
Sign Language Translation with Iterative Prototype

Huijie Yao1 Wengang Zhou1,2,* Hao Feng1 Hezhen Hu1 Hao Zhou1 Houqiang Li1,2,*
1 CAS Key Laboratory of Technology in GIPAS, EEIS Department, University of Science and Technology of China

2 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
{yaohuijie,haof,alexhu,zhouh156}@mail.ustc.edu.cn, {zhwg,lihq}@ustc.edu.cn

Abstract

This paper presents IP-SLT, a simple yet effective frame-
work for sign language translation (SLT). Our IP-SLT
adopts a recurrent structure and enhances the semantic rep-
resentation (prototype) of the input sign language video via
an iterative refinement manner. Our idea mimics the be-
havior of human reading, where a sentence can be digested
repeatedly, till reaching accurate understanding. Techni-
cally, IP-SLT consists of feature extraction, prototype ini-
tialization, and iterative prototype refinement. The initial-
ization module generates the initial prototype based on the
visual feature extracted by the feature extraction module.
Then, the iterative refinement module leverages the cross-
attention mechanism to polish the previous prototype by ag-
gregating it with the original video feature. Through re-
peated refinement, the prototype finally converges to a more
stable and accurate state, leading to a fluent and appro-
priate translation. In addition, to leverage the sequential
dependence of prototypes, we further propose an iterative
distillation loss to compress the knowledge of the final itera-
tion into previous ones. As the autoregressive decoding pro-
cess is executed only once in inference, our IP-SLT is ready
to improve various SLT systems with acceptable overhead.
Extensive experiments are conducted on public benchmarks
to demonstrate the effectiveness of the IP-SLT.

1. Introduction

Sign language translation (SLT) aims to automatically
generate spoken language translations based on sign lan-
guage videos, which holds both social significance and aca-
demic value. On the one hand, a high-quality SLT sys-
tem can greatly facilitate communication between deaf-
mute and hearing individuals [4, 11, 12, 41]. On the other
hand, SLT as an interdisciplinary research topic necessitates
a comprehensive understanding of computer vision [31, 13,
36, 19] and natural language processing [43, 40], given its

*Corresponding authors: Wengang Zhou and Houqiang Li

Encoder
Prototype

Decoder Text

Encoder
Prototype#k

Decoder Text

╳

Prototype#k-1

(a) The Previous Pipeline

(b) Our IP-SLT Pipeline

Iterative
Refinement

Figure 1. Illustration of the pipeline of the previous works and our
IP-SLT. (a) The previous studies rely on a one-pass forward pro-
cess to generate the final translation. (b) To mitigate the vision-text
gap, we introduce the iterative refinement module into the original
SLT system. The refinement module updates the current prototype
conditioned on the sign language video, which can be run itera-
tively to obtain a better representation of the semantic meaning of
the sign language video.

involvement with vision and text modalities. As a result,
SLT has emerged as a vital research topic, garnering in-
creasing attention [5, 49, 31, 2, 21, 20, 42].

SLT is a challenging task, which faces a tough domain
gap between the input video and output text, as well as a
limited dataset scale due to costly data collection and an-
notation [49, 7, 44, 21]. Since SLT is typically viewed as
a sequence-to-sequence mapping problem, the existing SLT
systems [23, 5, 7] commonly adopt the one-pass forward
pipeline based on encoder-decoder architecture [40, 30] (as
shown in Fig. 1 (a)). In such a framework, the encoder
transforms the sign video into its semantic representation
(prototype), which is then fed into the decoder to obtain the
final translation. However, due to the inherent gap between
vision and text, it may be hard to conduct such mapping
within the vanilla one-pass architecture.

In this study, we present IP-SLT with the iterative proto-
type to boost sign language translation (as shown in Fig. 1
(b)), which is inspired by the human reading process. Dur-
ing this process, we note that repeatedly digging into the

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15592



source materials is necessary for accurate understanding.
Similarly, when we are trying to translate a sign language
video into a sentence, we commonly do not directly write
it down. Instead, we would recall and go back to the orig-
inal sign video to check our answers. To implement the
above idea, our IP-SLT adopts a recurrent structure that en-
hances the semantic representation (prototype) of the input
sign language video via an iterative refinement process. IP-
SLT generally contains three main components, including
feature extraction, prototype initialization, and iterative pro-
totype refinement. Given a sign video to be translated, we
first extract its visual representation, which is then used for
generating an initial raw prototype. Subsequently, we iter-
atively leverage the attention mechanism [43] to update the
prototype toward the semantic meaning of the sign video.
At each iteration, we refine the previous prototype by ag-
gregating it with the original visual representation. In this
way, the network repeatedly digs the semantic context from
the sign video to polish the prototype. Through iterative
refinement, the prototype finally converges to a stable and
accurate state, producing a high-quality translation.

In addition, our IP-SLT introduces a novel design dis-
cussed next. Firstly, to leverage the sequential dependence
between different iterations, we further propose the iterative
distillation loss which allows the previous prototypes to ob-
tain supervision from the final one. Since the final prototype
converges to a more stable and accurate state, it is possible
for IP-SLT to achieve better performance. Secondly, during
training, all predicted prototypes are transformed into their
corresponding translations to provide guidance for each it-
eration. Our inference process is neat since only the fi-
nal prototype is used for the autoregressive decoding pro-
cess. Thirdly, our IP-SLT can easily work with different vi-
sual backbones. Through end-to-end optimization, our IP-
SLT achieves significant performance improvements over
the baselines.

In summary, our contributions are three-fold:

• We propose IP-SLT, a novel framework to amelio-
rate sign language translation, which iteratively refines
the prototypes by aggregating the previous translation
progress and the original visual representation.

• We propose an iterative distillation loss to enhance the
basic supervision, by leveraging the sequential depen-
dence between the outputs at each iteration.

