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Abstract

Humans recognize anomalies through two aspects:
larger patch-wise representation discrepancies and weaker
patch-to-normal-patch correlations. However, the previ-
ous AD methods didn’t sufficiently combine the two com-
plementary aspects to design AD models. To this end,
we find that Transformer can ideally satisfy the two as-
pects as its great power in the unified modeling of patch-
wise representations and patch-to-patch correlations. In
this paper, we propose a novel AD framework: FOcus-
the-Discrepancy (FOD), which can simultaneously spot the
patch-wise, intra- and inter-discrepancies of anomalies.
The major characteristic of our method is that we reno-
vate the self-attention maps in transformers to Intra-Inter-
Correlation (I2Correlation). The I2Correlation contains
a two-branch structure to first explicitly establish intra-
and inter-image correlations, and then fuses the features of
two-branch to spotlight the abnormal patterns. To learn
the intra- and inter-correlations adaptively, we propose the
RBF-kernel-based target-correlations as learning targets
for self-supervised learning. Besides, we introduce an en-
tropy constraint strategy to solve the mode collapse issue
in optimization and further amplify the normal-abnormal
distinguishability. Extensive experiments on three unsuper-
vised real-world AD benchmarks show the superior perfor-
mance of our approach. Code will be available at https:
//github.com/xcyao00/FOD.

1. Introduction
The goal of anomaly detection (AD) is to distinguish

an instance containing anomalous patterns from those nor-

mal samples and further localize those anomalous regions.

Anomalies are defined as opposite to normal samples and

are usually rare, which means that we need to tackle AD

tasks under the unsupervised setting with only normal sam-
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Figure 1. Anomaly detection examples on MVTecAD [3]. Mul-

tiresolution Knowledge Distillation (MKD) [41] adopts the con-

ventional patch-wise representation discrepancies. Row 1 shows

the hard global anomalies (i.e, they are not significantly different

from normal visuals). Rows 3 and 4 show the logical anomalies

(i.e. they may be easily recognized as normal if only from the

patch-wise discrepancy).

ples accessible. The core idea of most unsupervised AD

methods is to compare with normal samples to distinguish

anomalies [46, 35, 60, 11, 28, 58]. Even for humans, we

also recognize anomalies in this way, specifically through

three discrepancies, i.e., 1. patch patterns that differentiate

from the normal visuals; 2. image regions that destroy tex-

tures or structures; 3. novel appearances that deviate from

our accumulated knowledge of normality. Namely, anoma-

lous patches usually have three characteristics: their patch-

wise representations are different from the normal visu-

als; they are different from most patches within one image;

they deviate from our accumulated knowledge of normality.

These views intrinsically reveal that humans’ recognition of

anomalies depends on two aspects: patch-wise representa-

tions (1) and intra- and inter-image correlations (2, 3).

Previous methods mainly follow the former aspect to

learn distinguishable representations or reconstructions,

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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such as reconstruct-based methods [6, 57, 1] and knowledge

distillation AD models [4, 41]. The goal of these meth-

ods is to generate reconstructed samples or feature repre-

sentations, and larger patch-wise representation discrepan-

cies can appear in the abnormal patches. However, only the

patch-wise representation discrepancies are insufficient for

detecting more complex anomalies (e.g., rows 3 and 4 in

Figure 1), since the patch-wise errors can’t provide com-

prehensive descriptions of the spatial context. Other main-

stream AD methods, such as embedding-based [11, 35] and

one-class-classification-based (OCC) [39, 60] methods, are

much similar to the latter aspect. These methods achieve

anomaly detection by measuring the distances between the

features of test samples and normal features. Compared

with the non-learnable feature distances, the explicit intra-

and inter-image correlations in our method are more effec-

tive to detect diverse anomalies (see Table 1, 2, 3). More-

over, patch-wise representation discrepancies and intra- and

inter-correlation discrepancies are complementary, and can

be combined to develop more powerful AD models.

Recently, with the self-attention mechanism and long-

range modeling ability, transformers [50] have significantly

renovated many computer vision tasks [14, 24, 7, 67, 56]

and recently popular language-vision multimodal tasks [30,

22]. Transformers have shown great power in the uni-

fied modeling of patch-wise representations and patch-to-

patch correlations. Transformers are quite suitable for AD

tasks as their modeling ability can satisfy the two aspects of

anomaly recognition quite well. Some works [26, 18, 8, 62]

also attempt to employ transformers to construct AD mod-

els. However, these methods only use transformers to ex-

tract vision features, which didn’t sufficiently adapt trans-

formers’ long-range correlation modeling capability to AD

tasks. Different from these works, we explicitly exploit

transformers’ self-attention maps to establish the intra- and

inter-image correlations. The correlation distribution of

each patch can provide more informative descriptions of the

spatial context, which can reveal more intricate and seman-

tic anomaly patterns.

