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Abstract

Generating photorealistic images with controllable cam-
era pose and scene contents is essential for many applica-
tions including AR/VR and simulation. Despite the fact that
rapid progress has been made in 3D-aware generative mod-
els, most existing methods focus on object-centric images
and are not applicable to generating urban scenes for free
camera viewpoint control and scene editing. To address this
challenging task, we propose UrbanGIRAFFE, which uses
a coarse 3D panoptic prior, including the layout distribu-
tion of uncountable stuff and countable objects, to guide a
3D-aware generative model. Our model is compositional
and controllable as it breaks down the scene into stuff, ob-
jects, and sky. Using stuff prior in the form of semantic
voxel grids, we build a conditioned stuff generator that ef-
fectively incorporates the coarse semantic and geometry in-
formation. The object layout prior further allows us to learn
an object generator from cluttered scenes. With proper loss
functions, our approach facilitates photorealistic 3D-aware
image synthesis with diverse controllability, including large
camera movement, stuff editing, and object manipulation.
We validate the effectiveness of our model on both synthetic
and real-world datasets, including the challenging KITTI-
360 dataset.

1. Introduction

Generating photorealistic urban scenes has many appli-
cations in simulation, gaming and virtual reality. Unfortu-
nately, designing diverse urban scenes with novel 3D visual
content is typically expensive and time-consuming as it re-
quires the expertise of professional artists.

Recent advances in generative models have demon-
strated a promising direction to reduce the cost via learning
to generate images from data. Ideally, the generated scenes
should be controllable in terms of camera pose and 3D con-
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Figure 1: Illustration. UrbanGIRAFFE generates a photo-
realistic image given a sampled panoptic prior in the form
of a semantic voxel grid and object layout. Our method
enables diverse controllability regarding camera pose, in-
stance, and stuff.

tent. For example, the camera should be able to move freely
in the scene with six degrees of freedom. The poses of in-
stantiated objects (e.g., cars) should be able to be manipu-
lated independently. Furthermore, the layout of the scene
should be controllable.

There are many attempts to generate photorealistic ur-
ban images. Several methods study semantic image synthe-
sis to transfer a 2D semantic segmentation map to an RGB
urban scene image [25, 53, 57]. However, when chang-
ing the camera poses, the generated images across multi-
ple frames may not be consistent using such 2D generative
models. Recently, 3D-aware generative models have wit-
nessed rapid progress by lifting the generation process to the
3D space. Despite achieving multi-view consistency, most
existing 3D-aware generative models are limited to object-
centric images, e.g., faces and cars [58, 10, 9]. There are
a few attempts to generate scene images in a compositonal
manner [36, 49, 47, 69]. However, all these methods strug-
gle to learn a good geometry of the background and hence
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do not support large camera movement, e.g., moving the
camera along the road. Another line of work enables cam-
era movement but ignores the compositional nature of the
scene, thus lacking controllability of the 3D content [14, 2].

In this paper, we propose UrbanGIRAFFE to address
the challenging task of compositional and controllable 3D-
aware image synthesis of urban scenes, see Fig. 1. Our key
idea is to leverage scene-level but coarse 3D panoptic prior,
simplifying the task of learning complex geometry through
2D supervision and incorporating semantic information for
scene editing. The panoptic prior, including semantic voxel
grids of uncountable stuff and bounding boxes of countable
objects, can be obtained from existing datasets [37] or in-
ferred from pre-trained models [8]. Specifically, our model
represents the scene as compositional neural feature fields
consisting of stuff, objects, and sky. We propose a semantic
voxel-conditioned stuff generator, effectively preserving the
semantic and geometry information provided by the prior.
In terms of objects, we follow GIRAFFE [49] to generate
objects in canonical space by leveraging the object layout
prior. We further model the sky and far regions using a sky
generator. With all three generators, we render a compos-
ited feature map via volume rendering and upsample it to
the target image using a neural renderer. For the compli-
cated urban scenes, we observe that training with an adver-
sarial loss on the full image alone is insufficient. We addi-
tionally employ an adversarial loss applied to objects and a
reconstruction loss to the stuff image regions to improve the
image fidelity.

