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Abstract

Unsupervised learning visible-infrared person re-
identification (USL-VI-ReID) is an extremely important
and challenging task, which can alleviate the issue of
expensive cross-modality annotations. Existing works
focus on handling the cross-modality discrepancy under
unsupervised conditions. However, they ignore the fact that
USL-VI-ReID is a cross-modality retrieval task with the
hierarchical discrepancy, i.e., camera variation and modal-
ity discrepancy, resulting in clustering inconsistencies and
ambiguous cross-modality label association. To address
these issues, we propose a hierarchical framework to learn
grand unified representation (GUR) for USL-VI-ReID.
The grand unified representation lies in two aspects: 1)
GUR adopts a bottom-up domain learning strategy with a
cross-memory association embedding module to explore
the information of hierarchical domains, i.e., intra-camera,
inter-camera, and inter-modality domains, learning a
unified and robust representation against hierarchical
discrepancy. 2) To unify the identities of the two modalities,
we develop a cross-modality label unification module that
constructs a cross-modality affinity matrix as a bridge
for propagating labels between two modalities. Then, we
utilize the homogeneous structure matrix to smooth the
propagated labels, ensuring that the label structure within
one modality remains unchanged. Extensive experiments
demonstrate that our GUR framework significantly outper-
forms existing USL-VI-ReID methods, and even surpasses
some supervised counterparts.

1. Introduction
Person re-identification (ReID) aims at matching the

same person images captured by non-overlapping cameras
[13, 16]. This technology has been widely investigated due
to its significance for social security. Most existing ReID
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Figure 1. Illustration of hierarchical discrepancy in USL-VI-ReID
with two cameras within each modality as an example. Circles and
hexagons represent the sample points of the same person from in-
frared and visible modalities, respectively. Different colors repre-
sent different cameras and modalities. The inter-camera variation
and inter-modality discrepancy collectively result in clustering in-
consistencies and ambiguous cross-modality label association.

models concentrate on the single-modality image match-
ing task with RGB images captured by visible cameras.
However, visible cameras cannot capture enough informa-
tion under poor illumination conditions [54]. Hence, visible
infrared person re-identification (VI-ReID) has emerged to
match person images captured by visible and infrared cam-
eras for the 24-hour surveillance system [35, 42, 55].

Existing VI-ReID methods have achieved remarkable
performance with deep learning methods [56, 51, 49, 50].
However, the success mainly profits from supervised learn-
ing over massive human-labeled data, which is more
time-consuming and expensive than manual annotations in
single-modality ReID [21, 43]. Recently, unsupervised
learning visible infrared person re-identification (USL-VI-
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ReID) [21, 43, 31] has been proposed to alleviate the issue
of expensive cross-modality annotations.

In USL-VI-ReID, unsupervised settings and hierarchi-
cal discrepancies in both inter-camera and inter-modality
make it more challenging and different from unsupervised
single-modality ReID. The inter-camera variation and inter-
modality discrepancy collectively form the hierarchical dis-
crepancy, which complicates the learning of the USL-VI-
ReID model, e.g., leading to clustering inconsistencies and
ambiguous cross-modality label association, as illustrated
in Fig. 1. The variations between the cameras of the two
modalities are different. Visible and infrared cameras have
different sensitivities to light. In general, RGB cameras are
more susceptible to light and other factors compared with
IR cameras. Large variations may make identities split and
small variations may enable identities to merge, leading to
inconsistent cluster numbers of the two modalities and sig-
nificantly increasing the difficulty of cross-modality label
association. More importantly, the hierarchical discrepancy
is not simply camera variation plus modality discrepancy,
but a complex misalignment of features and cross-modality
labels, hindering the retrieval of the same person across dif-
ferent modalities. We will show that our approach signif-
icantly alleviates clustering inconsistencies in the experi-
ments. For better cross-modality retrieval performance, it
is desirable to handle the aforementioned hierarchical dis-
crepancy. Existing methods [21, 43, 31] for USL-VI-ReID
usually focus on solving the problem of modality discrep-
ancy. However, they ignored the hierarchical discrepancy,
hindering further improvement.