In this paper, motivated by humans’ anomaly recognition

process, we propose a novel AD framework: FOcus-the-

Discrepancy (FOD), which can exploit transformers’ uni-

fied modeling ability to simultaneously spot the patch-wise,

intra- and inter-discrepancies. Our key designs are com-

posed of three recognition branches: the patch-wise dis-

crepancy branch is to reconstruct the input patch features

for distinguishing simple anomalies; the intra-correlation

branch is to explicitly model patch-to-patch correlations in

one image for distinguishing hard global anomalies (e.g.,
row 1 in Figure 1); the inter-correlation branch is to ex-

plicitly learn inter-image correlations with known normal

patterns from the whole normal training set. To imple-

ment the intra- and inter-correlation branches, we adapt

Transformer and renovate the self-attention mechanism to

the I2Correlation, which contains a two-branch structure to

first separately model the intra- and inter-correlation dis-

tribution of each image patch, and then fuse the features

of two-branch to spotlight the abnormal patterns. To learn

the intra- and inter-correlations adaptively, we propose the

RBF-kernel-based target-correlations as learning targets for

self-supervised learning, the RBF kernel is used to present

the neighborhood continuity of each image patch. Besides,

an entropy constraint strategy is applied in the two branches,

which can solve the mode collapse issue in optimization and

further amplify the normal-abnormal distinguishability.

In summary, we make the following main contributions:

1. We propose a novel AD framework: FOD, which can

effectively detect anomalies by simultaneously spotting the

patch-wise, intra- and inter-discrepancies.

2. We renovate the self-attention mechanism to the

I2Correlation, which can explicitly establish intra- and

inter-correlations in a self-supervised way with the target-

correlations. An entropy constraint strategy is proposed to

further amplify the normal-abnormal distinguishability.

3. Our method can achieve SOTA results on three real-

world AD datasets, this shows our method can more effec-

tively determine anomalies from complementary views.

2. Related Work
Anomaly Detection. In this paper, we divide the main-

stream AD methods into five categories: reconstruction-

based, embedding-based, OCC-based methods, knowl-

edge distillation and normalizing flow AD models. The

reconstruction-based methods are the most popular AD

methods and also widely studied, where the assumption is

that models trained by normal samples only can reconstruct

normal regions but fail in abnormal regions. Many previous

works attempt to train AutoEncoders [6, 28, 57, 8, 17, 64],

Variational AutoEncoders [23] and GANs [42, 1, 29, 40] to

reconstruct the input images. Overfitting to the input images

is the most serious issue of these methods, which means that

the anomalies are also well reconstructed [62].

Recently, some embedding-based methods [2, 33, 9, 11,

35] show better AD performance by using ImageNet pre-

trained networks as feature extractors. In [33], the authors

fit a multivariate Gaussian to model the image-level features

for further Mahalanobis distance measurement. PaDiM [11]

extends the above method to localize pixel-level anoma-

lies. PatchCore [35] extends on this line by utilizing lo-

cally aggregated, mid-level features and introducing greedy

coreset subsampling to form nominal feature banks. How-

ever, these methods directly utilize pre-trained networks

without any adaptation to the target dataset. Some works

[31, 10, 32] attempt to adapt pre-trained features to the tar-

get data distribution. There are also some other methods

for using pre-trained networks by freezing them and only

6804



optimizing a sub-network, e.g., via knowledge distillation

[4, 41, 12, 38], or normalizing flows [36, 15, 37, 63].

OCC is another classical AD paradigm, the earliest

works are mainly to extend the OCC models such as OC-

SVM [44] or SVDD [47, 39] for anomaly detection. Re-

cently, in [60], a patch-based SVDD that contains multiple

cores rather than a single core in [39] is proposed to en-

able anomaly localization. In [25], a Fully Convolutional

Data Description combined with receptive field upsampling

is proposed to generate anomaly maps. In [48], the authors

further extend the PatchSVDD [60] model by the proposed

multi-scale patch-based representation learning method.

