach helps improve the
data efficiency significantly, which is vital to the one-shot
setting.

According to [24], the latent code z can be viewed as the
generative feature of G(z) that determines the multi-level
attributes of the output image. Motivated by this, we pro-
pose to adapt such features regarding the reference image,
yet keep the convolutional kernels untouched. Concretely,
before feeding the latent code z to the generator G(·), we
propose to first transform it through a lightweight attribute
adaptor A(·), as

z′ = A(z) = a⊙ z+ b, (3)

where ⊙ stands for the element-wise multiplication, while a
and b are the learnable weight and bias, respectively. With
such a design, the transformed latent code z′ is assumed
to carry the sufficient information of the reference, and
therefore G(z′) would conform to the target domain X dst.

Attribute Classifier. Only having the attribute adaptor
cannot guarantee the generator to acquire the representative
characters from the training sample. Following the formula-
tion of GANs, we incorporate the discriminator D(·), which
is also pre-trained on the source domain, to compete with
the generator. In particular, we reuse the backbone d(·)
but remove the last real/fake classification head, and then
equip it with a lightweight attribute classifier ϕ(·). Given
an image x, either the reference image xdst or a transferred
synthesis G(A(z)), the classifier outputs a probability of
how likely it possesses the target attribute, as

p = ϕ(d(x)). (4)

However, due to the limited supervision provided by one
image, the discriminator can easily memorize the real data,
which leads to the overfitting of discriminator as well as
the collapse of the generator [6]. As discussed above,
the generated images before and after domain adaptation
are expected to share most variation factors (i.e., a face
model remains to produce faces after adaptation). From

this viewpoint, the knowledge learned by the discriminator
in its pre-training could be also reused. Therefore, unlike
existing approaches that fine-tune all or partial parameters
of D(·) [12, 22, 10, 14], we freeze all parameters of d(·)
in the entire training process and merely optimizes ϕ(·) to
guide A(·) with adequate adjustments. Regarding the one-
shot target domain, the mechanism behind the classifier is
very similar to Exemplar SVM [11], which also suggests
that it is sufficient to obtain a good decision boundary
with one positive and many negative samples. Differently,
our attribute classifier is learned in an adversarial manner
through competing with the attribute adaptor.

Diversity-constraint Strategy. Recall that this work tar-
gets at generative domain adaptation with only one refer-
ence image, which means no diversity of real data. On the
contrary, however, the latent code can be sampled randomly
and the pre-trained generator can produce highly diverse
images from the source domain. From this perspective, it
might be challenging to match these two distributions with
such a huge diversity gap. To alleviate the optimization
difficulty, we propose a diversity-constraint strategy, which
retains the diversity of the generator during training. Specif-
ically, we truncate the latent distribution with a strength
factor β, as

z′ = A(βz+ (1− β)z̄), (5)

where z̄ indicates the mean code. Note that, truncation
is a common trick used in the inference of state-of-the-art
GANs, like StyleGAN [7] and BigGAN [1], to improve
synthesis quality. Nevertheless, to our best knowledge, this
is the first time that truncation is introduced in the training
process to preserve the synthesis diversity.

Full Objective Function. In summary, the adaptor A(·)
and the classifier ϕ(·) are trained with

LA =− Ez∈Z [log
(
ϕ(d(G(z′)))

)
], (6)

Lϕ =− Ex∈X src [log
(
ϕ(d(x))

)
]

− Ez∈Z [log
(
1− ϕ(d(G(z′)))

)
]. (7)

4. Experiments
We evaluate the proposed method on multiple datasets

and settings. In Sec. 4.1, we focus on one-shot generative
domain adaptation. Quantitative and qualitative results in-
dicate that the proposed GenDA can produce much more di-
verse and photo-realistic images than previous alternatives.
Interestingly, the shared representative attributes of multiple
shots could be also captured and transferred from the source
to the target domain. Additionally, when there exists a large
domain gap, GenDA can still synthesize reasonable outputs
in Sec. 4.2. Noticeably, the comprehensive ablation studies
of each component, comparison of few-shot adaptation, and
the properties of the latent space after adaptation can be
found in Supplementary Material.
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Target GenDA (Ours) FreezeD Cross-Domain Inversion-Mixing

Figure 2. Qualitative comparison on one-shot adaptation between FreezeD [12], Cross-Domain [14], inversion-mixing baseline and our
GenDA. The first column shows the reference images. GenDA outperforms the other competitors from the diversity perspective.