To handle the hierarchical discrepancy in USL-VI-ReID,
we put forward a novel grand unified representation (GUR)
learning framework to explore the information of hierar-
chical domains. GUR adopts a bottom-up domain learn-
ing strategy with a cross-memory association embedding
(CAE) and cross-modality label unification (CLU) module.
The bottom-up domain learning strategy consists of intra-
camera training, inter-camera and inter-modality training.
At the inter-camera and inter-modality training stage, a
CAE module is developed to calculate the association prob-
ability embedding between a pedestrian image and each
memory item of one domain, and collect the association
probabilities of camera or modality of all domains as the
unified probability embedding for clustering. To further as-
sociate the cross-modality identities, we introduce a CLU
module to construct a top-k heterogeneous affinity matrix
as the bridge for propagating labels between two modalities
and use the homogeneous structure matrix to smooth the
propagated labels, ensuring that the label structure within
one modality remains unchanged. Finally, with the above
bottom-up domain learning strategy with the CAE module
and CLU module, our method learns a unified representa-
tion, achieving both camera- and modality-invariant prop-

erties.
The main contributions are summarized as follows:

- We propose a novel unsupervised learning framework
that adopts a bottom-up domain learning strategy with
cross-memory association embedding. This enables
the model to learn unified representation which is ro-
bust against hierarchical discrepancy.

- We design a cross-modality label unification module to
propagate and smooth labels between two modalities
with heterogeneous affinity matrix and homogeneous
structure matrix, respectively, unifying the identities
across the two modalities.

- Extensive experiments on the SYSU-MM01 and
RegDB datasets demonstrate that our GUR frame-
work significantly outperforms existing USL-VI-ReID
methods, and even surpasses some supervised coun-
terparts, further narrowing the gap between supervised
and unsupervised VI-ReID.

2. Related Work

2.1. Supervised Visible-Infrared Person ReID

VI-ReID has received extensive attention due to its abil-
ity to search out the same person under poor illumination
conditions at night. Many works [46, 38, 50, 52, 45, 1, 48,
44, 47, 51, 17, 54, 37, 39] have been developed to over-
come the modality discrepancy between infrared and vis-
ible cameras. Ye et al. [49] proposed Channel exchange-
able Augmentation (CA) to homogeneously generate color-
irrelevant images by randomly exchanging the color chan-
nels, improving the robustness against color variations. Liu
et al. [22] proposed the Memory-augmented Unidirectional
Metric (MAUM) learning method to enforce explicit cross-
modality association with two unidirectional metrics. To
compensate for the missing modality-specific information
in the feature level, Zhang et al. [54] directly generated
those missing modality-specific features of one modality
from existing modality-shared features of the other modal-
ity.

These methods have achieved surprising performance
with supervised learning over massive human-labeled data,
which is more time-consuming and expensive than the
manual annotations in single-modality ReID. Differently,
our proposed framework trains a VI-ReID model without
any identity annotations, alleviating the issue of expensive
cross-modality annotations.

2.2. Unsupervised Single-Modality Person ReID

Existing unsupervised single-modality person ReID
methods can be divided into pseudo-label-based methods
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[14, 11, 25, 2, 40, 41, 15, 32] and translation-based meth-
ods [58, 36, 4, 3, 60], where the former achieve better per-
formance. Dai et al. [7] proposed a cluster contrast that
computes contrast loss at the cluster level to solve the prob-
lem of inconsistency in the updating progress of each clus-
ter. A camera-aware proxy assisted learning method was
introduced in [32] to deal with the large intra-ID variance
caused by the change of camera views. To address the chal-
lenge of distribution discrepancy among cameras, Xuan et
al. [40, 41] decomposed the sample similarity computation
into intra-camera and inter-camera computations.

Although the above methods have a promising perfor-
mance on single-modality unsupervised ReID, the large
cross-modality discrepancy prevents them from solving the
USL-VI-ReID problem.

2.3. Unsupervised Visible-Infrared Person ReID

The existing methods [43, 21, 31] for USL-VI-ReID fo-
cus on reducing modality gap. ADCA [43] proposed an
Augmented Dual-Contrastive Aggregation (ADCA) learn-
ing framework to learn the inter-modality person represen-
tation and associate positive cross-modality identities under
purely unsupervised conditions. H2H [21] designed a ho-
mogeneous learning and heterogeneous learning method to
solve the USL-VI-ReID task using the Market-1501 dataset
[57] as an extra labeled RGB dataset for pre-training.
OTLA [31] developed an optimal-transport strategy trying
to assign pseudo labels from visible to infrared modality.

These methods were initial attempts at the USL-VI-ReID
task. However, they ignored the hierarchical discrepancy,
limiting the discriminability of features against camera vari-
ations and modality discrepancy. In contrast to the prior
works, we simultaneously consider both aspects of hier-
archical discrepancy, i.e.,inter-camera variation and inter-
modality discrepancy, significantly improving the cross-
modality retrieval performance.