• We conduct extensive experiments to validate the pro-
posed method, and show encouraging improved results
on the two prevalent benchmarks, i.e., CSL-Daily [49]
and PHOENIX-2014T [5].

2. Related Work
In this section, we briefly review the related works, i.e.,

sign language translation and iterative refinement methods.

Sign Language Translation. Camgoz et al. [5] pioneer the
neural SLT task and publish the neural dataset PHOENIX-
2014T and regard the SLT as a sequence-to-sequence prob-
lem. They implement the neural SLT system using the
encoder-decoder paradigm [3]. This paradigm is adopted
by subsequent studies which focus on addressing the chal-
lenges of data scarcity and domain gap. Considering the
lack of frame-level annotation in sign language datasets,
Li et al. [27] design the temporal semantic pyramid struc-
ture to obtain more discriminative features. Camgoz et
al. [7] explore the mutual benefits of SLT and continuous
sign language recognition through joint optimization. Zhou
et al. [49] leverage gloss annotation to transform the mono-
lingual texts into pseudo-videos. According to the char-
acteristic of sign language, several works [46, 6, 50] pro-
pose multi-channel SLT systems which explicitly extract
and align the key parts of sign language expression. Jin et
al. [23] leverage the additional prior knowledge to obtain
high-quality translations. Chen et al. [9] propose a transfer
learning baseline for SLT by leveraging external resources
from related tasks. Chen et al. [10] further combine the raw
videos and the keypoint sequences to achieve better seman-
tic understanding with auxiliary supervision.

In contrast, our proposed approach employs an iterative
refinement process that utilizes the previous prototype as
an additional clue to enhance the accuracy of the mapping
between sign videos and their translations.

Iterative Refinement Methods. The idea of iterative
refinement is applied to various computer vision tasks,
such as image generation [1, 18, 37], instance segmenta-
tion [34, 28, 29, 47], image rectification [15], etc., which
shows promising performance improvements. CARN [1]
maintains training stability in super-resolution tasks and im-
proves the quality of output images. Ling et al. [28] regard
the object instance segmentation task as a regression task
and proposes the Curve-GCN to iteratively predict the loca-
tions of all vertices. DeepSanke [34] uses the deep network
to iteratively enclose the object boundary based on an initial
contour. The previous studies [48, 35, 14, 36, 31] in con-
tinuous sign language recognition task follow an iterative
training scheme to enhance the discriminative power of fea-
ture extraction modules which use the convolutional neural
network and their variants [8, 22, 39]. They leverage align-
ment proposals given by the connectionist temporal classi-
fication (CTC) [17] decoding as supervision at frame-wise
granularity, which cannot be directly applied to the SLT.

Different from the aforementioned methods, we explore
how to reduce the vision-text gap by proposing an itera-
tive refinement module to the existing SLT system. To re-
duce the complexity, we design the refinement module in a
shared-weight manner. Moreover, we put forward the iter-
ative distillation loss to leverage the sequential dependence
between different iterations.

15593



Feature
Extraction

Encoder
ℰ1

Decoder
𝒟𝒟1

Encoder
ℰ2

Decoder
𝒟𝒟2

Encoder
ℰ2

Decoder
𝒟𝒟2

...

Iteration

𝒀𝒀𝐾𝐾𝒀𝒀0 𝒀𝒀1

Initialization Iterative Prototype Refinement

𝑬𝑬0 𝑬𝑬𝟏𝟏 𝑬𝑬𝑲𝑲−𝟏𝟏
𝑭𝑭 Encoder

ℰ2

Decoder
𝒟𝒟2

𝒀𝒀2

𝑬𝑬𝟐𝟐

Removed in inference 
Supervision from 
iterative distillation ...

Forward flow

...

𝑿𝑿
𝑬𝑬𝑲𝑲

Figure 2. An overview of the proposed IP-SLT framework. Given a sign video X , the feature extraction module is responsible for
embedding the input into visual representation F . The initialization module (the encoder E1 and decoder D1) generates the initial prototype
E0 and the raw translation Y 0. The refinement module (the encoder E2 and decoder D2) first takes the initial prototype E0 as input and
generates a prototype for the current step by fusing it with the original visual representation F . Through K times refinement, the prototype
sequence E = {E0,E1, · · · ,EK} and corresponding translation sequence Y = {Y 0,Y 1, · · · ,Y K} are obtained. In light of the fact
that the decoding part of IP-SLT consists of K + 1 branches based on the iteration order, we introduce the iterative distillation loss to
improve the underlying supervision. It should be noted that the parts enclosed in dashed boxes can be removed in inference.

3. Methodology

In this section, we first introduce the overall architec-
ture of our IP-SLT, and then separately elaborate individual
components. Finally, we propose the design of the training
objective and inference strategy for the IP-SLT.

3.1. Framework Overview

The primary objective of the SLT system is to acquire
knowledge about the mapping f : X 7→ Y , where X and
Y denote the collections of N sign language videos and
spoken language sentences associated with vocabulary V ,
respectively. Most SLT systems adopt the encoder-decoder
architecture [40], where the input X ∈ X is first encoded to
derive a high-level context representation. It is then passed
to the decoder to generate the output Y ∈ Y . The en-
coder and decoder can be specialized using different types
of neural networks, such as GRU [3], CNN [16], and Trans-
former [43]. Considering the performance of existing SLT
systems, we adopt the Transformer as well.

With the goal of narrowing the domain gap between
vision and text, we augment the original translation pro-
cess with an iterative refinement step. Fig. 2 provides an
overview of the proposed IP-SLT model, which consists of
three stages, namely feature extraction, prototype initializa-
tion, and iterative prototype refinement. As with previous
approaches, the initialization and iterative refinement mod-
ule adopt the encoder-decoder architecture. Given the sign
language video X = {xt}Tx

t=1 with Tx frames, the feature
extraction module embeds it into the spatial-temporal fea-
ture F = {ft}

Tf

t=1. Next, the encoder E1 and decoder D1

are employed in the initialization module to derive the ini-
tial prototype E0 and initial translation Y 0 from the visual
feature F .

