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Abstract

Monocular 3D Semantic Scene Completion (SSC) has
garnered significant attention in recent years due to its po-
tential to predict complex semantics and geometry shapes
from a single image, requiring no 3D inputs. In this pa-
per, we identify several critical issues in current state-of-
the-art methods, including the Feature Ambiguity of pro-
jected 2D features in the ray to the 3D space, the Pose
Ambiguity of the 3D convolution, and the Computation
Imbalance in the 3D convolution across different depth
levels. To address these problems, we devise a novel
Normalized Device Coordinates scene completion network
(NDC-Scene) that directly extends the 2D feature map to a
Normalized Device Coordinates (NDC) space, rather than
to the world space directly, through progressive restora-
tion of the dimension of depth with deconvolution oper-
ations. Experiment results demonstrate that transferring
the majority of computation from the target 3D space to
the proposed normalized device coordinates space ben-
efits monocular SSC tasks. Additionally, we design a
Depth-Adaptive Dual Decoder to simultaneously upsam-
ple and fuse the 2D and 3D feature maps, further im-
proving overall performance. Our extensive experiments
confirm that the proposed method consistently outperforms
state-of-the-art methods on both outdoor SemanticKITTI
and indoor NYUv2 datasets. Our code are available at
https://github.com/Jiawei-Yao0812/NDCScene.

1. Introduction
Semantic Scene Completion (SSC) [38] is a crucial task

in 3D scene understanding [43] [20], with wide applications
like virtual reality, embodied AI, and autonomous driving,

*These authors contribute equally to this work.
†Corresponding authors.

Figure 1: Feature ambiguity. We compare (a) the feature maps generated
by the proposed dual decoder in the normalized device coordinates space,
and (b) the feature maps projected through FLoSP [7], with reference to
the ground truth demonstrated in (c). In (b), the multi-scale 2D features
are projected along their line of sight, which introduces ambiguity in both
feature size and feature depth. Conversely, in the normalized device co-
ordinates space, the semantics and occupancy are implicitly restored, as
exemplified in (a).

etc. Despite the growing body of research on this topic, the
majority of existing SSC solutions [35] [6] [8] depend on in-
put RGB image and corresponding 3D inputs such as depth
image, truncated signed distance function (TSDF)1, etc., to
forecast volumetric occupancy and the corresponding se-
mantic labels. However, the reliance on these 3D data often
entails the use of specialized and costly depth sensors, and
thus limits the further application of the Semantic Scene
Completion algorithms. Recently, there is growing inter-
est in monocular 3D semantic scene completion [7], which
aims to reconstruct a volumetric 3D scene from a single
RGB image, thus eliminating the requirement of the addi-
tional 3D inputs.

In the pioneering method Monoscene [7], the 2D fea-
tures are lifted to the 3D space by inverting the perspective
projection, where the same 2D features are propagated to

1TSDF is a representation to encode depth volume, where each voxel
stores the distance value to its closest surface and the sign indicates
whether the voxel is in visible spaces.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Pose ambiguity and Imbalanced computation. We illustrate
the projected 2D positions from the 3D convolutions in (a) the proposed
normalized device coordinates space and (bc) the target space. We chose
two 3D convolution layer with the same stride and resolution, respectively
in the two spaces. In (a), the projected positions uniformly distributes on
the 2D pixels while in (bc) the positions have an imbalanced allocation
between the close and far scenes. Moreover, the convolution scope is not
consistent among different choices of camera poses, especially manifesting
in the different convolution offsets, as exemplified in (bc).

different depths along the cast camera rays. As depicted in
Fig. 1 (b), all the voxels on the projected position of the line
sharing the same 2D feature at that specific position. This
approach broadcast the 2D feature in the 3D space, making
it possible to employ a 3D UNet to predict the completed
semantic scene volume.

However, we notice some ambiguities in the prior
works, which can be summarized as Feature-Size Ambigu-
ity (FSA), Feature-Depth Ambiguity (FDA) and Pose Am-
biguity (PA). The aforementioned projection gives rise to
the FSA and FDA. With regard to FSA, the utilization of
perspective projection results in the spread of 2D image
features across a larger space as the depth increases. As
shown in Fig. 1 (b), this leads to variations in feature den-
sity across different depths. These 3D features with incon-
sistent density pose a challenge for the convolution kernel
to discern the effective patterns. As for FDA, as shown in
Fig. 1 (b), each 2D feature pixel corresponds to a specific
position and category, hence propagating 2D feature pixels
to all the voxels along the ray makes the depth and category
indistinguishable in the constructed 3D features.