Transformer-based Anomaly Detection Methods. Re-

cently, transformers [50] have shown great power in mod-

eling long-range dependencies. For image anomaly detec-

tion, some works [26, 18, 62, 8, 59] also attempt to ex-

ploit transformers to design AD models. However, most

of these methods only use transformers as backbones to ex-

tract vision features, and don’t effectively adapt the long-

range modeling capacity of transformers to AD tasks. Un-

like the previous usage of transformers, we explicitly ex-

ploit the self-attention maps of transformers to establish

intra- and inter-correlations. Our work shares some simi-

larities with a recent work [20]. But we point out that our

work has some significant differences from [20]: 1) Dif-

ferent Insight: [20] aims to unify the pointwise representa-

tion and pairwise association for time series AD, whereas

our work aims to more sufficiently detect image anomalies

through three complementary recognition views. 2) Novel

Method: we propose entropy constraint, inter-correlation

branch, and I2Correlation by effectively combining intra-

and inter-correlation branches. 3) Different Task: [20] fo-

cuses on time-series AD, whereas we focus on image AD.

3. Approach

3.1. Model Overview

Figure 2 overviews our proposed approach. The model

consists of three branches: patch-wise discrepancy branch,

intra-correlation branch, and inter-correlation branch. The

input 2D image is first sent into a pre-trained backbone

to extract multi-scale feature maps. At each feature level,

we construct a subsequent transformer network to explic-

itly model the intra- and inter-image correlations for spot-

ting the intra- and inter-discrepancies. Each network is im-

plemented by stacking the I2Correlation blocks and feed-

forward layers alternately. Suppose each network contains

K layers with length-N input features X ∈ R
N×d, the out-

put of kth layer Xk ∈ R
N×dm is calculated as follows:

Zk = LN(I2Correlation(Xk−1, Xf ) +Xk−1) (1)

Xk = LN(FeedForward(Zk) + Zk) (2)

where Xf is the reference features used by the inter-

correlation branch, LN means LayerNorm, and Zk ∈
R

N×dm is the kth layer’s hidden features. The final output

features are calculated by linear projection: X̂ = ZKWo,

where Wo ∈ R
dm×d is the output projection matrix.

3.2. Patch-Wise Reconstruction Discrepancy

Adopted from previous reconstruction-based AD meth-

ods, we employ feature reconstruction as our patch-wise

recognition view for simplicity. In our approach, we con-

struct a transformer network to reconstruct the input fea-

tures. With the long-range dependency modeling ability,

the features reconstructed by Transformer can have larger

effective receptive fields [13], which are more conducive to

detect hard global anomalies and logical anomalies. More-

over, with the further introduced inter-correlation branch

(sec.3.4), the features can even perceive normal regions of

images from the whole normal training set. Therefore, the

reconstructed features generated by our model have better

global perception and more discriminative semantic repre-

sentation capability, which are more suitable for anomaly

detection by patch-wise representation discrepancies.

Learning Objective. We can utilize classical recon-

struction losses as the learning objective. We combine the

�2 distance and cosine distance to measure the feature dis-

tances between the reconstructed features X̂ and the input

features X . The loss function is defined as follows:

Ll = ||X̂ −X||2 +
(
1− X̂ ·X

||X̂||2||X||2

)
(3)

3.3. Intra-Correlation Learning

The intra-correlation learning branch aims to learn in-

formative patch-to-patch correlations from the input patch

sequence adaptively. As shown in the right part of Figure

2, we explicitly take advantage of the self-attention maps

of transformers as intra-correlation matrices. Formally, the

intra-correlation matrix of the kth layer is calculated by:

Intra Correlation : Sg
k = Softmax

(
Qg

k(K
g
k)

T /
√

dm

)
[Qg

k, K
g
k , V

g
k ] = Xk−1[W

Qg

k , W
Kg

k , W
Vg

k ] (4)

where Qg
k,K

g
k , V

g
k ∈ R

N×dm represent the query, key, and

value of the kth layer. W
Qg

k ,W
Kg

k ,W
Vg

k ∈ R
dm×dm rep-

resent the learnable projection matrices for Qg
k,K

g
k , V

g
k , re-

spectively. Sg
k ∈ R

N×N denotes the learned intra-image

patch-to-patch correlations. Since Softmax(·) can convert

the values in the similarity map into range [0, 1] along the

horizontal axis, each row of Sg
k can represent a discrete cor-

relation distribution for each corresponding image patch.

But different from the vanilla transformers, we further in-

troduce target correlation matrices as the learning objective

to explicitly optimize the intra-image correlations.
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Figure 2. Model overview. The model is composed of three parts: patch-wise discrepancy branch, intra-correlation branch, and inter-

correlation branch. The input image patch sequence will be transformed into the hidden features by a pre-trained backbone, and then sent

into the intra-correlation branch for learning intra-image patch-to-patch correlations. The input of the inter-correlation branch is composed

of hidden features (as Query) and reference features (as Key and Value). The final output features are used to reconstruct the input features.