Our contributions are as follows. i) We propose to study
a novel yet challenging task of 3d-aware urban generative
models with diverse controllability in terms of large cam-
era movement, object manipulation and stuff editing. ii) We
leverage coarse 3D panoptic prior to address this challeng-
ing task and design compositional generative radiance fields
that leverage the prior information effectively. iii) With our
carefully design the training objectives, our method demon-
strates state-of-the-art performance compared to existing
methods on both synthetic and real-world datasets, includ-
ing the challenging KITTI-360 dataset.

2. Related Work

Conditional Image synthesis: In recent years, Gener-
ative Adversarial Networks [18, 30, 31, 28, 29, 56] have
achieved impressive results in photorealistic image synthe-
sis. As it is not straightforward to control the generated
images of unconditional GANs, many attempts have been
made for conditional image synthesis. A line of works
generates images conditioned on a 2D semantic segmen-
tation map [25, 53, 57]. Instead of requiring per-pixel se-
mantic annotation, another line of methods generates im-
ages following an image layout in the form of 2D bounding

boxes [75, 72, 21] or learned blobs [15]. Recent perpet-
ual view generation methods including Infinite Nature [39],
InfiniteNature-Zero [35] and DiffDreamer [6] are trained
on nature videos or photo collections and demonstrate the
capability to generate unbounded videos of natural scenes.
However, when changing the camera viewpoint, the gener-
ated images across different views are typically not multi-
view consistent, as discussed in [20]. We instead learn a
3D-aware conditional generative model that leads to better
consistency with the underlying 3D representation.

3D-Aware Image Synthesis: 3D-aware generative mod-
els have received growing attention recently. While early
works learn to generate 3D voxel grids [46, 22], recent
methods achieve high-fidelity 3D-aware image synthesis
leveraging neural radiance fields as the underlying 3D rep-
resentation [58, 9, 10, 59, 13, 70, 19]. Empowered by
3D-aware generative models, many promising applications
have been demonstrated, including semantic editing [61,

], relighting [62, 34], single-view reconstruction [7, 44]
and articulated human generation [74, 50, 4, 24]. However,
all aforementioned methods focus on object-centric scenes
and assume that the object lies in a canonical object coordi-
nate system. Thus, it is non-trivial to extend these meth-
ods to complex, unaligned urban scenes. GSN [!4] and
GAUDI [3] propose to generate unbounded indoor scenes.
However, both ignore the compositionality of the scene,
thus making it harder to achieve high visual fidelity and do
not support editing of the scene content.

A few works exploit the compositionality of 3D scenes
to generate scenes containing multiple objects [36, 69, 47,

, 71]. These methods, including GIRAFFE [49], consider
the compositionality of foreground objects only, thus are in-
capable of modeling complex background geometry in ur-
ban scenes. A concurrent work, DiscoScene [69], also stud-
ies 3D-aware generative model of urban scenes. Despite
achieving high-fidelity image synthesis, DiscoScene does
not support camera control or stuff editing in urban scenes.
Several other concurrent works explore diverse aspects of
scene-level 3D generation. CC3D [ 1] focuses on synthesiz-
ing complex 3D scenes based on 2D semantic scene layouts
of foreground objects. SceneDreamer [12] generates high-
fidelity infinite natural landscapes, yet it is non-trivial to be
extended to complex urban scenes. InfiniCity [38] achieves
infinite city generation by lifting synthesized 2D layout to
3D based on test-time optimization, thus requiring a long
optimization time for generating a new scene.