The Pose Ambiguity (PA) lies in the lack of camera ex-
trinsic parameters. As illustrated in Fig. 2 (b) and (c), given
a certain input image, by supposing different camera ex-
trinsic parameters, the relative positions between the con-
volved positions of a 3D convolution and the convolution
center, when projected on the 2D feature map, should also
transform accordingly. In other words, the 3D convolu-
tion should be conditioned on extrinsic parameters. How-
ever, prior works did not take the camera pose into account,
which indicates the 3D convolution is performed based on
an agnostic camera pose, entailing PA of the convolution
scope.

Besides, the perspective transformation between the tar-
get 3D space and the 2D camera plane introduces Compu-

tation Imbalance (CI) on the 2D feature map, which is also
demonstrated in Fig. 2 (b) and (c). Specifically, the con-
volved positions in the target 3D space, when projected on
the 2D pixels, distributes quite sparse on the close scenes
while dense on the far scenes. Such sparse computation
allocation can hardly capture a comprehensive structural
representation, from the rich details of structure or texture
which usually exists in the 2D pixels projected from the
close scenes, such as the red shelf in Fig. 2 (b) and (c).

Based on the three ambiguities the computation imbal-
ance noticed, we devise a novel framework named NDC-
Scene. Concretely, to alleviate FSA and FDA, the 3D fea-
ture maps are directly recovered in the NDC space, which
strictly aligns with the image in hight and width, and ex-
tened in the depth-wise dimension. This methodology en-
ables the implicit learning of precise occupancy and se-
mantics among voxels, circumventing any erroneous infer-
ences that may arise from 2D projection semantics. Further-
more, to address issues pertaining to PA and CI, we shift
the majority computation units from the target 3D space to
the NDC space. Extensive experiments on large-scale out-
door and indoor datasets demonstrate the superiority of our
method to the existing state-of-the-art methods. The contri-
butions can be summarized as follows:

• According to the critical problems we noticed in the
existing methods, we propose a novel method based on
Normalized Device Coordinates (NDC) space, which
is proved to be a better space to put the majority 3D
computation units than the target 3D space.

• In conjunction with the aforementioned camera space
prediction, a pioneering depth-adaptive dual decoder
is introduced to jointly upsample both 3D and 2D fea-
tures and integrate them, thereby attaining more re-
silient representations.

• Experimental results demonstrate that the proposed
method outperforms state-of-the-art monocular se-
mantic scene completion methods significantly on both
outdoor and indoor datasets.

2. Related Works
Single-View 3D Reconstruction infers the object-level or
scene-level 3D geometry from a single RGB image. Most
existing works focus on the reconstruction of a single ob-
ject, which exploits encoder-decoder structures to learn ex-
plicit [44, 15, 11, 14, 42, 1, 25, 45, 47, 3, 32] or im-
plicit [37, 28, 30, 31, 40, 41] representations of 3D ob-
jects and reconstruct the object’s volumetric or surface ge-
ometry. A series of works [19, 16, 17, 49] extend this
single-object 3D reconstruction to multi-object scenarios
by reconstructing the instances detected in the image sep-
arately in a two-stage manner. For scene-level reconstruc-
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Figure 3: NDC-Scene framework. We first exploit an 2D image encoder to produce multi-scale 2D feature maps, followed by our Depth-Adaptive Dual
Decoder (DADD Sec. 3.2) to restore the 3D feature map in SN (Sec. 3.1), which is further re-projected to the target space ST to predict the SSC result via
a light-weight 3D UNet and a class head.

tion, [21, 18, 39, 29] combine the estimations of overall lay-
out and objects to obtain a sparse holistic 3D reconstruction
of the scene. [13] lifts the features of 2D panoptic segmen-
tation to 3D to obtain the dense estimation of indoor scenes.
However, most existing methods still cannot perform dense
reconstruction robustly in various type of scenes. Although
recent work [7] achieves dense semantic reconstruction of
both indoor and outdoor scenes, it suffers from problems of
PA and CI that limits its performance and robustness. In
contrast, our method transfer most 3D computation units
to a proposed normalized device coordinates space to avoid
PA and CI, thus achieves better dense reconstruction in both
indoor and outdoor scenes.