Table 1. Quantitative comparison on one-shot adaptation between FreezeD, Cross-Domain, inversion-mixing baseline, and our GenDA.
Evaluation metrics include FID (lower is better), precision (higher means better quality), and recall (higher means higher diversity).

Method FID↓ Prec.↑ Recall↑
FreezeD [12] 147.91 0.61 0.012

MineGAN [14] 168.20 - -
Cross-Domain 146.74 0.53 0.000

Inversion-Mixing 87.74 0.59 0.298
GenDA (ours) 80.16 0.74 0.033

(a) Babies

FID↓ Prec.↑ Recall↑
87.32 0.93 0.000
85.26 - -
91.92 0.80 0.000
77.92 0.48 0.226
44.96 0.76 0.067

(b) Sunglasses

FID↓ Prec.↑ Recall↑
102.11 0.52 0.009
117.90 - -
90.42 0.19 0.000
182.51 0.00 0.019
87.55 0.16 0.053

(c) Sketches

Table 2. Quantitative comparison on one-shot adaptation be-
tween CLIP-based methods and GenDA. FID (lower is better) is
reported, where all results are averaged over 5 training shots.

Method Sunglasses Babies Sketches
Mind the gap [33] 77.34 123.62 107.22
Just One CLIP [9] 69.13 108.23 83.87

StyleGAN-NADA [3] 137.82 102.71 154.83
GenDA (ours) 44.96 80.16 87.55

4.1. One-shot Domain Adaptation

Comparison with Existing Alternatives. For one-
shot generative domain adaptation, we compare against
FreezeD [12], MineGAN [22] and Cross-Domain [14] in
Tab. 1. Moreover, Tab. 2 presents the comparison with
CLIP-based methods. More implementation details regard-
ing competitors are available in Supplementary Material.
Considering the variance brought by different single shots,

we calculate all metrics over 5 training shots.

As shown in Tab. 1, our GenDA remains to surpass
multiple approaches by a clear gap from the perspective of
FID. Besides, to further compare different methods from
the views of image quality and diversity, we also report
the precision and recall. Intuitively, a higher precision
means higher image quality (closer to the real sample),
while a higher recall indicates higher diversity. Although
FreezeD [12] and Cross-Domain [14] plausibly achieve
better synthesis quality on sunglasses and sketches, their
low recalls strongly imply overfitting. Additionally, Tab. 2
suggests that we achieve on-par or better performance
on three different domains, compared to CLIP-based ap-
praoches.

Fig. 2 confirms that there is insufficient diversity for such
two methods. In contrast, our GenDA leads competitive
quality and standing-out diversity from both quantitative
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Target Source domain: LSUN Church

Target Source domain: FFHQ Face

Figure 3. One-shot adaptation with different target samples. GenDA manages to capture the representative characters from the given
reference, such as sunglasses, artistic style for faces, and vegetation, pyramid material for churches.

and qualitative perspectives. In terms of the synthesis
diversity, inversion-mixing pipeline achieves the highest
recall since the diversity is determined by the source model.
Nevertheless, the synthesis quality of this is quite unsatis-
fying, especially for the sketches since the source models
have no knowledge of how to synthesize sketches. It implies
that reusing all prior knowledge of source models tends
to limit the adaptation. Besides, Fig. 3 suggests that our
GenDA works on transferring both attributes (sunglasses,
gender, vegetation and material) and artistic styles for face
and church model, respectively.

Common Attributes from Multiple References. There
might be a number of representative variation factors in a
given face image (e.g., age, gender, smile and sunglasses).
Therefore, when transferring a pre-trained generative model
on one image, multiple factors could be adapted together.
Fig. 4 provides an example of our GenDA on sunglasses.
Specifically, we train GenDA on multiple target domains
which might contain a single individual with different iden-
tities or a pair of images. Compared with the source output
(the first row), representative attributes besides sunglasses
are also transferred. For instance, the second and third rows
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Target
Sunglasses + Female