Neural Radiance Fields: We proposed to present the
scene as compositional neural feature fields. Exploiting
implicit neural representations [42, 52], NeRF [43] has en-
abled impressive novel view synthesis by training a single
model for each scene. Many exciting works have shown its
potential in real-time rendering [54, 45], geometric recon-
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Figure 2: Method Overview. We leverage panoptic prior in the form of semantic voxel grids and instance object layouts
to build a 3D-aware generative model for urban scenes. Our model takes as input a global noise vector z,,;4 for the entire
scene, K noise vectors {z’;bj}i(zl for objects, and a sampled panoptic prior V, O ~ py 0. We decompose the scene into
sky, stuff, and objects. The stuff generator is conditioned on the semantic voxel grid V to preserve its semantic and geometry
information. The objects are generated in the canonical object coordinate system guided by O. Combined with the sky
generator, a feature map I is obtained via volume rendering. We further leverage neural rendermg to output the RGB image

I and object patches P}.. The full model is optimized jointly with adversarial losses £, and £P

applied to the full image

adv

and object patches, respectively, as well as a reconstruction loss L. for stuff regions.

struction [64, 66], semantic segmentation [76, 16, 33], and
view synthesis from sparse input [65, 73, 11]. It has been
shown that NeRF can also be extended to model unbounded
urban scenes [55, 51] and scale to city level [63, 67, 68].

While all these methods focus on reconstructing existing
scenes, we aim to learn a conditional generative model that
can generate urban images conditioned on different panop-
tic layouts. A more related work, GANCraft [20], aims to
generate a scene based on semantic voxels, yet it also re-
quires per-scene optimization. In contrast, our generative
model allows for stuff editing by manipulating the semantic
voxels.

3. Method

In UrbanGIRAFFE, our goal is to build compositional
generative feature fields of urban scenes with control over
camera pose and scene contents. To address this challeng-
ing task, we decompose the urban scene into three main
components, including uncountable stuff, countable ob-
jects, and sky, see Fig. 2 for an overview. We assume prior
distributions are provided for both stuff and objects in order
to disentangle the complicated urban scenes. Given a cam-
era pose, we render a composited feature map and generate
the target image via neural rendering. Our model is trained
end-to-end with adversarial and reconstruction losses.

In this section, we first introduce the prior distributions
of stuff and objects, respectively. Next, we introduce our
compositional generative model for urban scene generation.
Finally, we describe the sampling strategy, loss functions
and implementation details.

3.1. Panoptic Prior

We assume a prior distribution of the scene layout is
given in order to train our generative model, which we refer
to as “panoptic prior”’. The panoptic prior briefly describes
the spatial distributions of countable objects and uncount-
able stuff within a certain region. Let V, O ~ py o denote
a stuff layout V and an object layout O sampled from the
joint distribution py o. We now elaborate on the layout rep-
resentation of O and V, respectively.

Countable Object: Following GIRAFFE, the layout dis-
tribution of countable objects (e.g., cars) is represented in
the form of a set of 3D bounding boxes. A sample O =
{01, 09, ..0x} depicts a joint distribution of K objects in
one scene, where K may vary for different scenes. Here,
each object o is represented by a 3D bounding box parame-
terized by its rotation R € SO(3), translation t € R3, and
size s € R3:
or = {Ri, ti, sk}

In this work, we leverage bounding boxes released by pub-
licly available dataset [37] to form the distribution po. This
distribution can be obtained from real-world images, e.g.,
by applying a 3D object detection method.

Uncountable Stuff: Unlike countable objects, there are
many indispensable entities that are either uncountable
(e.g., road and terrain) or sometimes too cluttered to be
separated (e.g., trees). To address this problem, we repre-
sent uncountable stuff in the form of semantic voxel grids
V € REvxWoXDu XL where each voxel stores a one-hot
semantic label of length L.
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3.2. Compositional Urban Scene Generator

Our generator follows the idea of GIRAFFE [49] which
represents the urban scene as a compositional neural feature
fields. A key difference is that we model the background us-
ing a stuff generator conditioned on a semantic voxel grid,
assisted with a sky generator to model sky and far regions.
The stuff and the sky generator share a global latent code
Zwia € N(0, 1), whereas each object has its own latent code
Zobj = {z’jbj € N(0,I)}< | to ensure the diversity of ob-
ject shape and appearance in a scene. We now describe each
of these generators in detail.