3. Proposed Method
3.1. Overview

We propose a grand unified representation (GUR) learn-
ing framework to address the problem of hierarchical dis-
crepancy, as shown in Fig. 2. The GUR framework contains
a bottom-up domain learning strategy with a cross-memory
association embedding module and a cross-modality label
unification module.
Bottom-up domain learning strategy has three training
stages, i.e., intra-camera training, inter-camera and inter-
modality training. In each stage, the augmented dual-
contrastive (ADC) learning [43] is conducted for pseudo-
label-based unsupervised learning. We extract features
for all training samples and then use DBSCAN cluster-
ing algorithm [10] to assign pseudo-labels. In the intra-

camera training stage, the ADC is executed alternately in
each camera domain separately via clustering the intra-
camera similarity. In the inter-camera training phase, the
cross-memory association embedding (CAE) module at
the camera level calculates the association embedding of
persons with each camera memory for inter-camera (intra-
modality) DBSCAN clustering (i.e., clustering the data of
each modality separately). Then, ADC with two modality-
specific memories is performed to learn camera-invariant
features within each modality. Similarly, during the inter-
modality training, the CAE module at the modality level
computes the association embedding of pedestrians with
each modality memory for inter-modality clustering (i.e.,
simultaneously input all data into DBSCAN for cluster-
ing without considering domains), and the ADC with a
modality-shared memory is conducted to learn the final uni-
fied features. From intra-camera to inter-modality train-
ing, the model progressively captures camera-invariant and
modality-invariant features. Three stages are executed in
an alternate manner during one training epoch. The de-
tailed figure is shown in supplementary materials. To fur-
ther ensure the semantic consistency of the two modality la-
bels, we insert the cross-modality label unification (CLU)
module between intra-modality and inter-modality. With
the above modules, GUR learns unified representations for
cross-modality retrieval, which are robust to the hierarchical
discrepancy, i.e., inter-camera variation and inter-modality
discrepancy.

3.2. Preliminary

To facilitate the description of our method, we first re-
visit ADC [43] learning. For convenience, we omit the
equations of the augmented stream.
Memory Initialization. At the beginning of each train-
ing iteration, we store each cluster’s representation in in-
frared and visible memory M i =

[
mi

1, . . . ,m
i
K

]
,Mv =

[mv
1, . . . ,m

v
L], respectively, by the following equations:

mi
k =

1∣∣Hi
k

∣∣ ∑
ui
n∈Hi

k

ui
n, (1)

mv
l =

1

|Hv
l |

∑
uv
m∈Hv

l

uv
m, (2)

where ui
n and uv

m denote the corresponding features ex-
tracted by the infrared and visible feature extractor f i

θ

and fv
θ . Hi(v)

k(l) is the k or l-th cluster set in infrared
or visible modality according to the clustering results of
DBSCAN[10]. |·| represents the number of instances per
cluster. During training, we update the two modality-
specific memories by a momentum updating strategy [7].
Loss Function. We update the feature extractor by Clus-
terNCE [7] loss within infrared and visible modality, which
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Figure 2. Illustration of grand unified representation learning framework with two cameras within each modality as an example. Circles
and hexagons represent the sample points of the same person from infrared and visible modalities, respectively. Different colors represent
different cameras and modalities. It comprises a bottom-up domain learning strategy with a cross-memory association embedding module
and a cross-modality label unification module, which contains intra-camera training, inter-camera training, and inter-modality training.
Cross-memory association embedding module calculates the association embedding using all camera or modality memories to generate
reliable pseudo labels for ADC learning. Cross-modality label unification module unifies the pseudo labels of the infrared and visible
modality, ensuring the semantic consistency of the two modality labels.

can be calculated as:

Lqi = − log
exp

(
qi ·mi

+/τ
)∑K

k=0 exp
(
qi ·mi

k/τ
) , (3)

Lqv = − log
exp

(
qv ·mv

+/τ
)∑L

l=0 exp (qv ·mv
l /τ)

, (4)

where m+ is the positive cluster representation and the τ is
a temperature hyper-parameter. qi and qv are query instance
features extracted by f i

θ and fv
θ , respectively.

Overall Loss. The total loss for training the model is de-
fined by the following equation:

Loverall = Lqi + Lqv . (5)

3.3. Cross-memory Association Embedding

The CAE module calculates the association probability
between a pedestrian feature and each memory item within

one domain and collects the association probabilities of all
cameras or modalities as the unified probability embedding
for clustering. The rationale is that samples belonging to
the same identity should have a similar distribution of asso-
ciation probability produced by each memory [9, 27]. This
distribution conceptually represents the affinity of the im-
age with each cluster features in each domain, and the final
embedding consisting of the distribution of all domains is
robust against hierarchical domain variations. [9, 27].