Target Correlation. Inspired by the contrastive learning

method BarlowTwins [66], we can construct a target corre-

lation matrix T ∈ R
N×N as the learning target. The ob-

jective function of BarlowTwins measures the correlation

matrix between the embeddings of two identical networks

fed with distorted versions of a batch of samples, and tries

to make this matrix close to the identity. In our work, the

role of the target correlation is to introduce a prior corre-

lation of patches as a pretext learning target, where each

patch can be highly correlated to itself and also correlated

to its neighborhood patches and the correlation decreases

with the increase of distance. This allows us to optimize

the intra- and inter-correlations in a self-supervised way. To

this end, we use the radial basis function (RBF) to construct

the target correlation matrix. We further adopt two learn-

able kernel variances σx and σy for horizontal and vertical

axes to make the target correlation of each patch can adapt

to the specific pattern of itself. The target correlation matrix

of the kth layer is defined as:

T g
k =

1

2πσxσy
exp
(
− ||xij − xi′j′ ||22

2(σ2
x + σ2

y)

)
i, i′ ∈ {1, . . . , H}; j, j′ ∈ {1, . . . ,W} (5)

where ||xij − xi′j′ ||22 means the Square Euclidean distance

between point xij and xi′j′ , i, i
′ and j, j′ means vertical and

horizontal coordinates, respectively.

Next, we need to measure the distance between target-

and intra-correlation distributions. This can usually be

achieved by calculating the KL divergence. We can obtain a

KL divergence value from each level of the network. Thus,

we average all KL divergence values to combine the patch-

to-patch correlations from multi-layer features into a more

informative measure as follows:

Div(T g,Sg)=
1

K

K∑
k=1

(
KL(T g

k ||S
g
k)+KL(Sg

k ||T
g
k )
)

(6)

where KL(·||·) ∈ R
N and its each element means the KL

divergence between two discrete distributions correspond-

ing to each row of T g
k and Sg

k .

Due to the rarity of anomalies and the dominance of nor-

mal patterns, the normal patches should build strong cor-

relations with most patches in the whole image, while the

weights of abnormal correlation distributions are harder to

distribute to most patches and are more likely to concen-

trate on the adjacent image patches due to the neighborhood

continuity. Since normal and abnormal patches have differ-

ent correlation distributions, this is a distinguishable crite-

rion for anomaly detection. Note that the intra-correlation

branch explicitly exploits the spatial dependencies of each

image patch, which are more informative than the patch-

wise representations for anomaly detection.

Entropy constraint. Since the normal image patterns

are usually diverse, the learned correlation distributions of

the normal patches may also easily concentrate on the ad-

jacent patches, which can cause the distinguishability be-

tween normal and abnormal to be downscaled. To address
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this, we further introduce an entropy constraint item for

making normal patches establish strong associations with

most normal patches in the whole image as much as possi-

ble. The entropy constraint item is defined as:

Ent(Sg)=
1

K

K∑
k=1

( N∑
i=1

N∑
j=1

(−Sg
k(i,j)log(S

g
k(i,j)))

)
(7)

We will maximize the entropy constraint item. The loss

function for the intra-correlation branch is defined as:

Lg = λ1Div(T g,Sg)− λ2Ent(Sg) (8)

where λ1 and λ2 are used to trade off the loss items. The

optimization of intra-correlation Sg is actually an alternat-

ing process with the guidance of target correlation T g (see

App. A.1), ultimately resulting that each normal patch can

establish strong correlations with most normal patches.

3.4. Inter-Correlation Learning

Through the intra-correlation branch, we can establish

patch-to-patch correlations within a single image. How-

ever, an image usually doesn’t contain all possible normal

patterns, which may cause it difficult to distinguish some

ambiguous abnormal patches (see rows 2, 3, 4 in Figure

1) only through the intra-correlations. To address this, we

should effectively take advantage of the known normal pat-

terns from the normal training set, which are more likely to

contain more informative normal patterns. Specifically, we

further propose an inter-correlation learning branch to ex-

plicitly model pairwise correlations with the whole normal

training set. In this branch, the features of each patch estab-

lish a discrete inter-correlation distribution with the refer-

ence features extracted from all normal samples (see Figure

2). The inter-correlation matrix of the kth layer is similar to

the corresponding intra-correlation, and is defined as:

Inter Correlation : Se
k = Softmax

(
Qe

k(K
e
k)

T /
√
dm

)
Qe

k, Ke
k, V e

k = Xk−1W
Qe

k , XfW
Ke

k , XfW
Ve

k (9)

where Xf ∈ R
Ne×de represents the external reference fea-

tures, Ne is the length of the reference features and de is the

feature dimension. WQe

k ∈ R
dm×dm and WKe

k ,WVe

k ∈
R

de×dm are learnable matrices for Qe
k,K

e
k, V

e
k . Se

k ∈
R

N×Ne denotes the learned inter-image correlations.