Object Generator: For objects, we follow existing com-
positional methods to generate each object k£ in a normal-
ized object coordinate space [36, 49]:

GoP s (y(xhy,). 28,;) o (£R . ok, ) )

where ngj denotes the object generator that maps a 3D
point x’;b]— encoded by positional encoding (+) and a noise
vector z’jb ; to a feature vector f C’fb ;€ RMs and density cr’(fb ;e
Here, x’;bj denotes a 3D point in the kth normalized object
coordinate, which is transformed to the world coordinate

given the object transformation {R, t,s}.
Xwid = R(s ® x’jbj) +t )

Generating objects in this canonical space enables informa-
tion sharing across different objects, thus allowing for learn-
ing a complete shape from many single-view object images.
With the learned complete shape, we can control the rota-
tion, translation, and appearance of each individual object.

Stuff Generator: Our stuff generator generates feature
fields for the uncountable stuff condition on the semantic
voxel grid V. Inspired by 2D semantic image synthesis [53,

], we use the semantic voxel grid to modulate the stuff
generation. More specifically, our stuff generator consists
of a feature grid generator Gz"l and a MLP head G‘;tf . The
feature grid generator first maps the noise vector z,,q to
a feature grid ¥ € RH»xWoxDuxM. conditioned on the
semantic voxel grid V € RHv*xWuxDoxL.

Gy (21, V) = 3)

In practice, G4°! is a 3D convolutional neural network. The
semantic condition V is injected at multiple resolutions us-
ing spatially-adaptive normalization, see Fig. 3 as an illus-
tration. Given a 3D point x,,;4, We trilinearly interpolate a
feature vector W(x,;q) € RMv. Next, we map x4 and
WU (x,4) to the final stuff feature fs;; € RMs and density
0ty using the MLP head:

Gzt‘f (W (Xwid)s ¥ (Xwia)) = (Fsty ostr) @)
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Figure 3: Feature Grid Generator Gg"l as a part of the
stuff generator. We adopt spatially-adaptive normalization
to inject the semantic condition V and the noise vector z,,;4
at multiple resolutions.

where () denotes positional encoding. We do not take
viewing direction as the input of object and stuff generator,
as the neural renderer can learn view dependency effects.

Sky Generator: The stuff generator cannot model regions
far from the semantic voxel grid, e.g., sky. Therefore, we
model the sky and other far regions as an infinitely far away
dome following [20, 55]. Specifically, we use a sky gener-
ator G;ky to map a ray direction d to a sky feature vector
fory € RMr,

ngy : (Zwlda d) — fsky

Note that the global latent code z,,;4 is used to ensure the
style consistency between sky and other semantics within
an urban scene.

Compositional Volume Rendering: We accumulate fea-
ture vectors of objects, stuff, and sky on each ray via com-
positional volume rendering. We first sample points from
the object and stuff generators independently (the sampling
strategy will be elaborated in Section 3.3). Next, we sort all
points wrt. their distances to the camera center and accu-
mulate their feature vectors via volume rendering. Finally,
the sky feature is added to non-opaque regions.

Formally, let {x;}, denote M sorted points on a ray,
compositing of x,,;¢4 sampled for the stuff generator and
xk, ; sampled for the object generators (transformed to the
world coordinate system via Eq. 2). f; and o; denote the
corresponding feature vector and density at x;. The volume
rendering is

71'”01 : {fq, (oF ) fsky}zkil = F (5)

Specifically, F is obtained via numerical integration as

N N
F = ZTzazfz + (1 - ZTzaz)fsky (6)
i=1 i=1
1—1
ai=1-e78 1 =[] (1-ay) 7
j=1
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where T; and «; denote transmittance and alpha value of a
sample point x;.

2D Neural Rendering: Following [49], we adopt a neural
renderer to transform the rendered feature map to an out-
put RGB image at the target resolution. This allows us to
scale to a higher resolution without extensive computation
burden. More specifically, our 2D neural renderer ﬂg,”e“”‘l
maps the feature image Ir € R xWs*M;s and the noise
vector z,,;4 to the RGB image I € REXWX3 gt the target
resolution. Here, z,,;4 is adopted to enable content-aware
upsampling.