Subsequently, the refinement module iteratively refines
the previous prototype and generates the final translation
Y K = {yK

t }Ty,K

t=1 with Ty,K words after total K iterations.
At the k-th iteration, the encoder E2 estimates the proto-
type Ek for the current step by augmenting the original vi-
sual feature F with the previous prototype Ek−1. Next, the
decoder D2 predicts the corresponding translation Y k. Fi-
nally, the translation sequence Y = {Y 0,Y 1, · · · ,Y K}
is obtained according to the prototype sequence E =
{E0,E1, · · · ,EK}. For the IP-SLT optimization, by di-
viding the decoding part into K + 1 branches, we add it-
erative distillation supervision from the final translation to
the middle translations. Since the refinement process takes
place in the encoder E2, in inference, the proposed IP-SLT
can generate the translation directly from the K-th proto-
type which causes acceptable overhead.

3.2. Feature Extraction

The feature extraction module embeds a series of video
frames X ∈ RTx×H×W×3 with width W and height H into
its visual feature F ∈ RTf×C with the dimension of feature
C. Since its goal is to extract a distinguishable represen-
tation for SLT, we can draw on the visual backbone used
in CSLR [14, 26, 25, 13] to extract the valid representa-
tion. Generally, with sliding window size w and stride size
s, the sign video is split into Tf =

⌈
Tx

s

⌉
clips. By pass-

ing sign videos through it, the spatial-temporal embeddings
F = {ft}

Tf

t=1 are extracted as:

{ft}
Tf

t=1 = Extractor({xt}Tx
t=1). (1)

3.3. Prototype Initialization

After a visual feature F ∈ RTf×C is extracted by the
feature extraction module, it is first fed into the initialization

15594



Q

K

V

Self Attention

A
dd &

 N
orm

FFN

A
dd &

 N
orm

𝑬𝑬𝑙𝑙𝑘𝑘

Element-wise Multiplication       Element-wise Addition 

Query           Key           Value             Residual Connect Q K V

𝑬𝑬𝑙𝑙−1𝑘𝑘

�𝑬𝑬𝑙𝑙𝑘𝑘
Cross Attention

𝑬𝑬𝑘𝑘−1

𝑭𝑭

∗ 𝛽𝛽

∗ (1 − 𝛽𝛽)

Figure 3. An illustration of the prototype update process in the l-th
layer of the encoder E2 at the k-th iteration.

module. The initialization module consists of an encoder E1
and a decoder D1.

The visual representation F is first fed into the encoder
E1, and encoded into Tf raw states E0 = {e0t}

Tf

t=1 ∈
RTf×C . Then the decoder D1 reads the prototype E0 and
produces the initial translation Y 0 = {y0

t }
Ty,0

t=1 according
to the predicted logits U0 = {u0

t}
Ty,0

t=1 . Specifically, it pre-
dicts the conditional probability of the translation sequence,
which is formulated as:

p0−th(Y 0|X) =

Ty,0∏
t=1

p(y0
t |F ,y0

0:t−1), (2)

where y0
0:t−1 = {y0

0 ,y
0
1 , . . . ,y

0
t−1} denotes the previous

output sub-sequence at the t-th step. The initial token y0
0

represents the beginning of a sentence. The predicted prob-
ability of each token in the translation is computed as:

p(y0
t |F ,y0

1:t−1) =softmax(u0
t )y0

t

=softmax(h0
t ·W )y0

t
,

(3)

where h0
t ∈ RC represents the output of the final layer at

the t-th step, and W ∈ RC×|V| denotes a linear mapping
to projects the hidden state h0

t into the predicted logits over
the target vocabulary V . The probability is calculated by ap-
plying the softmax(·) function to the logits. Notably, our
goal is to obtain a more accurate prototype for SLT, thus, the
decoder D1 is only used in the training process to provide
guidance for the initialization module.

3.4. Iterative Prototype Refinement

Once the initial prototype E0 is obtained through the
initialization module, we feed it together with the original
visual representation F into the iterative refinement mod-
ule. The module maintains a single prototype which is it-
eratively refined. In this way, the coarse semantic feature
finally converges to a stable state where the prototype best
fits the sign language semantics. The refinement module is
divided into two sub-processes, i.e., iterative prototype ag-
gregation in the encoder E2 and translation generation in the
decoder D2.

Iterative prototype aggregation. To utilize the prototype
as a reference, each layer of the encoder E2 attends over the
maintained semantic features through the attention mecha-
nism. As shown in Fig. 3, we illustrate the prototype aggre-
gation process in the l-th layer of the encoder E2 at the k-th
iteration. The input of the refinement module consists of the
original visual feature F and the (k−1)-th prototype Ek−1.
The attention mechanism attn(q,K,V ) is originally used
in Transformer [43], which is formulated as:

attn(q,K,V ) =

|V |∑
i=1

αiWvvi,

αi = softmax((Wqq)
T (Wkki)),

(4)

where Wq,Wk and Wv are learnable parameters. To make
better use of the (k− 1)-th prototype, we consider the (k−
1)-th prototype Ek−1 = {ek−1

t }Tf

t=1 as key-value pair, and
the original visual feature F = {ft}

Tf

t=1 as the query. In
this way, we inject the rich semantic information into the
new prototype Ek = {ekt }

Tf

t=1.
The encoder E2 is composed of Le identical layers,

where Ek
l denotes the output of the l-th layer at the k-th

iteration. Similar to [51], the hidden state is computed as:

Ẽk
l =β · attns(E

k
l−1,E

k
l−1,E

k
l−1)