Given a memory Mn as a probability mapping ma-
trix, the process of calculating the association embedding
e (q|Mn) of instance feature q can be represented as:

p(y|q,Mn) =
exp(q ·my/σ)∑C
c=1 exp (q ·mc/σ)

, (6)
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e (q|Mn) = [p(1|q,Mn), p(2|q,Mn), · · · , p(C|q,Mn)],
(7)

where my is the memory feature of label y. p(c|q,Mn) is
the association probability of the instance feature q at class
c. σ is a temperature hyper-parameter.

We concatenate all association embeddings from N
memories as the cross-memory association embedding, i.e.,

E (q) = [e (q|M1) , e (q|M2) , · · · , e (q|MN )] , (8)

where E (q) is the embedding for clustering with
DBSCAN[10]. In the inter-camera training, the probabil-
ity mapping matrix Mn is the cluster memory in the cam-
era n domain produced by intra-camera training. Similarly,
in the stage of inter-modality training, the probability map-
ping matrix Mn is the cluster memory provided by intra-
modality (inter-camera) training. Note that in visual surveil-
lance, the camera label n is naturally available for each im-
age following popular setting [53, 32, 2, 41, 13], since it is
straightforward to know by which camera an image is cap-
tured in a camera network. Cross-memory association em-
beddings at the camera level and modality level enable the
GUR to form a hierarchical learning framework that pro-
gressively learns camera-invariant and modality-invariant
representations.
What is σ doing? The main consideration of adding σ
is that it can control the attention to hard negative sam-
ples. Small σ penalizes much more on the hardest negative
samples, making a large difference between the probability
of positive and negative sample pairs, and the embedding
space is likely to be more uniform [29, 33]. When σ ap-
proaches 0, the probability embedding is likely to be a one-
hot code and has less tolerance to potential positive samples
[29, 33]. Large σ makes the probability smooth and less
sensitive to the hard negative samples, and the hardness-
aware property disappears as the σ approaches +∞. The
cross-memory association embedding meets a uniformity-
tolerance dilemma. To get a better representation for clus-
tering, we set σ to different values to evaluate the effect in
the experiments.
Discussion. In contrast to the inter-camera training in
[40, 41], which computes the embedding for clustering by
concatenating the classification scores from different clas-
sifiers, we calculate the embedding with the memory in dif-
ferent domains (camera or modality) to seek reliable clus-
tering across domains. The major advantages are two-fold:
1) Our association embedding is produced by the memory
in Cluster Contrast [7], which does not require additional
classifiers and is a tight coupling with clustering algorithms
and contrastive learning. It is a mutual reinforcement. 2)
We introduce a temperature hyper-parameter σ in Eq 6 to
control the concern on hard negative samples. By means

of σ, the CAE module can yield more discriminative and
robust representations for clustering.

3.4. Cross-modality Label Unification

Through the bottom-up domain learning strategy with
the CAE module, we can capture the more robust embed-
ding for clustering across different cameras and modalities.
However, the embedding still has a strong implicit correla-
tion with the modality, which negatively impacts the gen-
eration of cross-modality pseudo labels. In response, we
develop a cross-modality label unification (CLU) module.

The CLU module is based on two rationales: 1) Simi-
lar features across modalities should have the same identity.
2) Features in the same cluster within one modality should
share the same identity. Accordingly, the CLU module con-
tains two processes, i.e., heterogeneous transfer and homo-
geneous structure smooth. In heterogeneous transfer, a top-
k heterogeneous affinity matrix is constructed as the bridge
for propagating labels between two modalities. Then, the
homogeneous structure matrix is used to smooth the propa-
gated labels, ensuring that the label structure of the modality
remains unchanged. In our work, we propagate the pseudo
labels of the infrared modality to the visible modality.

Let Xi = {xi
1, x

i
2, · · · , xi

N} represent the infrared im-
ages with N instances. Xv = {xv

1, x
v
2, · · · , xv

M} denote the
visible sets with M instances, respectively.

Given an instance pair < xm, xn >, we compute the
similarity by:

sim(xm, xn) =
fθ(xm) · fθ(xn)

||fθ(xm)||2||fθ(xn)||2
, (9)

where fθ is the feature extractor. The heterogeneous affinity
matrix Pheter ∈ RM×N is formed by:

Pheter
m,n =

exp(sim(xv
m, xi

n))∑N
l=1 exp(sim(xv

m, xi
l))

. (10)

We only keep the k-max values in each row of P to con-
struct a top-k affinity matrix. Then, we transfer the infrared
pseudo labels to the visible instances, which can be written
as:

Y ∗
v = PheterYi, (11)

where Yi is the infrared pseudo label matrix with Ym,n = 1
if xi

m is labeled as ym = n, otherwise Ym,n = 0. It utilizes
the heterogeneous affinity matrix of visible and infrared to
weight the infrared pseudo labels and determine which cat-
egory the visible labels should belong to, which can be seen
as a weighted voting process. Then, we convert the weight
label matrix Y ∗

v to the form of one-hot code by setting the
column with the largest value in each row to 1 and the rest
to 0.