ﬂ_geural : (IF,Zwld) =1 (8)

Object Patch Rendering: In addition to the full image I,
we further generate a set of object patches, see Fig. 2 as an
illustration. We upsample object masks obtained from vol-
ume rendering to segment the objects after neural rendering.
Please refer to the supplementary for more details.

3.3. Sampling Strategy

We use the panoptic prior to guide the sampling of vol-
ume rendering, effectively reducing the required number of
sampling points and improving rendering efficiency.

Ray-Voxel Intersection Sampling for Stuff: Inspired by
existing methods [20, 40], we use the ray-voxel intersec-
tion sampling strategy to determine sampling locations for
the stuff generator. For each ray, we find the first 4 non-
empty voxels that the ray hit, and then sample M,,,; points
within these voxels. This effectively reduces the number of
required sampling points by avoiding sampling in the empty
space and occluded regions.

Ray-Box Intersection for Object: For objects, we also
leverage the 3D bounding boxes to reduce the number of
samples in the empty space. Given a ray, we first calculate
the ray-box intersections for each bounding box parame-
terized by (R,t,s). Next, we sample M,;; points within
each bounding box by uniform sampling between the in-
tersections. We use the stratified sampling strategy follow-
ing [43], i.e., a random shift is added to the sampled points.

3.4. Loss Functions

We train the entire model end-to-end using adversarial
training aided by a reconstruction loss for stuff regions.

Adversarial Loss: We apply an adversarial to the com-
posited image. Let Gy denote the full conditional generator
that maps the noise vectors and the panoptic prior to a full
RGB image:

Go : (Zwid, Zob;, V,0) — 1 )

We apply the non-saturated adversarial loss with R1-
regularization [41]:

Chay = Erepy [/(=DHD) = AIVDED|] +

B ia:200~N V. 0~pv.0 |/ (D5(Go(Zwid, Zovs, V., 0)))]
(10)

Note that the visual quality of objects like cars is essen-
tial for urban scenes. Unfortunately, objects do not al-
ways occupy a large area in urban images. Our experi-
ments show that using scene-level adversarial training alone
fails to generate photorealistic objects. Inspired by exist-
ing methods [17, 69], we adopt object-level discriminative
training by feeding the object patches P to another object
discriminator D};, leading to the object-level adversarial

P i I
loss £, similar to £ ;, .

Stuff Reconstruction Loss: For our conditional stuff gen-
erator, we observe that using adversarial loss alone struggles
to generate photorealistic results. One possible reason is
that learning generative 3D feature fields for complex stuff
regions is more challenging than the object-centric genera-
tion. To stabilize adversarial training and improve the qual-
ity of synthesized images, we further leverage reconstruc-
tion loss for stuff regions. Following [20], our reconstruc-
tion loss is a combination of the MSE loss and perceptual
108 lygg [26]:

~ |12 R
Lreeon = E[|M© A= D[+ Augolugg(MOLM O D)

where T and T are paired samples, and M denotes a mask
that filters out object regions based on the projected 3D
projecting boxes O. Since our stuff generator is a condi-
tioned generative model depending on the semantic voxel
grid, adding the reconstruction loss is reasonable as the ap-
pearance is highly relevant to the corresponding semantic
label. This provides stronger supervision that z,,;; only
needs to model the variation within the same semantic class.

3.5. Implementation Details

We use 3D CNNs with 5 spatially-adaptive normaliza-
tion blocks for the feature grid generator Gg"l. We set
H, =W, = D, = 64 for all experiments, i.e., the seman-
tic voxel grids are at the resolution of 643. We use M, = 16
channels for the feature grid ¥ to avoid large memory con-
sumption. The MLP head G;tf of the stuff generator is an
8-layer ReLU MLP with a hidden dimension of 256. The
object generator ng] is also an 8-layer ReLU MLP with
a hidden dimension of 128. In terms of the sky generator
szy, a 5-layer MLP with a hidden dimension of 256 is
adopted. All these MLP generators output feature vectors
of dimension M; = 32.