Loss. The loss function for the inter-correlation branch

has the opposite optimization direction to Lg . Because

the external reference features contain more comprehensive

normal patterns, normal patches can establish stronger cor-

relations with the closest reference normal patterns, instead

of establishing strong correlations with most reference pat-

terns. By contrast, it shall be harder for anomalous patches

to establish strong correlations with any of the reference

patterns. So the inter-correlation distributions of anomalies

are more dispersed, while the normal inter-correction distri-

butions are more likely to be concentrated. To this end, we

maximize the KL divergence and minimize the entropy item

in the training process. The practical optimization strategy

is also opposite to the intra-correlation branch (see App.

A.1 for details). The loss function is defined as:

Le = −λ1Div(T e,Se) + λ2Ent(Se) (10)

External Reference Features. External reference fea-

tures are used for providing accumulated knowledge of nor-

mality for the inter-correlation learning branch. Thus, these

features should represent all possible normal patterns of all

normal samples from the whole normal training set. To

this end, we can employ many methods to generate the ref-

erence features, such as sampling key features by coreset

subsampling algorithm [35], generating prototype features

by memory module [28], or learning codebook features

through vector quantization [65] or sparse coding tech-

niques [55]. However, because the RBF-kernel in T e is

position-sensitive, our reference features are better to pre-

serve the positional information. The ablation results in

App.B.2 show that the methods that can’t preserve the po-

sition information perform worse. From comprehensive ab-

lation studies, we find that using patch-wise averaged fea-

tures as the external reference features is a simple but effec-

tive way. We think that features extracted by deep neural

networks are highly redundant [16, 52], and different nor-

mal patterns generally correspond to larger activation val-

ues at different channels in the feature vector [61]. So fea-

ture averaging will not eliminate some rare normal patterns

[11], these patterns may be preserved at specific channels.

And averaging can greatly reduce the feature redundancy,

making the obtained reference features more representative.

Formally, for position (i, j), we first extract the set of patch

features at (i, j), Xij = {xk
ij}, k ∈ [1, N ] from the N nor-

mal training images. Then, the reference features at position

(i, j) is computed as xf
ij =

1
N

∑N
k=1 x

k
ij . The final external

reference features are composed of averaged features at all

locations and then flattened into 1D: Xf = Flatten({xf
ij}).

3.5. I2Correlation

We further combine the intra-correlation and inter-

correlation branches to form the I2Correlation block. The

output features of the intra- and inter-correlation branches

are defined as: Zg
k = Sg

kV
g
k and Ze

k = Se
kV

e
k , respectively.

Then, we use the residual feature Zge
k = Zg

k−Ze
k as the out-

put of the I2Correlation block. The feature Ze
k is generated

from the external reference features, which can contain rich

normal patterns. Thus, by subtracting Ze
k from the feature

Zg
k , it is conducive to spotlight the abnormal patterns in the

Zg
k . This is beneficial for anomaly detection.

6807



The total loss function consists of the there branch loss

functions, and is combined as follows:

Ltotal = Ll + Lg + Le (11)

3.6. Anomaly Scoring

We utilize reconstruction errors as the baseline anomaly

criterion and incorporate the normalized correlation distri-

bution distances into the reconstruction criterion. The final

anomaly score of the ith patch in the input patch sequence

is shown as follows:

si =
[
||Xi,: − X̂i,:||2 +

(
1− Xi,: · X̂i,:

||Xi,:||2||X̂i,:||2
)]
� (12)

(
1− Softmax

(
−Div(T e

i,:,Se
i,:)
))

where � is the element-wise multiplication.

4. Experiments
4.1. Experimental Setup

Datasets. We extensively evaluate our approach on two

widely used industrial AD datasets: the MVTecAD [3]

and BTAD [26], and one recent challenging dataset: the

MVTecAD-3D [5]. MVTecAD is established as a standard

benchmark for evaluating unsupervised image anomaly de-

tection methods. This dataset contains 5354 high-resolution

images from 15 real-world categories. 5 classes consist of

textures and the other 10 classes contain objects. A total

of 73 different anomaly types are presented. BTAD is an-

other popular benchmark for unsupervised image anomaly

detection, which contains 2540 RGB images of three in-

dustrial products. All classes in this dataset belong to tex-

tures. MVTecAD-3D is recently proposed, which contains

4147 2D RGB images paired with high-resolution 3D point

cloud scans from 10 real-world categories. Even though this

dataset is mainly designed for 3D anomaly detection, most

anomalies can also be detected only through RGB images

without 3D point clouds. Since we focus on image anomaly

detection, we only use RGB images of the MVTecAD-3D

dataset. We refer to this subset as MVTec3D-RGB.

