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Figure 1. Cascade-DETR for high-quality universal object detection. We compare Faster R-CNN [35], DN-DETR [24] and our Cascade-
DN-DETR on the constructed UDB10 benchmark. Cascade-DN-DETR gives a strong performance on a variety of benchmarks, spanning
traffic, medical, art, open-world, etc. Taking the previous SOTA method DN-DETR [24] as baseline, our approach achieves 5.7 UniAP
performance gain on the UDB10.

Abstract
Object localization in general environments is a fun-

damental part of vision systems. While dominating on
the COCO benchmark, recent Transformer-based detection
methods are not competitive in diverse domains. Moreover,
these methods still struggle to very accurately estimate the
object bounding boxes in complex environments.

We introduce Cascade-DETR for high-quality universal
object detection. We jointly tackle the generalization to di-
verse domains and localization accuracy by proposing the
Cascade Attention layer, which explicitly integrates object-
centric information into the detection decoder by limiting
the attention to the previous box prediction. To further
enhance accuracy, we also revisit the scoring of queries.
Instead of relying on classification scores, we predict the
expected IoU of the query, leading to substantially more
well-calibrated confidences. Lastly, we introduce a uni-
versal object detection benchmark, UDB10, that contains
10 datasets from diverse domains. While also advanc-
ing the state-of-the-art on COCO, Cascade-DETR substan-
tially improves DETR-based detectors on all datasets in
UDB10, even by over 10 mAP in some cases. The im-
provements under stringent quality requirements are even
more pronounced. Our code and pretrained models are at

*Equal contribution.

https://github.com/SysCV/cascade-detr.

1. Introduction
Object detection is a fundamental computer vision task

with a wide range of real-life applications, such as self-
driving and medical imaging. With remarkable progress
since the emergence of DETR [5], Transformer-based de-
tectors [55, 13, 38] have achieved ever increasing perfor-
mance. The recent DETR-based methods [24, 52, 29] out-
perform CNN-based detectors [34, 18, 35, 41] on the de
facto COCO challenge by a substantial margin.

Despite the notable progress of DETR-based detectors,
there are still significant limitations that need to be ad-
dressed. Figure 1 shows that DETR-based methods severely
struggle when applied outside of the conventional COCO
benchmarks. This can be attributed to the limited number
of training samples and diverse styles encountered in more
task-specific domains, resulting in a drop in performance
even below their CNN-based predecessors. In particular,
we find that on e.g., Cityscapes [12] and Brain tumor [17]
benchmarks, the performance of DN-DETR [24] is substan-
tially poorer than Faster R-CNN despite its superior perfor-
mance on COCO. Moreover, the prediction of highly accu-
rate bounding boxes remains challenging. In Figure 2, given

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 2. Detection results comparison between DN-DETR [24]
and our Cascade-DN-DETR, DAB-DETR [29] and our Cascade-
DAB-DETR on COCO [27] (Left) and UVO [43] (Right), using
IoU thresholds ranging from loose to strict. All comparisons are
with the same training setting and schedule.
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stricter IoU thresholds, existing DETR-based methods still
have substantial room for improvement.

We partially attribute these two problems, namely, poor
generalization to other datasets and limited bounding box
accuracy, to a lack of a local object-centric prior. Following
the general philosophy of transformers [15], DETR-based
methods replace convolutions with global cross-attention
layers in the detection head, thus removing the object-
centric inductive bias. We argue that without such bias
makes it difficult to accurately identify local object regions,
thus limiting the bounding box accuracy. Additionally, the
reliance on a purely data-driven approach to learn such
bias places a heavy reliance on large annotated datasets,
which are often unavailable in diverse real-world applica-
tions. Many detection tasks have distinct image domains,
such as medical imaging or document analysis (as shown in
Figure 1), which differ significantly from those in COCO or
ImageNet, making pretraining on large annotated datasets
even less effective.

The other attributing factor is the scoring of bounding
box predictions which further exacerbates the high accuracy
of DETR-based detectors. The query scoring in DETR de-
coder is purely based on the final classification confidence.
However, these scores are largely oblivious of the quality
of the predicted bounding box. Instead, we argue that cor-
rectly classified box proposals that better overlaps with the
ground-truth should be assigned higher scores.