9203



KITTI-360 CLEVR-W
FID;| KIDi} FIDi) KIDi}
2D GAN[32] 322 0.020 17.7 0.019
GSN[11] 127.1 0.124 _ _
GIRAFFE [49]  110.9 0.122 103.9 0.101
Ours 433 0.040 25.7 0.019

Table 1: Quantitative Comparison on KITTI-360 and
CLEVR-W. Our method outperforms 3D-aware baseline
methods and is comparable to the 2D baseline.

During training, we sample camera poses along plausible
driving trajectories given a semantic voxel grid. Regarding
ray marching, we sample M,;; = 12 points within each ob-
ject’s bounding box and M,,,; = 6 within each voxel. We
use the Adam optimizer with a batch size of 16. The learn-
ing rates of the discriminator and the generator are 1 x 104
and 2 x 104, respectively. During inference, we generate
images using a moving averaged model with an exponential
decay of 0.999 for the weights.

4. Experimental Results

In this section, we first compare our method to sev-
eral 2D and 3D baselines on both synthetic and real-world
datasets. Subsequently, we design a number of controllable
urban scene editing experiments to evaluate the preferences
of our synthesis model with regards to controllability and
fidelity. We further conduct ablation studies to better un-
derstand the influence of different architectural components
and report runtime analysis.

Datasets: We conduct experiments on two multi-object
datasets with diverse backgrounds. KITTI-360 [37] is an
outdoor sub-urban dataset containing complex scene geom-
etry. Furthermore, scenes in KITTI-360 are replete with
highlights and shadows, causing the appearance of the same
object to vary greatly in different scenes. KITTI-360 pro-
vides coarse 3D bounding primitives in cuboids and spheres
for both stuff and objects. We consider cars as objects
since cars are important for driving scenarios. For stuff re-
gions, we simply convert the coarse 3D bounding primitives
to semantic voxel grids. We further create an augmented
CLEVR-W dataset following CLEVR [27]. In contrast to
existing methods [49, 69] that places objects on a simple flat
background in CLEVR, we introduce walls into the back-
ground. We consider the wall and the floor as stuff regions.
Please refer to the supplementary material for additional in-
formation regarding the CLEVR-W dataset.

Baselines: We compare our approach to two state-of-the-
art models GIRAFFE [49] and GSN [14] for 3D-aware im-
age synthesis. To further evaluate the fidelity of the syn-
thesized image, we additionally compare our method with a

state-of-the-art 2D method, StyleGAN2 [31].

Metrics: We report the FID [23] and KID [5] scores to
quantify image quality. We use 5k real and fake samples to
calculate the FID and KID scores. We split the panoptic pri-
ors into training and validation for evaluation as our train-
ing objectives include a reconstruction loss. For the KITTI-
360 dataset, we split it into windows of 200 meters with-
out overlapping and sample 20% windows for validation.
Specifically, we randomly sample semantic voxel grids for
synthesizing fake images and other images of different lay-
outs as real ones. Both semantic voxel grids and real im-
ages are randomly sampled from the unseen validation win-
dows. This approach ensures that the evaluation assesses
the model’s performance on previously unseen layouts, en-
abling us to gauge its generalization ability. In addition to
the window-based split, we further keep an entire sequence
from the KITTI-360 dataset to create the validation set. This
sequence-based split introduces a more challenging evalua-
tion setting for our model. The details can be found in the
supplementary material.

4.1. Comparison to the State of the Art

Quantitative Comparison: Table 1 shows the quantitative
comparison on KITTI-360 and CLEVR-W. Note that GSN
requires training on sequential frames, thus we omit GSN
on the CLEVR-W dataset which does not contain sequential
data. The quantitative comparison shows that our method
greatly outperforms existing state-of-the-art 3D methods re-
garding image fidelity and is comparable to the 2D baseline.