Evaluation Metrics. The standard metric in anomaly

detection, AUROC, is used to evaluate the performance of

AD methods. Image-level AUROC is used for anomaly de-

tection and a pixel-based AUROC for evaluating anomaly

localization [3, 4, 11, 64].

Implementation Details. We use EfficientNet-b6 [45]

to extract two levels of feature maps with {8×, 16×} down-

sampling ratios, the pre-trained networks are from the timm

library [53]. Then, we construct a subsequent transformer

network (see Figure 2) at each feature level to reconstruct

patch features and learn patch-to-patch correlations. The

parameters of the feature extractor are frozen in the training

Table 1. Comparison of our method with the SOTA methods on the

MVTecAD dataset. Red and blue indicate the first and the second

best result, respectively. According to the anomaly recognition

process, we divide these methods into the patch-wise representa-

tion discrepancy, patch-to-patch feature distance, and others.
Discrepancy

Type
Method Venue

Image-level

AUROC

Pixel-level

AUROC

Patch-wise

Representation

Discrepancy

STAD [4] CVPR 2020 0.877 0.939

PaDiM [11] ICPR 2020 0.955 0.975

DFR [57] Neurocomputing 2021 / 0.950

FCDD [25] ICLR 2021 / 0.920

MKD [41] CVPR 2021 0.877 0.907

Hou et al. [17] ICCV 2021 0.895 /

Metaformer [54] ICCV 2021 0.958 /

DRAEM [64] ICCV 2021 0.980 0.973

RDAD [12] CVPR 2022 0.985 0.978

SSPCAB [34] CVPR 2022 0.989 0.972

DSR [65] ECCV 2022 0.982 /

NSA [43] ECCV 2022 0.972 0.963

UniAD [62] NIPS 2022 0.966 0.966

UTRAD [8] Neural Networks 2022 0.960 0.967

Patch-to-patch

Feature

Distance

PatchSVDD [60] ACCV 2020 0.921 0.957

DifferNet [36] WACV 2020 0.949 /

CFLOW [15] WACV 2022 0.983 0.986

CS-FLOW [37] WACV 2022 0.987 /

Tsai et al. [15] WACV 2022 0.981 0.981

PatchCore [35] CVPR 2022 0.991 0.980

Others

CutPaste [21] CVPR 2021 0.952 0.960

Wang et al. [51] CVPR 2021 / 0.91

SPD [68] ECCV 2022 0.946 0.946

Patch-wise&Intra&Inter FOD (Ours) - 0.992 0.983

Table 2. Detailed image-level AUROCs on the MVTecAD dataset.

Category

Image-level Anomaly Detection

DRAEM

[64]

PatchSVDD

[60]

MKD

[41]

PatchCore

[35]

CFLOW

[15]

FOD

(Ours)

Carpet 0.978 0.963 1.000 1.000 0.987 1.000
Grid 1.000 0.892 0.975 0.992 0.996 1.000

Leather 1.000 0.953 0.956 1.000 1.000 1.000
Tile 0.998 0.969 0.999 1.000 0.999 1.000

Wood 0.991 0.989 0.989 0.985 0.991 0.991
Bottle 0.993 0.976 0.989 1.000 1.000 1.000
Cable 0.929 0.899 0.972 0.992 0.976 0.995

Capsule 0.984 0.763 0.979 0.984 0.977 1.000
Hazelnut 1.000 0.912 0.997 1.000 1.000 1.000
Metal nut 0.989 0.941 0.972 1.000 0.993 1.000

Pill 0.981 0.791 0.971 0.954 0.968 0.984
Screw 0.939 0.825 0.870 0.953 0.919 0.967

Toothbrush 1.000 0.992 0.886 0.906 0.997 0.944

Transistor 0.914 0.874 0.956 0.995 0.952 1.000
Zipper 1.000 0.982 0.981 0.989 0.985 0.997

Mean 0.980 0.915 0.966 0.983 0.983 0.992

process, only the parameters of the subsequent transformer

networks are learnable. All the subsequent transformer net-

works in our model contain 3 layers. We set the hidden

dimension dm as {256, 512} and the number of heads as

8. The hyperparameters λ1 and λ2 are set as 0.5 and 0.5 to

trade off two parts of the Lg and Le loss functions (see App.

B.2 for hyperparameter sensitivity analysis). We use the

Adam [19] optimizer with an initial learning rate of 1e−4.

The total training epochs are set as 100 and the batch size

is 1 by default. All the training and test images are resized

and cropped to 256× 256 resolution from the original reso-

lution.