+ (1− β) · attnc(E
k
l−1,E

k−1,Ek−1),
(5)

where attns and attnc denote the self-attention sub-layer and
cross-attention sub-layer used in Transformer [43], respec-
tively. For the first layer of the encoder E2, Ek

l−1 is equal to
the visual feature F . The output of the encoder E2 is Ek

Le

(i.e., Ek). β ∈ [0, 1] is a hyperparameter that weights the
importance of previous prototypes during training and in-
ference. To further fuse and refine the prototype, it is linked
with a fully connected sub-layer FFN(·) using the residual
connection. The output of the l-th layer at the k-th iteration
is formulated as:

Ek
l = FFN(LN(Ẽk

l +Ek
l−1)) + LN(Ẽk

l +Ek
l−1), (6)

where LN(·) is the layer normalization operation.
Translation generation. The decoder D2 iteratively takes
the prototype Ek as input and generates the correspond-
ing translation Y k. Take the k-th iteration as an exam-
ple. The decoder D2 predicts the conditional probability
of translation Y k = {yk

t }
Ty,k

t=1 based on the predicted logits
Uk = {uk

t }
Ty,k

t=1 , which is computed as:

pk−th(Y k|X) =

Ty,k∏
t=1

p(yk
t |F ,Ek−1,yk

0:t−1),

p(yk
t |F ,Ek−1,yk

0:t−1) = softmax(uk
t )yk

t
,

(7)

where uk
t is the predicted logits of the decoder D2 at the t-

15595



th step. The decoder D2 iteratively takes the prototype given
by the encoder E2 as input to generate the final translation
Y K . With total K iterations, the outputs of encoder E1 and
E2 compose the prototype sequence E = {Ek}Kk=0, where
Ek = {ekt }

Tf

t=1 is the semantic feature at the k-th iteration.
Accordingly, the decoder D1 and D2 generate K + 1 trans-
lations Y = {Y k}Kk=0, where Y k = {yk

t }
Ty,k

t=1 is the trans-
lation at the k-th iteration during training. Note that after K
iterations, the decoder D2 obtains the converged prototype
EK and generates the translation only once in inference.

3.5. Training Objective

We introduce two kinds of losses in the training pe-
riod of the IP-SLT system. Firstly, the cross entropy loss
is adopted to supervise the final generated sentence. Sec-
ondly, we put forward an iterative distillation loss. As the
decoder D1 and D2 generate translation sequence Y =
{Y 0,Y 1, . . . ,Y K}, we naturally divide the sequence Y
into an initial prediction, K − 1 intermediate predictions,
and the final prediction according to the order of iteration.
Conceptually, the K − 1 intermediate predictions are re-
garded as the student model and distill knowledge from the
final prediction which is regarded as the teacher model.

Cross entropy loss. As mentioned above, the IP-SLT gen-
erates the translation sequence based on the conditional
probability provided by the decoder D1 and D2. The cross-
entropy loss [43] is computed with the ground truth from N
training samples and the outputs of the decoder D1 and D2.
Its training objective in the proposed approach is to max-
imize the log-likelihood which is equal to minimizing the
cross entropy loss formulated as:

LCE,k = −log pk−th(Ŷ |X), (8)

where Ŷ denotes translation annotation. We apply this at
the output of the initialization module and the K-th output
of the refinement module.

Iterative distillation loss. Since the KL (Kullback-Leibler)
divergence loss can affect the teacher’s networks to the stu-
dent’s networks, we compute it between the K − 1 inter-
mediate predictions and the final prediction. As the final
translation is based on the previous prototypes, we are able
to get better translations by approximating more vital char-
acterization capabilities of middle prototypes. The iterative
distillation loss (IDL) is formulated as:

LIDL =

K−1∑
k=1

KL(Uk,UK), (9)

where Uk and UK are the predicted output of the decoder
D2 at the k-th and K-th iteration, respectively. By comput-
ing the Kullback-Leibler divergence between the Uk and

UK , the IP-SLT is encouraged to approximate the perfor-
mance of the final iteration. We apply this at the K − 1
shallow outputs of the refinement module.

Overall, the loss function of our IP-SLT is formulated as:

L = LCE,0 + LCE,K + λ · LIDL. (10)

Under the guidance of CE loss, we first train the initial gen-
eration module until convergence as a warm start, and then
apply the loss function as Equ. (10) for optimizing the IP-
SLT system in an end-to-end manner.

3.6. Inference Strategy

Since the refinement process only involves in the encoder
E2, the initialization and iterative refinement modules be-
have differently during training and inference. The decoder
D1 of the initialization module is leveraged to provide guid-
ance for the encoder E1 during the training process, while
it is not required in inference. Similarly, the autoregres-
sive decoder D2 of the iterative refinement module gener-
ates translations for each iteration during training, while it
just decodes the final translation once in inference.

In inference, given a sign language video to be trans-
lated, the feature extraction module first converts it into a
visual feature. The encoder E1 of the initialization module
transforms it into the raw prototype. Then, the encoder E2
of the refinement module further iteratively refines it by fus-
ing it with the original visual feature. Finally, the decoder
D2 generates the translation based on the final prototype.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate our approach on two pubic sign lan-
guage translation datasets, i.e., PHOENIX14T [5] and CSL-
Daily [49]. Both datasets provide gloss-level and spoken-
sentence-level annotations. The PHOENIX14T dataset [5]
is the first large-scale neural SLT dataset created with 9 Ger-
man sign language interpreters. The dataset is split into a
training set (7, 096), a development set (519), and a test set
(642). The CSL-Daily dataset [49] is a Chinese SLT dataset
containing 20, 654 annotated sign language videos. We fol-
low the previous experimental setting [49] and split it into
the training, development, and test set.
Evaluation metrics. Following the work [49], we quanti-
tatively assess the quality of translations according to the
BLEU-N [32] and ROUGE [38]. The BLEU-N (N ranges
from 1 to 4) cares more about the accuracy of the predicted
translation while the ROUGE cares more about the consis-
tency of sentences. For both evaluation metrics, a higher
value indicates a better performance.
Training settings. We implement our approach on Py-
torch [33]. The encoder and decoder of the initialization

15596



Methods LLM Dev Test
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Joint-SLRT [7] % - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32
PET [23] % - - - - - 49.97 49.54 37.19 29.30 24.02
BN-TIN-Transf. [49] % 46.87 46.90 33.98 26.49 21.78 46.98 47.57 34.64 26.78 21.68
STMC [50] % 48.24 47.60 36.43 29.18 24.09 46.65 46.98 36.09 28.70 23.65
IP-SLT % 54.43 54.10 41.56 33.66 28.22 53.72 54.25 41.51 33.45 27.97

MMTLB [9] ! 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
TwoStream-SLT [10] ! 54.08 54.32 41.99 34.15 28.66 53.48 54.90 42.43 34.46 28.95

Table 1. Performance comparison of IP-SLT with methods for SLT on PHOENIX-2014T. ‘LLM’ denotes adopting pre-trained large lan-
guage models.