Qualitative Comparison: We compare our method with
GIRAFFE and GSN on KITTI-360 in Fig. 4 with the camera
moving forward. Note that GIRAFFE struggles to learn the
complicated background geometry of urban scenes. This
distracts the GAN training, thus leading to low-quality re-
sults even in a static scenario (the first row). Compared with
GIRAFFE, GSN’s scene representation is built upon a local
2D feature map, enabling it to model relatively complex 3D
scenes. Therefore, GSN performs better in the static sce-
nario, but the image quality drops dramatically as the cam-
era moves forward. As a comparison, our method is condi-
tioned on a 3D semantic voxel grid, thus enabling photore-
alistic and consistent 3D-aware image synthesis even with a
large camera moving distance.

Fig. 5 shows the qualitative comparison with GIRAFFE
on CLEVR-W. We conduct various experiments including
stuff editing (e.g., editing the height of the wall or moving
it closer to the objects), object rearrangement, and camera
viewpoint manipulation. Note that GIRAFFE performs well
on the foreground objects but still lags behind on the back-
ground. In contrast, our method can keep high fidelity and
3D consistency under these experiments, which clearly out-
performs the baseline method.
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GIRAFFE [49] GSN [14] UrbanGIRAFFE (Ours)

Figure 4: Qualitative Comparison on KITTI-360. The 1st and 5th rows show images rendered at the default camera pose
for each method. The camera moves forward in the following rows, with an accumulated moving distance of 10 meters.
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Figure 5: Qualitative Comparison on CLEVR-W. We compare with GIRAFFE wrt. various controllable image synthesis
tasks. Our method outperforms GIRAFFE in modeling the background, thus enabling stuff editing and better performance in
camera viewpoint control.

4.2. Controllable Urban Scene Generation Stuff Editing: Our semantic-conditioned stuff generator
enables fine-grained stuff editing by modifying the condi-

We now demonstrate the diverse controllability of our tioning semantic voxel. As shown in Fig. 6a. We can trans-
model in terms of stuff editing, object editing and camera fer stuff semantics like “Road to Grass” and “Building to
viewpoint control. Tree”. It is also possible to edit the occupancy of the voxel
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Figure 7: Ablation Study. Each row shows synthesized images given the same panoptic prior in KITTI-360 with different
method variations. Removing the reconstruction loss (W/0 L,ccon) leads to more artifacts, and the semantic condition may

not be preserved (3rd row). Removing the object discriminator (w/o £

impede the fidelity of objects (cars).

grids, e.g., “Lower building” and “Move tree”. All these
stuff editings are achieved by modifying the semantic voxel
grid without additional optimization.

It is worth mentioning that, in the “Building To Tree” ex-
ample, the shadow of the road also changes to a large degree
after the editing. This suggests that our method not only al-
lows for photorealistic and semantically-align urban scene
generation but also learns the implicit relationship between
the shadow condition and semantic layout.

Object Editing: Next, we conduct various experiments
on object editing in Fig. 6b. As in GIRAFFE [48], we can
add/delete objects, and control their appearance, rotation,
and translation. Our object experiments with object editing
do not affect the appearance of other scene parts, suggesting
that our method can disentangle objects from the complex
background by leveraging the panoptic prior.

P
adv

) and modeling all objects as stuff (w/o ngj ) both

Camera Control: Finally, Fig. 6¢ shows that our method
also allows for large viewpoint control, including large rota-
tion in azimuth and polar angles as well as in-plane rotation.
We can also change the camera’s focal length, successfully
capturing a photorealistic wide-angle image.

4.3. Ablation Study

To verify our design choices, we conduct ablation studies
on the KITTI-360 dataset, and evaluate both image-level
and patch-level FID/KID scores in Table 2.