3D Semantic Scene Completion first defined in SSC-
Net [38], aims to jointly infer scene geometry and se-
mantics given incomplete visual observations. Previous
works [27, 48, 23, 50, 22, 8, 6] have extensively studied
SSC for indoor small-scale scenes and achieved satisfactory
results. With the emergence of large-scale outdoor scene
datasets and demands in autonomous driving, a series of
works [34, 46, 33, 9] focus on the semantic completion of
outdoor scenes, but such methods do not perform well in
indoor scenes. At the same time, most existing works re-
quire RGB images along with additional geometric inputs,
such as depth images [22], LiDAR point clouds [34], and
Truncated Signed Distance Function (TSDF) [8, 6]. Vox-
Former [24] proposes to leverage a pretrained depth esti-
mator as 3D prior. But the requirement of geometric data
limit the application of these methods. A notable excep-
tion is MonoScene [7], which first investigates monocular
SSC that rely only on a single-view RGB image as input for
scene completion. MonoScene proposes the Features Line
of Sight Projection (FLoSP) to bridge 2D and 3D features,
achieving competitive performance with models with addi-
tional geometric inputs or 3D inputs and generalizes well to
different types of scenes. Neverthless, the shared 2D fea-
tures lifted to 3D rays via FLoSP results in both FSA and
FDA, which limits its capacity in discerning the effective

patterns of depth and density. To improve the efficiency
and performance, our method use a depth-adaptive dual de-
coder to restore the voxel feature on different depths in a
more robust way, empowering it a strong representation of
the occupancy and semantics among all depths.

3. Methodology
We consider a monocular 3D Semantic Scene Comple-

tion (SSC) task, which targets at predicting voxel-wise oc-
cupancy and semantics. Specifically, this task takes a single
RGB image XRGB as input and predicts volumetric labels
Ŷ in a target 3D space ST with a shape (HT ,WT , DT ).
The labels Ŷ ∈ CHT× WT× DT

are divided in M + 1 cate-
gories C = {c0, c1, ..., cM}, with c0 denoting the free voxel
and {c1, ..., cM} being the semantic categories.

Overview As mentioned above, current works in Monoc-
ular [7] SSC exploit Features Line of Sight Projec-
tion(FLoSP) to project 2D features to the target 3D space
ST , thus introduces the ambiguity of both the size and the
depth in the projected 3D feature. Further, the positions of
the 3D convolution operation in ST , when projected on the
2D feature map, suffers from the problems of pose ambigu-
ity and imbalanced computation allocation.

To tackle these problems, the proposed method extends
the 2D feature map X2D directly to the Normalized Device
Coordinates space (NDC) SN via reconstructing the depth
dimensional with deconvoluion operations (Sec. 3.1). Such
progressive reconstructed 3D features, compared with the
shared 2D features projected along the camera ray in the
FLoSP way, has the capacity of implicitly learning the den-
sity and depth of objects [2], and thus relieves both FSA
anf FDA. Additionally, in SN , the 2D projections of the
3D convolutions are evenly allocated. Such allocation has
a stronger ability in capturing the structural representation
of the rich details in the close scenes than the allocation of
ST . Finally, as SN is invariant to the camera pose, the 3D
convolution kernel in SN has fixed offset, i.e., it has a con-
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Figure 4: Depth-adaptive dual decoder. We infer the initial 3D feature
map via a simple reshaping operation, and take the final feature map from
the 2D image encoder as the the initial 2D feature map. In each decoder
layer, the 2D features and 3D features are first upsampled by a scale factor
2 to X2D

s/2 and XN
s/2. Then X2D

s/2 is fused into XN
s/2 via DAA (Sec. 3.2),

and a residual 2D feature map is combined to X2D
s/2. Finally, X2D

s/2 and

XN
s/2 are processed by 3D and 2D convolution units respectively.

sistent semantic representation among all camera poses and
the pose ambiguity is avoided in SN .

Besides, we design a depth adaptive dual decoder
(Sec. 3.2) to simultaneously upsample 3D feature maps in
SN and 2D feature maps derived from a 2D image encoder,
respectively in two branches, as well as fuse them in each
decoder layer to achieve more robust 3D semantic represen-
tations.

The pipeline of the proposed method is plotted in Fig. 3.
At first, the input RGB image is encoded by a pre-trained
2D image encoder to generate multi-scale 2D feature maps.
Afterwards, the proposed dual decoder is responsible re-
construct the 3D feature map in SN , which is further re-
projected into the target space ST . Finally, a 3D UNet in
ST processes the projected 3D features and predicts the
completion result. In the proposed method, the 3D UNet
in ST is quite light-weight, consisting of only downsam-
ple and upsample modules. While most 3D computation
units is transferred to the 3D branch in the proposed dual
decoder, which restore the 3D feature maps in SN . We
prove in Sec. 4 that moving the majority of 3D computa-
tion cost from the target 3D space ST to the proposed SN

brings obvious performance gains.