Methods LLM Dev Test
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

SL-Luong [5] % 34.28 34.22 19.72 12.24 7.96 34.54 34.16 19.57 11.84 7.56
Joint-SLRT [7] % 37.06 37.47 24.67 16.86 11.88 36.74 37.38 24.36 16.55 11.79
BN-TIN-Transf. [49] % 37.29 40.66 26.56 18.06 12.73 37.67 40.74 26.96 18.48 13.19
IP-SLT % 44.33 45.26 31.77 22.87 16.74 44.09 44.85 31.50 22.66 16.72

MMTLB [9] ! 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
TwoStream-SLT [10] ! 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.59 32.87 25.79

Table 2. Performance comparison of IP-SLT with methods for SLT on CSL-Daily. ‘LLM’ denotes adopting pre-trained large language
models.

and refinement module consist of 3 layers, respectively. The
dimension of the feed-forward network is 2048. The visual
feature of the STMC [50] is 1024-dimension while the vi-
sual feature of BN-TIN-Transf. [49] and VAC [31] are 512-
dimension. To alleviate over-fitting, we set dropout and at-
tention head to 0.1 and 8, respectively. The training opti-
mizer is Adam [24]. During training, the learning rate is
fixed to 5 × 10−5. To ensure the features provided by the
previous prototype and original sign video are fully utilized,
we apply the drop-net [51] during training, which effects
Equ. (5). During training, for any layer in the encoder E2,
with probability β, the hidden state Ẽk

l in Equ. (5) is the
output of the self-attention sub-layer attns; with probability
1− β, it is the output of the cross-attention sub-layer attnc.
In inference, the hidden state Ẽk

l is computed as Equ. (5).

Inference details. In inference, we use the beam search
strategy [45] to improve the decoding accuracy. For the
PHOENIX-2014T dataset and the CSL-Daily dataset, we
set the beam search width and the length penalty to 3 and
1.0, respectively. To reduce the computational complexity,
our IP-SLT just decodes once in inference for each input
sign language video.

4.2. Comparison with State-of-the-Art Methods

We compare the proposed IP-SLT with the previous SLT
systems on two public benchmarks, i.e., PHOENIX14T [5]
and CSL-Daily [49], and the performance of our IP-SLT is
shown in Tab. 1 and Tab. 2, respectively. For PHOENIX14T
and CSL-Daily dataset, we adopt the STMC [50] and BN-

TIN-Transf. [49] as the baseline, respectively. Our IP-
SLT follows the sign-to-text (S2T) paradigm, which directly
transforms the sign language video into translation. Note
MMTLB [9] and TwoStream-SLT [10] adopt pre-trained
large-scale language models that leverage more model pa-
rameters and extra resources than IP-SLT.

By combining all proposed components together, our IP-
SLT achieves substantial improvements against the base-
line. The IP-SLT achieves 28.22 and 16.74 BLEU-4 scores
on the DEV set of PHOENIX14T and CSL-Daily, respec-
tively. The quantitative results demonstrate that our IP-SLT
achieves promising performance improvements. Our IP-
SLT delivers promising performance gains on DEV and test
sets by leveraging the iterative refinement process. The re-
sults prove the advantage of aggregating the previous trans-
lation progress and the original visual representation, which
distinguishes our IP-SLT from previous SLT systems.

4.3. Ablation Studies

In this section, we put forward several ablation studies on
the DEV set of PHOENIX-2014T. Unless otherwise spec-
ified, we adopt the STMC [50] as the baseline for the fol-
lowing experiments.

Impact of network architecture. The main difference be-
tween our proposed method and the existing work is to
leverage the previous information as an additional clue to
enhance the current prototype. To evaluate the effectiveness
of each component, we gradually add the refinement mod-
ule and the iterative distillation loss to the baseline SLT sys-

15597



Setting ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Baseline 50.10 50.21 37.12 29.41 24.31
+Refinement 51.22 51.04 38.40 30.61 25.39
+IDL 54.43 54.10 41.56 33.66 28.22

6-6 Layers 50.49 50.58 37.57 29.64 24.53

Table 3. Effect of our proposed components. ‘Refinement’ denotes
applying the refinement process. ‘IDL’ denotes applying the iter-
ative distillation loss. ‘6-6 layers’ denotes enlarging the encoder
and decoder of the baseline system from 3 to 6 layers.

Model RM ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

STMC w/o 50.10 50.21 37.12 29.41 24.31
w/ 54.43 54.10 41.56 33.66 28.22

BN-TIN-Transf. w/o 47.41 47.99 34.94 27.33 22.35
w/ 52.06 52.06 39.01 31.08 25.69

VAC-Transf. w/o 49.48 50.01 37.00 29.12 23.91
w/ 53.68 53.60 41.28 33.47 28.07

Table 4. Generalization of IP-SLT. ‘RM’ denotes leveraging the
refinement process. ‘w/’ and ‘w/o’ denote the baseline SLT system
with and without a refinement process, respectively.