To further increase the credibility of the cross-modality
label, we leverage a homogeneous structure matrix to
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smooth propagated labels, as homogeneous similarities
without the interference of cross-modality variations are
more reliable than heterogeneous similarities. The homo-
geneous structure matrix Phomo ∈ RM×M is defined by:

Phomo
mn =

exp(sim(xv
m, xv

n))∑N
l=1 exp(sim(xv

m, xv
l ))

. (12)

Similarly, we keep the k-max values in each row of Phomo.
The process of homogeneous structure smooth is formu-
lated as follows:

Y ∗∗
v = PhomoY ∗

v , (13)

where Y ∗∗
v is the final unified label matrix. In Y ∗∗

v , the
column number of the maximum value in each row is the
class label of samples.

Discussion. Heterogeneous transfer and homogeneous
structure smooth in CLU are essentially two weighted vot-
ing processes, which is distinguished from OTLA [31] and
ADCA [43]. OTLA [31] smooths the pseudo label by an as-
sumption of approximately same number of infrared images
within each generated pseudo label, which has a limited ap-
plication under unbalanced conditions. ADCA [43] asso-
ciates positive cross-modality identities with a count prior-
ity selection strategy but misses the smoothing technique to
reduce cross-modality label noise. While our CLU module
propagates and smooths cross-modality labels with hetero-
geneous transfer and homogeneous structure smooth, which
is more flexible and reliable without any strong assumption.

4. Experiments
4.1. Datasets and Evaluation Protocol

We evaluate our proposed GUR on two widely-used vis-
ible infrared person ReID datasets, i.e., SYSU-MM01 [38]
and RegDB [24].
SYSU-MM01 is a large-scale visible VI-ReID dataset con-
sisting of 2 infrared and 4 visible cameras. Specially,
SYSU-MM01 contains 395 identities including 22258 visi-
ble images and 11909 near-infrared images for training. In
testing, the query set contains 96 persons with 3803 infrared
images, and the gallery set has 301 randomly selected vis-
ible images. Meanwhile, we adopt all-search and indoor-
search modes [51] for evaluation.
RegDB is collected by one visible and one infrared cam-
era in a dual-camera system. RegDB has 412 persons, and
each person contains 10 infrared and 10 visible images. We
randomly select 206 persons for training and another 206
identities for testing with two modes, i.e., thermal to visible
and visible to thermal.
Evaluation Protocol. We adopt the cumulative matching
characteristics (CMC), mean average precision (mAP) and
mean inverse negative penalty (mINP) [51] as the evalua-
tion metrics. Following existing methods [48, 50, 51], we

perform ten trials of the gallery set selection, and calculate
the average performance to obtain stable performance.

4.2. Implementation Details

The proposed framework is implemented in PyTorch.
GUR adopts the feature extractor in ADC [43] as the back-
bone network, which consists of shallow modality-specific
layers and shared layers (ResNet50 [19]). We initialize
the feature extractor with ImageNet-pretrained weights [8].
The features of the global average pooling layer are used
to calculate the cosine similarity for retrieval. At the start
of each stage, DBSCAN [10] is performed to generate
pseudo labels. During training, person images are resized to
288 × 144. 16 identities and 16 instances for each identity
are sampled for one batch. We adopt horizontal flipping,
random crop, and random erasing for data argumentation.
In addition, we utilize Channel Augmentation (CA) [49] in
the augmented visible stream. Adam optimizer is adopted
to train the model with the initial learning rate of 3.5e − 4.
The learning rate is reduced to 1/10 of its previous value ev-
ery 20 epochs. The model is trained in total of 50 epochs.
The CLU module is added in the last 20 epochs. The σ in
Eq 6 is set to 0.05. The other settings of dual-contrastive
learning follow [43].