3.1. Normalized Device Coordinates Space

Feature Ambiguity Since the monocular SSC task [7] as-
sumes a RGB image from only a single view of point as
input, it is impossible to back-project 2D features to their
exact 3D correspondences due to lack of the guidance of
depth. Current works [7] exploits FLoSP to project 2D fea-
tures to all possible locations in the target 3D space ST

along their lines of sight. This practice, although shown
to be effective, results in the ambiguity in the projected 3D
features. This ambiguity can be categorized as Feature-Size

Ambiguity (FSA) and Feature-Depth Ambiguity (FDA). As
for FSA, the 2D image features are spread into larger space
as the depth gets larger, as a result, such distribution with
agnostic density makes it hard for the convolution kernel
to determine the effective pattern. In a similar way, for
depth, the 3D networks responsible for the SSC in ST can
hardly distinguish the shared 2D features among all possi-
ble depths to discern the reasonable positions. An intuitive
demonstration of feature ambiguity is shown in Fig. 1 (b).

Also, we find two more imperceptible drawbacks exist-
ing in the mainstream monocular SSC works [7]. To begin
with, we first define the 2D space of the pixels in XRGB as
S2D, and the coordinates in S2D as p2D, formally:

S2D =
[
0,W 2D

]
×

[
0, H2D

]
, (1)

p2D
i,j =

(
x2D
i,j , y

2D
i,j

)
∈ S2D. (2)

In common practice, a 2D feature map in the 2D space S2D

is generated from a UNet structure, and then projected to
the target 3D space, with the coordinates pT and space ST

represented as:

ST =
[
0,WT

]
×

[
0, HT

]
×

[
0, DT

]
, (3)

pT
i,j,k =

(
xT
i,j,k, y

T
i,j,k, z

T
i,j,k

)
∈ ST . (4)

The coordinates in ST and S2D are related via an affine
transformation decided by the camera pose, formally, the
extrinsic parameters aR, bR, followed by a perspective
transformation, with parameters f , c, formally:(

xR
i,j,k, y

R
i,j,k, d

R
i,j,k

)
= aRpT

i,j,k + bR, (5)

p2D
i′,j′ = f ·

(
xR
i,j,k, y

R
i,j,k

)
/dRi,j,k + c. (6)

The 3D point pT
i,j,k is first projected to the camera coordi-

nate system via the affine transformation, with the projected
coordinate

(
xR
i,j,k, y

R
i,j,k, d

R
i,j,k

)
. This coordinate is further

projected to p2D
i′,j′ in the 2D image space via the perspec-

tive transformation, with focal length f and image center
c. We find that both the two transformations introduce dis-
crepancy between the convolution in the 3D space ST and
the original pixel arrangement in S2D.

Pose Ambiguity First, as a scene can be projected to mul-
tiple possible target 3D spaces for the SSC task, the affine
transformation aR, bR also has myriad possibilities. Cur-
rently, dataset providers usually selects aR, bR following
hand-crafted heuristic strategy, e.g., making a border of ST

parallel to a border of the room, such as a wall. According
to Eq. 5, the affine transformation decides the correspon-
dence between the 2D coordinate p2D

i,j and the 3D coordi-
nate pT

i,j,k in ST , and thus the relative positions between
the 2D projections of two 3D coordinates. However, the
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Figure 5: Depth-adaptive attention. We infer the attention matrix a via
the inner-production between the 3D query feature and the 2D key feature
on each group. We omit the value projection for computation reduction.

selection strategy of aR, bR is agnostic to the SSC model,
which means the convolution operation in ST is unaware
of which positions in the 2D space it is really convolving
on. To be specific, we consider a 3D convolution kernel
W ∈ R(2K+1)3CinCout which performs 3D convolution on
a 3D position pT

i,j,k in ST , with the kernel size 2K + 1. Its
output on position pT

i,j,k can be represented by:

Oi,j,k =
∑

(i′,j′,k′)∈Ir

W i′−i,j′−j,k′−kX
T
i′,j′,k′ , (7)

IKi,j,k = {i−K, ..., i, ..., i+K}
× {j −K, ..., j, ..., j +K}
× {k −K, ..., k, ..., k +K} . (8)

Where IKi,j,k is the convolution scope in ST when the ker-

nel convolves on pT
i,j,k and XT ∈ RCin×HT×WT×DT

is
the 3D feature map in ST . Since the convolved 3D feature
XT

i′,j′,k′ is projected from the 2D feature map in S2D, we
further consider the back-projected 2D positions p2D

IK
i,j,k

of

the 3D positions pT
IK
i,j,k

in this convolution scope, as well

as the back-projected 2D position p2D
i′,j′ of the 3D position

pT
i,j,k. As shown in Fig. 2 (b) and (c), the relative position

between p2D
IK
i,j,k

and pT
i,j,k is inconsistent between different

selections of aR, bR, which implies that, given the same
2D feature map, 3D convolution in ST can hardly learns
a robust semantic representation among different choice of
aR, bR, named as Pose Ambiguity (PA).