λ ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

0 51.30 50.32 38.01 30.29 25.14
5 53.07 52.31 40.08 32.29 27.02
10 53.71 53.51 40.92 32.94 27.47
15 54.43 54.10 41.56 33.66 28.22
20 54.42 54.16 41.51 33.44 27.87

Table 5. The weight λ of iterative distillation loss to CE loss.

tem. Directly applying the refinement process to the base-
line delivers a performance gain of 1.08 BLEU-4. We fur-
ther apply the iterative distillation loss to improve the per-
formance. The results suggest that adding distillation super-
vision can be helpful with a gain of 2.83 BLEU-4. Besides,
to keep the number of parameters unchanged, we enlarge
the depth from 3 to 6 layers and evaluate the performance.
Naively enlarging the model scale slightly improves the per-
formance (+0.22 BLEU-4). The results are shown in Tab. 3.

Generalization of the IP-SLT. We conduct three sets of
experiments by changing the visual backbone to evalu-
ate the generalization of the proposed IP-SLT approach in
Tab. 4. Specifically, the BN-TIN-Transf. [49] uses a ba-
sic CNN network to get the dense representation of sign
video. The STMC [50] extracts and aligns the key parts
of sign language expression to achieve better performance.
The VAC [31] proposes two auxiliary supervision methods
to enhance the feature extraction module. VAC-Transf. re-
places the feature extractor in BN-TIN-Transf. [49] with
the visual backbone of VAC [31]. Applying our proposed
IP-SLT methods to the BN-TIN-Transf., VAC-Transf. and
STMC, we achieve 25.69, 28.07, and 28.22 BLEU-4 scores

β ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

0.0 50.10 50.21 37.12 29.41 24.31
0.2 54.35 53.81 41.40 33.52 28.02
0.4 54.39 54.02 41.24 33.19 27.70
0.5 54.43 54.10 41.56 33.66 28.22
0.6 53.96 53.63 40.94 33.10 27.72
0.8 54.31 53.39 40.92 32.98 27.53

- 50.97 50.67 38.24 30.52 25.41

Table 6. The weight β of the original visual feature to the previous
prototype. ‘0.0’ denotes the assessment of the baseline. ‘-’ denotes
setting β as 0.5 without using the drop-net [51].

Setting ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

None 50.10 50.21 37.12 29.41 24.31
Con-input 54.37 53.83 41.10 32.97 27.39
Con-feature 53.97 52.76 40.56 32.81 27.47
Add-feature 54.43 54.10 41.56 33.66 28.22

Table 7. Effect of the different refinement methods. ‘Con-input’
denotes directly concatenating the original visual feature and pre-
vious prototype as input. ‘Con-feature’ denotes concatenating
the original feature and the previous feature given by the cross-
attention mechanism in each layer. On top of that, ‘Add-feature’
denotes changing it to an addition operation.

on the DEV set, surpassing the baselines by 3.34, 4.16,
3.91, respectively. Using a high-quality visual backbone
delivers further quality gains.

Impact of λ. In our experiments, the weight λ of iterative
distillation loss is set to 15. It is a hyper-parameter that
is designed to balance the effect of cross-entropy loss and
the iterative distillation loss. We conduct experiments by
varying the weight λ. Tab. 5 shows that our IP-SLT achieves
the best performance when the weight λ is set to15.

Impact of β. In the above experiments, the weight β is fixed
to 0.5. The weight β represents the importance of the previ-
ous prototype compared with the original visual feature. As
a hyper-parameter of our proposed methods, the weight β is
examined with a set of different values in Tab. 6. When the
weight is 0.5, the performance is the highest one. This indi-
cates that the previous prototype to SLT is as important as
the original visual feature. Besides, to fully use the previous
prototype, the drop-net is required.

Impact of refinement method. We also examine a set
of refinement methods for IP-SLT considering the fusion
mechanism as a key part of our proposed method in Tab. 7.
Directly concatenating the original visual feature and previ-
ous prototype in the time dimension improves the perfor-
mance of SLT from 24.31 to 27.39. We further add the
cross-attention mechanism to explicitly leverage the useful
information from the previous prototype. And then, we con-
catenate the representation from the original visual feature
and the representation from the previous prototype in fea-

15598



K ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

0 50.10 50.21 37.12 29.41 24.31
1 51.22 51.04 38.40 30.61 25.39
2 53.73 53.39 40.76 32.98 27.66
3 54.43 54.10 41.56 33.66 28.22
4 54.63 53.91 41.40 33.53 28.01

Table 8. Effect of the iteration number K in the iterative refine-
ment module.

Model SW I-P(M) T-P(M) FLOPs(B) ROUGE BLEU-4

STMC
- 92.6 92.6 28.7 50.10 24.31

w/ 128.7 172.6 32.6 54.43 28.22
w/o 238.6 357.9 32.6 54.81 28.48

BN-TIN-Transf.
- 28.3 28.3 9.6 47.41 22.35

w/ 37.7 53.4 10.6 52.06 25.69
w/o 66.1 110.0 10.6 52.24 25.96

VAC-Transf.
- 28.3 28.3 9.6 49.48 23.91

w/ 37.7 53.4 10.6 53.68 28.07
w/o 66.1 110.0 10.6 54.82 28.27

Table 9. Comparing the baseline and non-shared weight prototype
refinement method with IP-SLT. ‘SW’ denotes the sharing weight
across all iterations. ‘-’ denotes the baseline SLT system. ‘w/’ and
‘w/o’ denote the refinement module in different iterations with and
without shared parameters, respectively. ‘I-P’ and ‘T-P’ denote
the parameter amount calculated in inference and during training,
respectively.

ture dimension, which delivers performance gains of 3.16
BLEU-4. On top of that, changing the concatenating pro-
cess to an element-wise addition operation achieves a fur-
ther quality gain of 3.91.