4.2. Main Results

SOTA Methods. We extensively compare our method

with those published SOTA methods in the past three years.
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The comparison results on MVTecAD are shown in Table

1. Then, we select five reproducible methods to report the

detailed results on MVTecAD, these methods are represen-

tative and SOTA AD methods in the mainstream categories

of image anomaly detection as we discuss in Related Work,

including: DRAEM [64], PatchSVDD[60], PatchCore [35],

MKD[41], CFLOW[15]. For a fair comparison, we repro-

duce all these methods with the same backbone as in our

model. Thus, despite using the unmodified code from the

official repositories, we are not able to exactly reproduce

the original results, but our numbers are very close. The

detailed image-level AUROC results are shown in Table 2,

and detailed pixel-level AUROC results are in the App. Ta-

ble 6. Most of the methods in Table 1 don’t report results

on the BTAD and MVTec3D-RGB datasets, so we repro-

duce the five representative methods on the two datasets for

comparison. The image-level and pixel-level AUROC re-

sults on BTAD and MVTec3D-RGB are shown in Table 3.

Additional detailed results are in the App. Table 7, 8.

Anomaly Detection. On MVTecAD, we set the SOTA

performance on the mean detection AUROC, which is

slightly higher than the best competitor, PatchCore [35].

Note that the results in Table 2 show that our method can

achieve much better results than PatchCore when using

the same backbone. What’s more, in addition to the pill,

screw and toothbrush classes, our method achieves more

than 99% AUROC in all other classes, while other meth-

ods only achieve more than 99% AUROC in most nine

classes. This shows that our method is more stable and

effective in real-world applications. In the classes (e.g.
metal nut, screw, and transistor) with more global and log-

ical anomalies, our method can achieve significantly bet-

ter results than those methods depending on patch-wise dis-

crepancy (e.g. DRAEM [64] and MKD [41]), and can also

achieve better results compared with other methods. This

verifies that the three discrepancies are complementary fac-

tors and our model can simultaneously spot these discrepan-

cies to recognize harder global and logical anomalies. On

BTAD, our FOD can achieve 96.0% mean detection AU-

ROC, which can outperform the best competitor CFLOW

[15] by a margin of 1.2%. On MVTec3D-RGB, we can out-

perform all previous SOTA methods by a margin of 3.3%.

Note that this dataset is much more challenging than the

MVTecAD dataset when comparing the best results (99.2%

for MVTecAD vs. 88.4% AUROC for MVTec3D-RGB).

This demonstrates the robustness of our method.

Anomaly Localization. Our method can achieve com-

parable results with the best competitors on all three

datasets. Our method is slightly lower than CFLOW [15]

and PatchCore [35] on the three datasets, but we ob-

serve that our model that considers the intra- and inter-

correlations outperforms the vanilla reconstruction AD

models (e.g. DRAEM [64] and MKD [41]) on all three

Table 3. Comparison of our method with the SOTA methods for

image-level anomaly detection and pixel-level anomaly localiza-

tion performance on the BTAD and MVTec3D-RGB datasets.

Method DRAEM

[64]

PatchSVDD

[60]

MKD

[41]

PatchCore

[35]

CFLOW

[15]

FOD

(Ours)

BTAD Dataset

Image-level AUROC 0.922 0.924 0.935 0.934 0.948 0.960
Pixel-level AUROC 0.942 0.964 0.965 0.976 0.978 0.975

MVTec3D-RGB Dataset

Image-level AUROC 0.757 0.743 0.688 0.839 0.851 0.884
Pixel-level AUROC 0.974 0.852 0.970 0.977 0.974 0.976

datasets, which verifies the effectiveness of correlation

modeling. Compared with patch-wise reconstruction meth-

ods, our method is more effective and robust to detect hard

global and logical anomalies (see Figure 3).

Qualitative Results. Samples in Figure 1 show qualita-

tive impressions of accurate anomaly localization from our

method. It can be found that our approach can achieve the

best anomaly score maps by combining the three discrepan-

cies. Additional visualizations are in the App. Figure 6.

4.3. Ablation Study and Model Analysis

Ablation Study. To explain how our model works ef-

fectively, we further investigate the effect of the three key

designs in our model: recognition views, entropy constraint

and reference features. The quantitative results are shown

in Table 4, more results can be found in App. Table 9. The

entropy constraint is quite effective and necessary in the

intra-correlation branch. Specifically, it brings a remarkable

7.7% averaged absolute AUROC promotion, which demon-

strates that the entropy constraint strategy is really con-

ducive to increase the distinguishability between abnormal

and normal. Only utilizing pure reconstruction criterion or

pure KL divergence can’t get the most superior detection re-

sults, the combined criterion can outperform each single cri-

terion consistently by a margin of 1.0% and 9.8%. Thus the

reconstruction errors and the intra- and inter-correlations

can collaborate to improve detection performance. For the

external reference features, we compare the simple mean

features with more elaborate coreset features [35] (see App.