Imbalanced Computation Allocation Next, the perspec-
tive transformation f , c introduces another problem be-
tween the 2D and 3D space, namely, the Imbalanced Com-
putation Allocation. According to Eq. 5, p2D

IK
i,j,k

distribute
quite sparse on locations in close scenes due to the shallow
depths, while very dense in the distant ones. Such imbal-

anced allocation is also shown in Fig. 2 (b) and (c). How-
ever, the raw vision information are uniformly distributing
among the 2D pixels, hence we argue that a uniform alloca-
tion of computation over the 2D space is more robust than
the shown one. More intuitively, we notice that the close
objects, when projected on the 2D image, contains more
detailed structure or texture than the far ones. It means
a sparse computation allocation can hard capture a strong
and comprehensive structural representation of the close ob-
jects. For example, in Fig. 2 (b) and (c), the close scene
contains rich detail of a red shelf, while the far scene are
mostly composed of a simple wall.

Normalized Device Coordinates Space To solve the
three problems mentioned above, we propose a normal-
ized device coordinates space SN , with the coordinates
pC
i,j,k = (xi,j,k, yi,j,k, di,j,k). SN is derived via directly

extending the location p2D
i,j = (xi,j , yi,j) in the 2D pix-

els space with an additional dimension di,j,k, which is the
depth to the camera plane. In this way, the 3D convolution
operation has a consistent scope among different choices of
affine transformations, as well as evenly distributed com-
putation allocation among the 2D space S2D, as shown in
Fig. 2 (a). It means that SN avoids the pose ambiguity and
imbalanced computation allocation. Further, as described
in Sec. 3.2, the progressively restored information in the di-
mension of depth endows the 3D feature map in SN a strong
representation of the occupancy and semantics in different
depths, especially compared to the shared feature among the
sight of line in FLoSP. An intuitive comparison is provided
in Fig. 1 (a) and (b).

3.2. Depth Adaptive Dual Decoder

We find that transferring the majority amount of 3D pro-
cess from ST to the proposed normalized device coordi-
nates space SN brings obvious performance gain, as illus-
trated in Sec. 4. To achieve a robust semantic representa-
tion in SN , we propose a Depth Adaptive Dual Decoder
(DADD). DADD simultaneously performs upsample on the
2D and 3D feature map, respectively in two branches of de-
coder layers, as well as fuse the 2D feature to 3D with a
novel Depth Adaptive Attention (DAA) module.

Dual Decoder The input of DADD is a 2D feature map
X2D

S ∈ RCin×W 2D×H2D

generated from a 2D encoder,
which has a downscale stride s. Then, to achieve the initial
3D feature map, we exploit a reshaping operation to divide
the dimension of channel into D groups, each denoting an
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LMSCNetrgb [34] Occ 33.93 4.49 88.41 4.63 0.25 3.94 32.03 15.44 6.57 0.02 14.51 4.39 15.88
AICNetrgb [22] RGB & Depth 30.03 7.58 82.97 9.15 0.05 6.93 35.87 22.92 11.11 0.71 15.90 6.45 18.15
3DSketchrgb [8] RGB & TSDF 38.64 8.53 90.45 9.94 5.67 10.64 42.29 29.21 13.88 9.38 23.83 8.19 22.91
MonoScene [7] RGB 42.51 8.89 93.50 12.06 12.57 13.72 48.19 36.11 15.13 15.22 27.96 12.94 26.94
NDC-Scene(ours) RGB 44.17 12.02 93.51 13.11 13.77 15.83 49.57 39.87 17.17 24.57 31.00 14.96 29.03

Table 1: Quantitative comparsion against RGB-inferred baselines and the state-of-the-art monocular SSC method on NYUv2 [37]. The notations Occ,
Depth and TSDF denote the occupancy grid(3D), depth map(2D) and TSDF array(3D), which are the 3D input required by the SSC baselines. For a fair
comparison, all the three input are converted from the depth map predicted by a pretrained depth predictor [5]