4.3. Comparison with State-of-the-art Methods

We report 19 supervised and 12 unsupervised methods
for comparison. Some advanced unsupervised methods,i.e.
IICS[40], CAP [32], and ICE [2], also use the camera label
for training. Since the RegDB dataset has only one visi-
ble and one infrared camera, there are only intra-modality
and inter-modality training on the RegDB task. We also
report the results of GUR without using camera informa-
tion on SYSU-MM01 for comparison, in which we remove
the intra-camera training and the CAE at the camera level
and directly perform the intra-modality (inter-camera train-
ing in Figure 2), inter-modality training with the CAE at the
modality level, and CLU module.
Comparison with Unsupervised Methods. As reported in
Table 1, the performance of our method surpasses current
leading unsupervised methods. More precisely, our GUR
achieves 63.51% and 73.91% rank-1 accuracy on SYSU-
MM01 (all search) and RegDB (visible to infrared), respec-
tively. It significantly outperforms ADCA [43] and H2H
[21] by about 20% and 30% rank-1 accuracy on SYSU-
MM01 and RegDB datasets. Note that our GUR also
achieves the best accuracy without the camera labels com-
pared with previous unsupervised methods. ADCA, H2H,
and OTLA focus on solving the problem of modality dis-
crepancy. However, the neglect of hierarchical discrepancy
limits further improvement. Our method employs a more
reasonable bottom-up domain learning framework and CLU
module, ensuring robustness against the hierarchical dis-
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SYSU-MM01 RegDB
All Search Indoor Search Visible to Infrared Infrared to Visible

Methods Venue r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

Su
pe

rv
is

ed

Zero-Padding [38] ICCV-17 14.80 15.95 - 20.58 26.92 - 17.75 18.90 - 16.63 17.82 -
eBDTR [48] TIFS-19 27.82 28.42 - 32.46 42.46 - 34.62 33.46 - 34.21 32.49 -
HSME [18] AAAI-19 20.68 23.12 - - - - 50.85 47.00 - 50.15 46.16 -
D2RL [34] CVPR-19 28.9 29.2 - - - - 43.4 44.1 - - - -
AlignGAN [30] ICCV-19 42.4 40.7 - 45.9 54.3 - 57.9 53.6 - 56.3 53.4 -
X-Modal [20] AAAI-20 49.9 50.7 - - - - 62.21 60.18 - - - -
Hi-CMD [6] CVPR-20 34.9 35.9 - - - - 70.93 66.04 - - - -
cm-SSFT∗ [23] CVPR-20 47.7 54.1 - - - - 72.3 72.9 - 71.0 71.7 -
DDAG [50] ECCV-20 54.75 53.02 39.62 61.02 67.98 62.61 69.34 63.46 49.24 68.06 61.80 48.62
AGW [51] TPAMI-21 47.50 47.65 35.30 54.17 62.97 59.23 70.05 66.37 50.19 70.49 65.90 51.24
VCD+VML [26] CVPR-21 60.02 58.80 - 66.05 72.98 - 73.2 71.6 - 71.8 70.1 -
CA [49] ICCV-21 69.88 66.89 53.61 76.26 80.37 76.79 85.03 79.14 65.33 84.75 77.82 61.56
MPANet [39] CVPR-21 70.58 68.24 - 76.74 80.95 - 82.8 80.7 - 83.7 80.9 -
MSO [12] MM-21 58.70 56.42 - 63.09 70.31 - 73.6 66.9 - 74.6 67.5 -
AGM [56] MM-21 69.63 66.11 52.24 74.68 78.30 74.00 88.40 81.45 68.51 85.34 81.19 65.76
MCLNet [17] ICCV-21 65.40 61.98 47.39 72.56 76.58 72.10 80.31 73.07 57.39 75.93 69.49 52.63
SMCL [37] ICCV-21 67.39 61.78 - 68.84 75.56 - 83.93 79.83 - 83.05 78.57 -
FMCNet[54] CVPR-22 66.34 62.51 - 68.15 74.09 - 89.12 84.43 - 88.38 83.86 -
MAUM [22] CVPR-22 71.68 68.79 - 76.97 81.94 - 87.87 85.09 - 86.95 84.34 -

U
ns

up
er

vi
se

d

SSG [11] ICCV-19 2.32 5.00 - - - - 1.91 3.18 - - - -
ECN [59] CVPR-19 8.07 12.68 - - - - 2.17 2.90 - - - -
SPCL [15] NIPS-20 18.37 19.39 10.99 26.83 36.42 33.05 13.59 14.86 10.36 11.70 13.56 10.09
MMT [14] ICLR-20 21.47 21.53 11.50 22.79 31.50 27.66 25.68 26.51 19.56 24.42 25.59 18.66
IICS [40] CVPR-21 14.39 15.74 8.41 15.91 24.87 22.15 9.17 9.94 6.40 9.11 9.90 6.45
CAP [32] AAAI-21 16.82 15.71 7.02 24.57 30.74 26.15 9.71 11.56 8.74 10.21 11.34 7.92
Cluster Contrast [7] arXiv-21 20.16 22.00 12.97 23.33 34.01 30.88 11.76 13.88 9.94 11.14 12.99 8.99
ICE [2] ICCV-21 20.54 20.39 10.24 29.81 38.35 34.32 12.98 15.64 11.91 12.18 14.82 10.6
PPLR [5] CVPR-22 11.98 12.25 4.97 12.71 20.81 17.61 10.30 11.94 8.10 10.39 11.23 7.04
OTLA [31] ECCV-22 29.9 27.1 - 29.8 38.8 - 32.9 29.7 - 32.1 28.6 -
H2H [21] TIP-21 30.15 29.40 - - - - 23.81 18.87 - - - -
ADCA [43] MM-22 45.51 42.73 28.29 50.60 59.11 55.17 67.20 64.05 52.67 68.48 63.81 49.62
GUR∗(Ours) - 60.95 56.99 41.85 64.22 69.49 64.81 73.91 70.23 58.88 75.00 69.94 56.21
GUR (Ours) - 63.51 61.63 47.93 71.11 76.23 72.57 - - - - - -