Impact of iteration number K. The iteration number K is
an important hyper-parameter and is fixed to 3 in the previ-
ous experiments. We conduct experiments with different it-
eration numbers to explore the effect of iteration number K.
Tab. 8 shows that there is a culmination in the performance
at iteration 3. Before this culmination, the performance im-
provement of our proposed method increase fast. When the
iteration number is bigger than 3, the performance of our
method is slightly weakened (-0.21 BLEU-4).

Impact of sharing weights between different iterations.
In Tab. 9, we examine the storage and translation quality of
our proposed IP-SLT with different baselines i.e., STMC,
BN-TIN-Transf, and VAC-Transf. In order to ensure the ef-
ficiency of the model, our refinement module shares weight
across all iterations. Since the feature extraction module of
each group is identical, the parameters of the feature ex-
traction module are not included in the calculation of the
storage of different models. As in inference, several parts
can be removed from IP-SLT without changing the perfor-
mance, we report the number of parameters in both train-
ing and inference, respectively. The results indicate that
our iterative process causes acceptable overhead with re-

Type Text

GT ich wünsche ihnen einen schönen abend und machen sie es gut.
Baseline jetzt wünsche ich ihnen noch einen schönen abend.
Our ihnen einen schönen abend und machen sie es gut.

GT in der neuen woche wird es milder aber es bleibt wechselhaft.
Baseline dann wird es wieder milder.
Our in der neuen woche wird es dann wieder milder.

Table 10. Qualitative evaluation. ‘GT’ denotes the spoken lan-
guage translation annotation. ‘Baseline’ and ‘Our’ denote the
translation result of baseline and our IP-SLT, respectively.

markable performance improvements. We further conduct
experiments in which the parameters of each iteration are
independent. The results demonstrate that the proposed
parameter-shared method achieves near performance gain
(28.22 v.s 28.48 BLEU-4, 25.69 v.s 25.96 BLEU-4, and
28.07 v.s 28.27 BLEU-4) with non-shared one but lever-
aging much less parameter number.

Computation comparison with baseline. The FLOPs is
a key factor of computation efficiency. We conduct experi-
ments to compare the computation of the proposed IP-SLT
method with different baselines. Similarly, we exclude the
FLOPs of the feature extraction module and report relevant
computational costs in inference. Tab. 9 shows that lever-
aging the iterative refinement process can cause acceptable
computation costs while achieving promising performance.

Case Study. To provide a more intuitionistic view of our
proposed method, we list some translation samples of the
proposed IP-SLT method in Tab. 10. We observe that based
on the previous prototype and original visual representation,
the IP-SLT can generate more accurate and fluent sentences.

5. Conclusion
In this work, we propose a new framework IP-SLT which

introduces the iterative refinement into a conventional SLT
system. With the goal to polish the semantic representa-
tion by leveraging the previous results, we present IP-SLT
to support the iterative refinement process. The proposed
method is differentiable and optimized in an end-to-end
manner to achieve its best performance. On top of it, we
put forward the iterative distillation loss to further improve
the translation quality by leveraging the sequential depen-
dence between the outputs of each iteration. In inference,
the autoregressive decoding process is required once to gen-
erate the translation based on the final prototype, applying
IP-SLT does not significantly affect efficiency. The experi-
mental results demonstrate the effectiveness of the IP-SLT.

Acknowledgments: This work was supported by NSFC
under Contract U20A20183 and 62021001. It was also sup-
ported by the GPU cluster built by MCC Lab of Information
Science and Technology Institution, USTC, and the Super-
computing Center of the USTC.

15599



References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Im-

age super-resolution via progressive cascading residual net-
work. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018. 2

[2] Samuel Albanie, Gül Varol, Liliane Momeni, Triantafyllos
Afouras, Joon Son Chung, Neil Fox, and Andrew Zisserman.
BSL-1K: Scaling up co-articulated sign language recogni-
tion using mouthing cues. In Computer Vision European
Conference, 2020. 1

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014. 2, 3

[4] Danielle Bragg, Oscar Koller, Mary Bellard, Larwan Berke,
Patrick Boudreault, Annelies Braffort, Naomi Caselli, Matt
Huenerfauth, Hernisa Kacorri, Tessa Verhoef, et al. Sign
language recognition, generation, and translation: An inter-
disciplinary perspective. In International ACM SIGACCESS
Conference on Computers and Accessibility, 2019. 1

[5] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Her-
mann Ney, and Richard Bowden. Neural sign language trans-
lation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 1, 2, 5, 6

[6] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and
Richard Bowden. Multi-channel transformers for multi-
articulatory sign language translation. In Computer Vision–
ECCV 2020 Workshops, 2020. 2

[7] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and
Richard Bowden. Sign language transformers: Joint end-to-
end sign language recognition and translation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2020.
1, 2, 6

[8] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In IEEE
Conference on Computer Vision and Pattern Recognition,
2017. 2

[9] Yutong Chen, Fangyun Wei, Xiao Sun, Zhirong Wu, and
Stephen Lin. A simple multi-modality transfer learning base-
line for sign language translation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2022. 2, 6

[10] Yutong Chen, Ronglai Zuo, Fangyun Wei, Yu Wu, Shujie
Liu, and Brian Mak. Two-stream network for sign language
recognition and translation. Advances in Neural Information
Processing Systems, 2022. 2, 6

[11] Helen Cooper, Brian Holt, and Richard Bowden. Sign lan-
guage recognition. Visual Analysis of Humans: Looking at
People, 2011. 1

[12] Kearsy Cormier, Neil Fox, Bencie Woll, Andrew Zisserman,
Necati Cihan Camgöz, and Richard Bowden. ExTOL: Auto-
matic recognition of british sign language using the bsl cor-
pus. In Workshop on Sign Language Translation and Avatar
Technology, 2019. 1

[13] Runpeng Cui, Hu Liu, and Changshui Zhang. Recurrent
convolutional neural networks for continuous sign language
recognition by staged optimization. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1, 3

[14] Runpeng Cui, Hu Liu, and Changshui Zhang. A deep neural
framework for continuous sign language recognition by iter-
ative training. IEEE Transactions on Multimedia, 2019. 2,
3