Input AICNetrgb [22] 3DSketchrgb [8] MonoScene [7] NDC-Scene(ours) Ground Truth

■ceiling ■floor ■wall ■window ■chair ■bed ■sofa ■table ■tvs ■furniture ■objects

Figure 6: Qualitative results on NYUv2 [37] (test set). From left to right: (a) RGB input, (b) results of AICNetrgb [22], (c) results of 3DSketchrgb [8], (d)
results of MonoScene [7], (e) ours results. NDC-Scene achieve higher voxel-level accuracy and better semantic predictions on NYUv2 (test set) compared
with existing SSC baselines.

individual depth, formally:

X2D
S ∈ RCin×W 2D×H2D

reshape−→

X3D
s ∈ RCin/D× W 2D×H2D×D. (9)

Afterwards, in each decoder layer, we first transform the
2D feature map X2D

S to a larger resolution X2D
s/2 with scale

factor 2, following the common practice [36, 7] in the de-
coder of the 2D UNet, which upsamples X2D

S and add it
to the residual feature map with the same resolution gen-
erated in the corresponding 2D encoder layer, followed by
several 2D convolution units. Then, the 3D feature map
X3D

s is also upsampled to X3D
s/2. Afterwards, the upscaled

X2D
S is fused into X3D

s/2 via the proposed DAA module,
followed by several 3D convolution operations. We demon-
strate more intuitive details in Fig. 4.

Depth Adaptive Attention We assume that, with suffi-
ciently large receptive field, a 2D feature at a 2D position
p2D
i,j in X2D

S can aggregate the context information to im-

plicitly infers both the surface and behind scenes at p2D
i,j .

As fully verified in objective detection [12, 26], objects in
different depth projected in the same 2D location, can be
encoded in different channels of the detection head. In this
paper, we also assume that the 3D semantic scene in dif-
ferent depth projected at p2D

i,j can be encoded in different
channel groups of the 2D feature X2D

i,j . From this view
of point, we propose depth adaptive attention to facilitate
3D features XT

i,j,k in each depth-of-field to flexibly decide,
which channel group of the 2D feature X2D

i,j in the position
p2D
i,j, it is projected on, is most helpful to restore a robust

representation of its depth-of-field. Formally, we divide the
2D feature X2D

i,j with Cin channels to G groups, each with
Cin/G channels. The depth adaptive attention of XT

i,j,k on
X2D

i,j is represented as follows:

Ai,j,k = Softmax (ai,j,k) , (10)

ag
i,j,k =

(
WQXT

i,j,k

)′
·WKX2D

i,j,g, (11)

XT
i,j,k = Ai,j,kX

2D
i,j . (12)
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LMSCNetrgb [34] Occ 28.61 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00 6.70
3DSketchrgb [8] RGB & TSDF 33.30 41.32 21.63 0.00 0.00 14.81 18.59 0.00 0.00 0.00 0.00 19.09 0.00 26.40 0.00 0.00 0.00 0.73 0.00 0.00 7.50
AICNetrgb [22] RGB & Depth 29.59 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00 8.31
MonoScene [7] RGB 37.12 57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48 11.50
NDC-Scene(ours) RGB 37.24 59.20 28.24 21.42 1.67 14.94 26.26 14.75 1.67 2.37 7.73 19.09 3.51 31.04 3.60 2.74 0.00 6.65 4.53 2.73 12.70

Table 2: Quantitative comparsion against RGB-inferred baselines and the state-of-the-art monocular SSC method on SemanticKITTI [4]. The notations
Occ, Depth and TSDF denote the occupancy grid(3D), depth map(2D) and TSDF array(3D), which are the 3D input required by the SSC baselines. For a
fair comparison, all the three input are converted from the depth map predicted by a pretrained depth predictor [5]

Input AICNetrgb [22] LMSCNetrgb [34] MonoScene [7] NDC-Scene (ours) Ground Truth

■bicycle ■car ■motorcycle ■truck ■other vehicle ■person ■bicyclist ■motorcyclist ■road ■parking
■sidewalk ■other ground ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traffic sign

Figure 7: Qualitative results on SemanticKITTI [4] (val set). From left to right: (a) RGB input, (b) results of AICNetrgb [22], (c) results of
LMSCNetrgb [34], (d) results of MonoScene [7], (e) ours results. NDC-Scene achieve higher voxel-level accuracy and better semantic predictions on
SemanticKITTI (val set) compared with existing SSC baselines.

WQ and WK are two projection matrices to calculate the
similarity vector a. This design is mostly inspired by the
attention module in [10], which omits the value projection
WV to save the computational cost. The detail structure is
shown in Fig. 5.

4. Experiment

We evaluate NDC-Scene on the didactic real-world in-
door dataset NYUv2 [37] and outdoor SemanticKITTI [4].
We compare NDC-Scene with both state-of-the-art monoc-
ular SSC baselines and several adapted SSC baselines
which requires additional depth information. Both datasets
contains labeled ground truth in the target space and camera
extrinsics.