To address these two issues, this paper presents Cascade-
DETR to promote high-quality universal detection perfor-
mance for DETR-based models. To tackle the lack of lo-
cal object-centric prior, we introduce cascade attention in
the DETR decoder, which constrains the spatial cross atten-
tion layers to only inside the previously predicted bound-
ing box of each query. Since DETR decoder has multiple
decoder layers, the cascade structure iteratively refines the
cross-attention region for each query, using a more accurate
box prediction after every layer. To improve the scoring of
box predictions, we propose an IoU-aware Query Recali-

Table 1. Datasets components in UDB10 benchmark for evalu-
ating high-quality universal object detection. The UniAP met-
ric computes the mean of AP for each individual dataset compo-
nent. Training is done individually on each dataset. All compar-
ing methods use ResNet50 as backbone. Our Cascade-DN-DETR
is built on DN-DETR [24]. FR-CNN: Faster R-CNN; Paintings:
People in paintings dataset [33]; Document: Document parts [31].

Domain # Images FR-CNN [35] DN-DETR [24] Ours
COCO [27] Natural 118k 37.9 43.4 45.5↑2.1
UVO [43] Open World 15k 24.7 22.3 28.4↑6.1
Cityscapes [12] Traffic 3k 30.1 19.0 29.0↑10.0
BDD100K [48] Traffic 70k 31.0 28.2 30.2↑2.0
Brain tumor [17] Medical 7k 43.5 38.9 46.5↑7.6
Document [31] Office 1k 48.0 44.7 50.9↑6.2
Smoke [32] Natural 0.5k 67.1 66.5 71.8↑5.3
EgoHands [1] Egoview 11k 74.9 74.4 77.6↑3.2
PlantDoc [37] Natural 2k 38.9 45.0 49.1↑4.1
Paintings [33] Art 0.6k 17.0 2.2 13.4↑11.2
UniAP 41.3 38.5 44.2↑5.7

bration, by adding an IoU prediction branch to re-calibrate
query scores. In parallel to the query classification and re-
gression branches, the IoU prediction branch computes the
box proposal IoU to the corresponding GT object. This en-
ables each matched learnable query to be aware of its qual-
ity more accurately. During inference, we recalibrate the
classification scores by the predicted localization scores as
the final ones to rank proposals.

We further compose a new detection benchmark UDB10
and corresponding evaluation metric UniAP to support
high-quality universal detection. We hope to facilitate the
detection community not only focusing detection results on
COCO but also in more wide real-life applications. As in
Table 1, UDB10 consists of 10 datasets from various real-
life domains. We compare the UniAP among Faster R-
CNN [35], DN-DETR [24] and Cascade-DN-DETR, where
our approach achieves the best 44.2 UniAP. With negligible
model parameters increase, our method significantly pro-
motes the detection quality of DETR-based models for 5.7
UniAP, especially on the domain-specific datasets. This is
also validated by our large performance gain in Figure 2.
On the large-scale COCO benchmark, Cascade-DN-DETR
achieves significant 2.1 and 2.4 AP improvement over DN-
DETR using R50 and R101 backbone respectively.

2. Related Work
DETR-based Object Detection Modern object detectors
can be mainly divided into the classical CNN-based and
more recent DETR-based models [9, 50, 26, 4, 42]. The
convolutional detectors includes one-stage detectors [34,
41] and two/multi-stage models [35, 18, 2, 6]. For DETR-
based models [5, 55, 30, 14, 36], recent works such as [29,
24, 52] outperform CNN-based detectors by a significant
margin on COCO.

For improving the transformer decoder, Dynamic
DETR [13] designs dynamic encoder for focusing on more
important features on multi-scale feature maps while [39]
even replaces the decoder with FCOS/RCNN networks. To
enhance decoder queries, Efficient DETR [47] adopts the
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top-K locations from encoder’s dense prediction prior. An-
chor DETR [46] represents object queries based on anchor
points, while DAB-DETR [29] adopts 4D anchor box coor-
dinates. DN-DETR [24] further speeds up the DETR con-
vergence by an additional denoising branch. Based on DN-
DETR and DAB-DETR, DINO [52] includes contrastive
denoising training and mixed query selection for anchor ini-
tialization.