[15] Hao Feng, Wengang Zhou, Jiajun Deng, Qi Tian, and
Houqiang Li. DocScanner: robust document image
rectification with progressive learning. arXiv preprint
arXiv:2110.14968, 2021. 2

[16] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N Dauphin. Convolutional sequence to sequence
learning. In International Conference on Machine Learning,
2017. 3

[17] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In International Conference on Machine learning,
2006. 2

[18] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende,
and Daan Wierstra. DRAW: A recurrent neural network for
image generation. In International Conference on Machine
Learning, 2015. 2

[19] Jun He, Richang Hong, Xueliang Liu, Mingliang Xu, and
Qianru Sun. Revisiting local descriptor for improved few-
shot classification. ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 2022. 1

[20] Hezhen Hu, Weichao Zhao, Wengang Zhou, and Houqiang
Li. Signbert+: Hand-model-aware self-supervised pre-
training for sign language understanding. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023. 1

[21] Jie Huang, Wengang Zhou, Qilin Zhang, Houqiang Li, and
Weiping Li. Video-based sign language recognition without
temporal segmentation. In AAAI Conference on Artificial In-
telligence, 2018. 1

[22] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolu-
tional neural networks for human action recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2012. 2

[23] Tao Jin, Zhou Zhao, Meng Zhang, and Xingshan Zeng. Prior
knowledge and memory enriched transformer for sign lan-
guage translation. In Findings of the Association for Compu-
tational Linguistics, 2022. 1, 2, 6

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[25] Oscar Koller, Necati Cihan Camgoz, Hermann Ney, and
Richard Bowden. Weakly supervised learning with multi-
stream cnn-lstm-hmms to discover sequential parallelism in
sign language videos. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2019. 3

[26] Oscar Koller, Hermann Ney, and Richard Bowden. Deep
hand: How to train a CNN on 1 million hand images when
your data is continuous and weakly labelled. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.
3

[27] Dongxu Li, Chenchen Xu, Xin Yu, Kaihao Zhang, Benjamin
Swift, Hanna Suominen, and Hongdong Li. TSPNet: Hier-
archical feature learning via temporal semantic pyramid for

15600



sign language translation. Advances in Neural Information
Processing Systems, 2020. 2

[28] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja
Fidler. Fast interactive object annotation with Curve-GCN.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019. 2

[29] Zichen Liu, Jun Hao Liew, Xiangyu Chen, and Jiashi Feng.
DANCE: A deep attentive contour model for efficient in-
stance segmentation. In IEEE Winter Conference on Appli-
cations of Computer Vision, 2021. 2

[30] Minh-Thang Luong, Hieu Pham, and Christopher D Man-
ning. Effective approaches to attention-based neural machine
translation. arXiv preprint arXiv:1508.04025, 2015. 1

[31] Yuecong Min, Aiming Hao, Xiujuan Chai, and Xilin Chen.
Visual alignment constraint for continuous sign language
recognition. In IEEE International Conference on Computer
Vision, 2021. 1, 2, 6, 7

[32] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. BLEU: a method for automatic evaluation of machine
translation. In Annual Meeting of the Association for Com-
putational Linguistics, 2002. 5

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[34] Sida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao, and
Xiaowei Zhou. Deep snake for real-time instance segmenta-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, 2020. 2

[35] Junfu Pu, Wengang Zhou, and Houqiang Li. Dilated convo-
lutional network with iterative optimization for continuous
sign language recognition. In International Joint Conference
on Artificial Intelligence, 2018. 2

[36] Junfu Pu, Wengang Zhou, and Houqiang Li. Iterative align-
ment network for continuous sign language recognition. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019. 1, 2

[37] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu,
and Deyu Meng. Progressive Image Deraining Networks: A
better and simpler baseline. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 2

[38] Lin CY ROUGE. A package for automatic evaluation of
summaries. In Workshop on Text Summarization of ACL,
2004. 5

[39] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. Ad-
vances in Neural Information Processing Systems, 2014. 2

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. Advances in Neural
Information Processing Systems, 2014. 1, 3

[41] Rachel Sutton-Spence and Bencie Woll. The linguistics of
British Sign Language: an introduction. Cambridge Univer-
sity Press, 1999. 1

[42] Shengeng Tang, Dan Guo, Richang Hong, and Meng Wang.
Graph-based multimodal sequential embedding for sign lan-
guage translation. IEEE Transactions on Multimedia, 2021.
1

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 1, 2, 3, 4, 5

[44] Hanjie Wang, Xiujuan Chai, Xiaopeng Hong, Guoying Zhao,
and Xilin Chen. Isolated sign language recognition with
grassmann covariance matrices. ACM Transactions on Ac-
cessible Computing, 2016. 1

[45] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144, 2016. 6

[46] Kayo Yin and Jesse Read. Better sign language translation
with stmc-transformer. arXiv preprint arXiv:2004.00588,
2020. 2

[47] Tao Zhang, Shiqing Wei, and Shunping Ji. E2EC: An end-
to-end contour-based method for high-quality high-speed in-
stance segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2022. 2

[48] Hao Zhou, Wengang Zhou, and Houqiang Li. Dynamic
pseudo label decoding for continuous sign language recog-
nition. In IEEE International conference on Multimedia and
Expo, 2019. 2

[49] Hao Zhou, Wengang Zhou, Weizhen Qi, Junfu Pu, and
Houqiang Li. Improving sign language translation with
monolingual data by sign back-translation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2021.
1, 2, 5, 6, 7

[50] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li.
Spatial-temporal multi-cue network for sign language recog-
nition and translation. IEEE Transactions on Multimedia,
2021. 2, 6, 7

[51] Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wen-
gang Zhou, Houqiang Li, and Tie-Yan Liu. Incorporat-
ing bert into neural machine translation. arXiv preprint
arXiv:2002.06823, 2020. 4, 6, 7

15601