Table 1. The comparison with the state-of-the-art methods on SYSU-MM01 and RegDB. It contains two groups, i.e., unsupervised ReID
methods and supervised VI-ReID methods. Rank at r accuracy(%), mAP (%) and mINP (%) are reported. GUR∗ denotes the results
without camera information.

crepancy and enhancing the learning of modality-invariant
features. With our insightful solutions, GUR achieves su-
perior performance compared with existing unsupervised
methods. In addition, the label distributions within each
camera are unbalanced in the SYSU-MM01 dataset, i.e.,
some cameras only contain part of the identities, increasing
the difficulty of learning unified representation. The excel-
lent performance demonstrates that our approach is also ef-
fective in learning from unbalanced label distribution data.
Comparison with Supervised Methods. Our GUR
achieves competitive performance with VCD+VML [26],
and even surpasses some supervised methods including
Zero-Paddiing [38], eBDTR [48], HSME [18], AGW [51],
DDAG[50], and so on. The excellent performance of our
method benefits from the insightful design for the hierar-
chical discrepancy. There are three major advantages of
our method: 1) Our learning framework is highly scalable
and can be used in any contrastive learning with memory
modules to handle domain gaps. 2) The learned features
are robust to domain discrepancy at different levels. 3)

Our method can also be utilized for other cross-modality
retrieval tasks, e.g., visible-infrared face recognition.

4.4. Ablation Study

To evaluate the contribution of each component, we con-
duct an ablation experiment on SYSU-MM01 and RegDB
datasets, as shown in Table 2.
Baseline denotes the ADC [43] which adopts a dual-
contrastive learning framework. Although ADC promotes
unsupervised cross-modality learning, the hierarchical dis-
crepancy hinders the further improvement of the discrim-
inability of features for retrieval.
Effectiveness of Bottom-up Domain Learning Strategy.
For the setting of only using the BD module, we remove the
CAE module and use the original feature to cluster and as-
sign pseudo labels. Compared with the baseline, bottom-up
domain learning has a slight improvement in accuracy. This
implies the difficulty of associating the same person from
different domains without the CAE module. Indeed, when
we only use BD, it provides a slight performance gain. But
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Baseline BD BD+CAE BD+CAE+CLU

Figure 3. The t-SNE (first row) and similarity distribution (second row) visualization of 20 randomly selected identities. In t-SNE visual-
ization, the color indicates the identity. Circle means visible modality and the cross means the infrared modality.

SYSU-MM01 RegDB
Components All Search Indoor Search Visible to Infrared Infrared to Visible

Index Baseline BD CAE CLU r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

1 ✓ 35.07 34.58 22.05 43.66 52.23 48.05 41.12 40.18 30.58 42.83 43.31 34.26
2 ✓ 36.63 36.70 24.43 42.00 51.12 47.39 43.42 42.51 32.74 43.88 41.78 30.85
3 ✓ ✓ 55.96 55.62 42.79 62.93 70.43 66.75 69.13 68.54 61.67 68.84 67.69 58.49
4 ✓ ✓ 54.27 52.30 38.17 60.01 66.78 63.02 59.74 59.84 52.76 64.67 63.00 53.52
5 ✓ ✓ ✓ 57.99 53.60 38.07 59.97 66.73 62.20 62.82 61.28 50.12 61.44 56.63 42.42
6 ✓ ✓ ✓ 63.51 61.63 47.93 71.11 76.23 72.57 73.91 70.23 58.88 75.00 69.94 56.21

Table 2. Ablation studies on the SYSU-MM01 and RegDB. ”Baseline” means the augmented joint dual-contrastive learning framework
[43]. ”BD” represents the bottom-up domain learning strategy. Rank at r accuracy (%), mAP (%) and mINP (%) are reported.

when the BD is integrated with the CAE, GUR has signif-
icant improvement. The main reason is that BD and CAE
are complementary and should be used in combination to
handle hierarchical discrepancy. BD is a bottom-up domain
learning strategy, i.e., intra-camera, inter-camera and inter-
modality training, and it optimizes the memory at different
levels for CAE. Without BD, the memory is inaccurate for
computing cross-memory association embedding.