Reconstruction Loss: We first validate the role of the re-
construction loss. After removing the reconstruction loss,
the FID and KID scores drop significantly (w/o L ccon).
This is unsurprising as the reconstruction loss provides
stronger supervision to align the generated scenes with the
ground truth. Fig. 7 shows that removing the reconstruc-
tion loss can also lead to reasonable performance, but yields
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FID;, KIDi1] FIDp| KIDp| Ry = 94 x 352 Ry = 188 x 704
w/o Lrecon  89.3 0.067 77.6 0.062 GSN 184 -

wlo L5, 53.1 0.050 119.0 0.120 GIRAFFE 133 455

wlo G 447 0.036 - - Ours 96 247

Full 43.4 0.040 67.1 0.056

Table 2: Ablation Study. We report FID and KID of Urban-
GIRAFFE on KITTI-360 without reconstruction loss (w/o

L econ), Without object discriminator (w/o L’apdv) and with-

out object generator ( w/o ngj)

Ours

GT

Figure 8: Diversity. We compare our synthesized images to
the corresponding ground truth image with the same panop-
tic prior. Note that our method keeps the same layout but
maintains diversity.

more artifacts. Moreover, reconstruction loss is particularly
important for infrequently encountered semantic classes.
For example, removing reconstruction loss results in the
model rendering the “rail track” as grass, while the full
model can render it with the corresponding semantic mean-
ing faithfully (see 3rd row of Fig. 7). Note that our full
model can maintain high fidelity while still exhibiting dif-
ferences from the ground truth image, see Fig. 8. These
findings suggest our full model can produce diverse results
instead of simply remembering the entire dataset.

Object Discriminator: Next, we exclude the adversarial
loss £F, applied to object patches and train the object gen-
erator solely through the image adversarial loss £}, . As
shown in Table 2, removing £F, significantly increases the
patch FIDp and KIDp. This can also be seen from the qual-
itative results in Fig. 7, where the cars are of lower quality
when removing the object discriminator. It is worth noting
that FIDy is less affected, indicating that in scenes where the
proportion of objects pixels is not large, the global adversar-
ial training cannot provide enough supervision to optimize
objects which we actually care, and hence introducing £P,
is important to improve visual quality.

All Stuff: Lastly, we remove the object generator ngj
and use the stuff generator to represent the full scene ex-
cept for the sky (w/o G§™), similar to the GSN approach.
This can also be considered as a generative version of GAN-
Craft [20]. As shown in Fig. 7, the quality of objects drops
significantly. This verifies the importance of decompos-
ing stuff and objects to learn high-fidelity object generation.
Note that £F, is also not applied in this experiment as there

Table 3: Rendering Time Comparison. We report time
in ms per image on different resolutions. All results are
evaluated on a single NVIDIA RTX 3090.

is no information on the object instance.

4.4. Runtime Comparison

Table 3 shows the rendering time comparison of different
methods. Our method achieves a rendering speed of approx-
imately 5 frames per second (FPS) for images of resolution
188 x 704. Our method offers two key advantages in the
rendering process. Firstly, in the case of scene rendering,
our feature grid is generated only once, allowing subsequent
frame renderings to reuse this grid, resulting in improved
efficiency. Secondly, our method surpasses the baselines in
rendering efficiency by leveraging geometric priors for ef-
ficient sampling. This enables us to achieve visually pleas-
ing results while significantly reducing the number of points
sampled along each ray. Compared to the baseline methods
that require 32 sampled points, our method achieves similar
quality with just 4 points sampled for stuff rendering.

5. Conclusion

We propose UrbanGIRAFFE to tackle controllable 3D-
aware image synthesis for challenging urban scenes. By
effectively incorporating 3D panoptic prior, our model de-
composes the scene into stuff, objects, and sky. Our com-
positional generative model enables diverse controllability
regarding large camera viewpoint change, semantic lay-
out, and object manipulation. We believe that our method
pushes the frontier of 3D-aware generative models for un-
bounded scenes with complex geometry. In future work, it
can be augmented with a semantic voxel generator for sam-
pling novel scenes. Further, our method does not disentan-
gle light from ambient color, which is worth investigating
to enable lighting control.
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