NYUv2 Dataset [37] consists of 1449 scenes captured
using the Kinect camera, which are represented as 240 ×
144 × 240 voxel grids annotated with 13 classes (11 se-
mantic, one free, and one unknown). The shape of the RGB
images is 640×480. Following previous works [7], we split

the dataset with 795 training samples and 654 test samples.
SemanticKITTI Dataset [4] is a large-scale outdoor 3D

scene semantic complement dataset, which contains Lidar
scans represented as 256 × 256 × 32 grids of 0.2m voxels.
The dataset includes 21 classes, including 19 semantic la-
bels, one free label, and one unknown label. We utilize the
RGB images of cam-2 with a resolution of 1226× 370 and
left cropped to 1220×370. And follow the official train / val
splits consisting 3834 and 815 samples, respectively. Fol-
lowing [7], we evaluate our models at full scale (i.e. 1:1).
Our main results and ablations are performed using the of-
fline validation set for convenience, and the results on the
hidden test set on the online server are also provided in the
supplementary materials.

Metrics For the scene completion (SC) metric, we
present the intersection over union (IoU) of occupied voxels
regardless of their semantic classification following com-
mon practice. For the semantic scene completion (SSC)
metric, we report the mean IoU (mIoU) across all semantic
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NYUv2 SemanticKITTI
Methods w/o FA w/o CI w/ DA IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

Ours ✓ ✓ ✓ 44.17 29.03 37.24 12.70
NDC-FA × ✓ ✓ 42.96 (-1.21) 27.69 (-1.34) 37.15 (-0.09) 12.03 (-0.67)
NDC-CI ✓ × ✓ 43.72 (-0.45) 28.10 (-0.93) 37.20 (-0.04) 12.26 (-0.44)
NDC-NF ✓ ✓ × 43.52 (-0.65) 28.22 (-0.81) 37.18 (-0.06) 11.22 (-0.48)
MonoScene × × × 42.51 (-1.66) 26.94 (-2.09) 37.12 (-0.12) 11.50 (-1.20)

Table 3: Components ablation. All of our components boost performance consistently on NYUv2 [37] and SemanticKITTI [4].

categories. Note that the training and evaluation processes
differ for indoor and outdoor settings because of the dif-
ferent depth and sparsity of the LiDAR data. To account for
both scenarios, we use the more challenging evaluation met-
rics for all voxels, and we follow [7] to report the baseline
results under the consistent metric.

Implementation Details Our experiments are conducted
on 2 NVIDIA Tesla V100 SXM2 GPUs. Specifically, we
exploit DDR module [22] and 3D deconvolution layer as the
3D computation unit and the upsample operation in DDAD.
As for the 3D UNet, the downsample and upsample oper-
ation are instantiated as 3D convolution and deconvolution
layer, both with stride 2. The initial 2D/3D feature maps in
DDAD are 15x20/15x20x16 and 39x12/39x12x32, respec-
tively for NYUv2 and SemanticKITTI, while the output 3D
feature maps of DADD are 60x80x64 and 156x48x128. We
follow the loss functions in [7]. The group number g of
DAA is 8.

4.1. Performance

We compare our proposed NDC-Scene with existing
strong SSC baselines designed for indoor (3DSketch [8],
and AICNet [22]) or outdoor (LMSCNet [34]) scenarios.
We also compare NDC-Scene with MonoScene [7] , which
is the best RGB-only SSC method. Note that for the meth-
ods with more than RGB inputs, we follow [7] to adapt their
results to RGB-only inputs.

NYUv2 Tab. 1 presents the performance of NDC-Scene
on NYUv2 [37] compared with other SSC methods, which
outperforms all other methods by a considerable margin.
Compared with previous state-of-the-art MonoScene [7],
our method obtains better results not only on both IoU and
mIoU but also on all categories, demonstrating the effec-
tiveness and robustness of our proposed architecture.

SemanticKITTI We compare the results under the out-
door scenarios on SemanticKITTI [4] in Tab. 2. For all cat-
egories including small (e.g. car, bicycle, and person) and
large(e.g. building, truck, and road) semantics, our method
beat the baselines significantly, showing that our method
can adapt to different scenarios.

Figure 8: Qualitative comparison of the normalized device coordinates
space and the camera space. In (b), the voxels of SR that are close to the
camera are mostly out of the image when projected on the camera plane.
Thus the in-image voxels are quite sparse. In contrast, in (a) the voxels
with different depths are all uniformly projected on the camera plane.