Discussion of removing BD. We conduct the experiments
of removing BD and only using CAE and CLU with base-
line, as shown in the index 5 of Table 2 . Compared with the
full GUR (BD+CAE+CLU), the performance of only using
CAE and CLU has a drop of about 6%-10% rank-1 accu-
racy, which indicates that it is better to combine the BD and
CAE to improve cross-modality retrieval. BD can provide
better memory representations for CAE and CAE can bring
reliable clustering for BD, formulating a mutual reinforce-
ment.

Effectiveness of CAE. We observe significant improve-
ment in accuracy when integrating the CAE module for
bottom-up domain learning. The major advantage of CAE

is that it can explore the relationship between images and
each camera or modality memory and compose a unified
representation embedding, which is a probability of asso-
ciation with memories and robust to camera and modality
variations.
Effectiveness of CLU. Compared with the results in index 2
and 3, the experiments in index 4 and 5 demonstrate that the
CLU module significantly improves the Rank-1 accuracy by
about 10%-20%, greatly enhancing the cross-modality gen-
eralizability of learned features and ensuring the semantic
consistency of the two modality labels.

Based on the above experiments, the CAE module and
CLU module significantly improve the mAP and Rank-1
accuracy under various settings. These results demonstrate
that each module plays a critical role in handling the hierar-
chical discrepancy in USL-VI-ReID.

4.5. Further Analysis

Hyper-parameter Analysis. The proposed GUR involves
a key parameter σ in Eq 6. To study the effect of σ, we set
it to different values as shown in Figure 4. The σ controls
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Figure 4. Evaluation of different σ in Eq 6. The results are based
on all search mode (left) and indoor search mode (right) of SYSU-
MM01 dataset. The Rank-1 (%) and mAP (%) are reported.

Figure 5. Evaluation of clustering consistencies. The results are
based on all search mode of SYSU-MM01 dataset.

the concern on hard negative samples. Small σ penalizes
much more on the hardest negative samples and has less
tolerance to potential positive samples [29, 33]. Large σ
makes the probability smooth and less sensitive to the hard
negative samples. We find that the accuracy is significantly
improved with a σ less than 1.0. When σ = 0.05, GUR
achieves a balance in the dilemma of uniformity-tolerance
and obtains the best results.
Clustering Consistencies. We aim to study the effect of
our method on clustering consistencies, as shown in Fig. 5.
We observe a large difference in the number of infrared and
visible clusters in the baseline and the number of visible
clusters is significantly less than the infrared clusters. The
reason may be that visible camera is more susceptible to the
light environment compared with infrared cameras, result-
ing in the split of identity. After GUR training, the numbers
of infrared and visible clusters gradually approximate real
identities, proving the effectiveness of our method for alle-
viating the clustering inconsistencies.
Visualization. We visualize the t-SNE [28] map and cosine
similarity distribution of positive/negative cross-modality
matching pairs of 20 randomly selected identities in Fig. 3.
From ’Baseline’ to ‘BD+CAE+CLU’, the sample points
of the two modalities are gradually drawn closer and the
infrared-visible positive/negative distributions are increas-
ingly separated well. The above two visualizations demon-
strate that our method results in better robustness of fea-
tures against hierarchical discrepancy. We also note that
some samples of the same identity are not clustered to-
gether, showing that there is still much room to improve
for the USL-VI-ReID task.

5. Conclusion

This paper presents a grand unified representation
(GUR) learning framework for USL-VI-ReID. We pro-
pose a bottom-up domain learning strategy with the cross-
memory association embedding module to handle the hi-
erarchical discrepancy, i.e. camera variation and modality
discrepancy. Cross-memory association embedding mod-
ule mines the relationship between images and each cam-
era or modality memory and unifies the features across dif-
ferent cameras and modalities for reliable clustering. Fur-
thermore, we introduce a cross-modality label unification
module to optimize the generation of cross-modality labels,
explicitly enhancing the centralization of positive cross-
modality representations. Finally, with the above modules,
GUR learns a unified and robust representation against the
hierarchical discrepancy. Extensive experiments validate
the superior performance of our method, further narrow-
ing the gap between supervised and unsupervised visible-
infrared person re-identification.
Limitations and Future Research. Although our approach
achieves impressive performance, there are two limitations:
1) there is still much room to improve compared with su-
pervised VI-ReID task. 2) our method needs more time for
training, which can be improved. In the future, it is desir-
able to investigate the cross-modality label association with
global and part features based on the transformer, which
will be a useful method to refine the error labels and pro-
vide more accurate supervision for cross-modality learning.
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