Table 15 for more comparison methods). The results show

that the simple mean features are more effective than the

coreset features (0.923 vs. 0.836), which means that mean

features are effective enough to represent all possible nor-

mal patterns and preserve the positional information. Fi-

nally, our proposed FOD surpasses the pure reconstruction

Transformer by 4.0% absolute improvement. These verify

that our proposed explicit correlation learning approach is

effective.

Effect for Different Anomalies. To illustrate the effec-

tiveness of our model intuitively, we explore the anomaly

localization quality under different types of anomalies (see

Figure 3). E.g., simple local anomalies (Column 1) are ob-

viously different from normal visuals; hard global anoma-

lies (Columns 2,3) have less obvious visual appearances,
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Table 4. Ablation results in recognition views, entropy constraint,

external reference features and anomaly scoring. Patch-wise,

Intra and Inter mean patch-wise discrepancy, intra- and inter-

correlation, respectively. w/o and w/ mean without and with en-

tropy constraint. Mean and Coreset refer to mean and coreset fea-

tures [35] as the external reference features (see more details in

App. B.3). Rec, Div and Rec&Div mean the pure reconstruction

criterion, pure KL divergence (E.q.6) and the combined criterion

(E.q.12).
Recognition

Views

Entropy

Constraint

Reference

Features

Anomaly

Scoring
MVTecAD BTAD MVTec3D-RGB Avg

Patch-wise / / Rec 0.972 0.954 0.790 0.905

Intra

w/o / Div 0.700 0.811 0.708 0.740

w/ / Div 0.911 0.822 0.717 0.817

w/ / Rec&Div 0.974 0.952 0.818 0.915

Inter
w/ Mean Rec&Div 0.980 0.958 0.832 0.923

w/ Coreset Rec&Div 0.925 0.884 0.700 0.836

Intra+Inter w/ Mean Div 0.896 0.922 0.814 0.877

Patch-wise+Intra
+Inter (Ours) w/ Mean Rec&Div 0.992 0.960 0.884 0.945
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Figure 3. Visualization of different anomalies. The patch-wise re-

construction is only suitable for simple local anomalies, while for

hard global and logical anomalies, it cannot detect or only detect

partial anomalies. In contrast, our FOD can detect these anomalies

more effectively.

which usually need to be effectively compared with normal

regions to detect; logical anomalies (Columns 4,5) may be

locally normal and can be detected correctly through the

overall semantic understanding. We can find that our FOD

is more distinguishable in general. For simple local anoma-

lies, patch-wise reconstruction methods can also achieve

good results. While for hard global anomalies, these meth-

ods cannot detect or only detect partial anomalies. How-

ever, for logical anomalies, these methods cannot detect

them at all. In contrast, our method is conducive to detect

diverse anomalies because of its complementary recogni-

tion views. This verifies that our method can make more

precise detection and reduce the false-negative rate com-

pared with the pure patch-wise reconstruction methods.

Correlations Visualization. To explain what our model

has learned intuitively, we visualize some learned correla-

tions in Figure 4 with the MVTecAD dataset. For the intra-

(a) Intra-Correlations

(b) Inter-Correlations

Figure 4. Visualization of intra- and inter-correlations. Each red

point in the figure can represent an image patch, we plot its discrete

correlation distribution with all the other image patches.

correlation branch, the normal patches learn to build strong

correlations with most patches in the whole image, while

the correlation distributions of anomalies usually concen-

trate in the adjacent image patches. It can be found that the

normal correlations are much spread and the abnormal cor-

relations are more concentrated in the adjacent regions. For

the inter-correlation branch, most normal correlations only

concentrate in one point and the abnormal correlations are

more spread, which exactly means that each normal patch

can build strong correlations with one special normal pat-

tern and abnormal patches are harder to establish correla-

tions with normal patterns.

5. Conclusion

Humans recognize anomalies through two aspects:

patch-wise representation discrepancies and weak patch-

to-patch correlations. In this paper, we propose a novel

AD framework: FOcus-the-Discrepancy, to simultaneously

spot the patch-wise, intra- and inter-discrepancies. The

patch-wise discrepancies and intra- and inter-correlations

are complementary factors, and can be combined to detect

more complex and diverse anomalies. The major charac-

teristic of our method is that we renovate the self-attention

maps in transformers to I2Correlation to explicitly establish

intra- and inter-image correlations for AD modeling. The

combination of explicit correlation learning and transformer

architecture can match the core idea of anomaly detection

quite well.
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