Sunglasses + Male

Hair + Female

Sunglasses

Female

After Adaptation

Before Adaptation

Figure 4. Learning the shared semantic of more than one reference image. On the left are the training samples, while on the top
are the samples synthesized before adaptation. In the remaining rows, images from the same column are produced with the same latent
code. Under the settings of two-shot adaptation (i.e., the last two rows), we can tell that (1) in the second last row, all people are wearing
eyeglasses (common attribute of the two references) but they have the same gender (divergent attribute) as the original synthesis in the top
row. (2) similarly, in the bottom row, all people are female yet the “eyeglasses” attribute is preserved from the original synthesis.

suggest that although all individuals wear sunglasses, the
target’s gender is also adapted to the new synthesis. The
third shot could even affect the gender and hairstyles. This
reveals that our GenDA could capture multiple representa-
tive attributes of the target domain. When the target domain
contains more than one shot like the last two rows of Fig. 4,
the representative attributes become the common attributes
of all individuals, leading to the corresponding results (i.e.,
sunglasses and gender). Namely, our GenDA is able to
capture and adapt the representative attributes no matter
how many images the target domain has.

4.2. Cross-Domain Adaptation

In this part, we study the adaptation on unrelated source
and target domains. Van Gogh’s houses, Superman and

Mona Lisa serve as the target for a face and church source
model respectively. Considering the motivation that we aim
at reusing the prior knowledge (i.e., variation factors) by
freezing the parameters, the synthesis after adaptation is
supposed to share similar visual concepts. That is, a face
model would still produce faces no matter what the target
image is. Fig. 5 suggests that the source models remain to
produce the corresponding content. More importantly, the
color scheme and painting styles are also transferred. For
example, the red roof at the first row renders the red glasses,
the yellow sky at the second row draws the front head in
yellow. The blue hair, green background, and the shadows
of Superman are well adapted to church. The painting style
of Mona Lisa is also transferred.

Obviously, the shared attributes between face and church
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Target Source domain: FFHQ Face

Target Source domain: LSUN Church

Figure 5. Cross-domain adaptation. GenDA manages to transfer key characters of an out-of-domain target to the source domain.

are quite rare. Therefore, GenDA pours more attention to
the variation factors like color scheme, texture, and painting
styles which could be directly transferred across unrelated
domains. From this perspective, our GenDA might enable
a new alternative for neural style transfer task that aims at
transferring the styles of a given image. But more generally,
our GenDA is able to transfer more high-level attributes like
gender, age, and sunglasses while the technique of style
transfer might fail, which might be of benefit to art creation.

5. Limitations
Despite the state-of-the-art performances on both one-

shot and few-shot generative domain adaptation, our pro-
posed GenDA still has some limitations. For example, the
rationale behind GenDA is to reuse the prior knowledge
learned by the source GAN model, which hinders it from
transferring a model to a completely different domain.
As suggested in Fig. 5, when we adapt a church model
regarding a face image, the outputs are still churches but
not faces. This implies that our method would fail when
the inter-subclass variations are huge. Such a property
is a silver lining, depending on the practical application.
A second limitation is that our current design treats all
characters of the reference image as a whole. Taking the
first row of Fig. 3 as an example, the sunglasses, skin color,

and background are transferred simultaneously. It is hard
to accurately transfer some particular attributes. However,
it is indeed possible to use some auxiliary samples to help
define a common attribute, as shown in Fig. 4. Besides, our
GenDA also relies on the layer-wise stochasticity involved
in the generator structure. Concretely, in our base model,
StyleGAN2 [8], the latent code is fed into all convolutional
layers instead of the first layer only. Without the layer-
wise design, the supervision will be hard to back-propagate
to the attribute adaptor given a deep synthesis network.
Fortunately, however, such a design is commonly adopted
by the state-of-the-art GANs [7, 8, 1].

6. Conclusion
In this work, we propose GenDA for one-shot generative

domain adaptation. We introduce two lightweight modules,
i.e., an attribute adaptor and an attribute classifier, to
the fixed generator and discriminator respectively. By
efficiently learning two modules, we manage to reuse the
prior knowledge and hence enable one-shot transfer with
high diversity. Our method demonstrates substantial im-
provements over existing baselines under multiple settings.
Acknowledgement: The project is partially supported by
Amazon Research Awards and Shanghai AI Laboratory
(P23KS00020, 2022ZD0160201).
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