Qualitative performance In Fig. 6, we present visual-
ization results to qualitatively evaluate the effectiveness of
our NDC-Scene on NYUv2 [37] dataset. We can see that
the proposed NDC-Scene has the ability to handle a wide
range of objects with diverse shapes, resulting in more pre-
cise scene layout and instance-level information than other
SSC baselines. Fig. 7 illustrates the qualitative results on
SemanticKITTI [4]. Our NDC-Scene demonstrates satis-
factory performance in discerning the accurate depth range
of objects like terrains, trunks and cars, as highlighted in
the red boxes. This improvement holds great significance
in large-scale outdoor scenarios and serves as compelling
evidence that we have greatly relieved the issue of Feature
Ambiguity exposed by MonoScene [7].

4.2. Ablation Study

We design comprehensive experiments to verify the ca-
pacity of the proposed method in solving the identified
problems of feature ambiguity, pose ambiguity and com-
putation imbalance.

Feature Ambiguity To evaluate NDC-Scene’s ability in
relieving the feature ambiguity problem, we replace the pro-
posed dual decoder with a heavy 3D UNet with the same
amount of FLoSP, the input features of which are lifted via
FLoSP. This variant loses the ability of implicitly restoring
the semantics among different depths, named as NDC-FA.
For the detailed architecture of NDC-FA, please refer to the
supplementary. Tab. 3 shows that, with the introduced fea-
ture ambiguity, the performance in both geometry ([-1.21,
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Ours(NYUv2) MonoScene(NYUv2)
IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

θ = 0◦ 44.17 29.03 42.51 26.94
θ = 5◦ 42.88 (-1.29) 28.28 (-0.75) 38.99 (-3.52) 23.20 (-3.74)
θ = 10◦ 39.07 (-5.10) 24.64 (-4.39) 33.52 (-8.99) 20.15 (-6.79)
θ = 15◦ 36.74 (-7.43) 22.39 (-6.64) 30.05(-12.46) 16.71 (-10.23)

Table 4: Ablation study for the robustness to pose ambiguity on
NYUv2 [37].

-0.09] IoU) and semantics ([-1.34, -0.67] mIoU) degrades a
lot.

Computation Imbalance Also, NDC-CI is designed to
verify the capacity of NDC-Scene in solving the compu-
tation imbalance problem, Where the 3D feature map in
DADD is replaced with a camera space SR, with coordi-
nates pR

i,j,k =
(
xR
i,j,k, y

R
i,j,k, d

R
i,j,k

)
uniformly distributing

in SR. As the 2D pixels p2D
i,j and pR

i,j,k are also related by
Eq. 6 in the same way of p2D

i,j and pT
i,j,k, 3D convolution in

SR also suffers from the CI problem. A intuitive compari-
son between SR and the proposed SN is illustrated in Fig. 8.
We notice that NDC-CI degrades much more in semantics
([-0.93, -0.44] mIoU) than in geometry ([-0.45, -0.04] IoU),
as shown in Tab. 3.

Depth Adaptive Attention We compare DAA with a
naive fusion approach which direct adds the 2D feature on
p2D
i,j to all 3D features that projects at p2D

i,j , named as NDC-
NF. Accoring to Tab. 3, DAA compensates for 30% of the
performance gain compared to MonoScene.

Pose Ambiguity For PA, we randomly rotate target space
as well as the SSC label with an angle uniformly sampled
in [0, θ], with θ in [5◦, 10◦, 15◦], and compare the perfor-
mance degradation of NDC-Scene and MonoScene to vali-
date the robustness of NDC-Scene in the choice of extrinsic
camera parameters. As revealed in Tab. 4, the performance
of NDC-Scene degrades much slower than MonoScene as
the increase of θ, which verifies the strong ability of NDC-
Scene in handling pose ambiguity.

5. Conclusion
To conclude, our study comprehensively explores the

critical challenges encountered by the present state-of-the-
art techniques in monocular 3D semantic scene comple-
tion. To overcome these challenges, the proposed method
introduces a novel Normalized Device Coordinates (NDC)
space predictor technique, which effectively extends the
2D feature map to a 3D space by progressively restoring
the dimension of depth with deconvolution operations. By

transferring the majority of computation from the target 3D
space to the proposed normalized device coordinates space,
the proposed approach leads to enhanced performance in
monocular SSC tasks. Furthermore, the study proposes the
use of a Depth-Adaptive Dual Decoder, which facilitates the
simultaneous upsampling and fusion of the 2D and 3D fea-
ture maps, thereby improving overall performance.
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