In contrast to existing DETR-based methods [16, 39, 28],
Cascade-DETR is targeted for high-quality object detection.
The proposed cascade attention and IoU-aware query recal-
ibration significantly improve AP performance under strict
IoU thresholds. Besides only experimenting on COCO, we
show the effectiveness of our approach on the constructed
UDB10 benchmark, which contains a wide range of task-
specific applications.
Cross-attention in DETR-based Decoder In addition to
standard cross-attention [5] applied on global image fea-
tures, Deformable DETR [55] proposes deformable atten-
tion. A set of 2D image locations are predicted, which are
then used for attention. Mask2Former [10] proposes mask
attention, only indented for segmentation. Different from
these methods, our cascade attention utilizes the iteratively
updated boxes to constrain the cross-attention on the image,
and does not introduce any extra model parameters. We
reveal our advantages to deformable attention and mask at-
tention in the experiment section.
High-quality Object Detection Different from high-
quality segmentation networks [23, 10, 21, 22] based
on transformers, existing works [40, 2, 3, 6] on high-
quality object detection are mainly R-CNN based. Spe-
cially, Cascade R-CNN [2] introduces multi-stage detec-
tors trained with increasing IoU thresholds, while Dynamic
R-CNN [51] designs dynamic labels and a regression loss.
Wang et al. [19] improves R-CNN based segmentation via
mask scoring. For localization quality estimation (LQE),
previous works [41, 20, 54, 8, 25] mainly study it in FCOS
or R-CNN based detectors. To our knowledge, we are the
first DETR-based method to tackle the problem of predict-
ing highly accurate boxes.
DETR-based Universal Object Detection Existing
DETR-based methods [24, 52] mostly train and eval-
uate their performance on COCO. However, detectors
should generalize well to wide and practical scenarios,
such as medical imaging and document analysis. Typ-
ically these datasets contain around 1K to 20K images,
where some contain images with very different styles than
COCO/ImageNet. Different from previous detection work
on adaptation learning [45, 7], few-shot setting [49] or
mixed training [53], we focus on the fully supervised train-
ing setting per dataset to evaluate the detector performance
in various application scenarios. To facilitate the research
on universal object detection using DETR-based detectors,

we construct a large-scale UDB10 benchmark containing
228k images, which doubles the size of UODB [45] for
domain adaptation and has significantly more images per
dataset component than [11]. We show that Cascade-
DETR with injected local object-centric prior brings large
performance gains to existing DETR-based models across
wide and challenging domains, making DETR-based mod-
els more universally applicable.

3. Cascade-DETR
We propose Cascade-DETR for high-quality and univer-

sal object detection. We first review the design of the con-
ventional DETR decoder in Section 3.1. Then we intro-
duce our detection transformer Cascade-DETR in Figure 3.
It is an iterative approach consisting of two novel compo-
nents: 1) Cascade attention, which constrains the cross-
attention range in each decoder layer within the box region
predicted from the preceding layer (Section 3.3); 2) Query-
recalibration, which recalibrates the learnable queries with
the IoU prediction to enable more accurate query scoring
(Section 3.4). Finally, we describe the training and infer-
ence details of our Cascade-DETR in Section 3.5.

3.1. Preliminaries: The DETR Decoder

We briefly review the design of the standard DETR de-
coder, which consists of a set of cross- and self-attention
layers that iteratively updates a set of queries, initialized
as learnable constants. At the i-th layer, the queries Qi ∈
RN×D are first input to a self-attention block, followed
by cross-attention with the encoded image features of size
H × W × D. The cross-attention is computed as the
weighted sum over the global feature map,

Qi+1 =

H×W∑
j=1

exp(fq(Qi) · Kj
i )V

j
i∑

k exp(fq(Qi) · Kk
i )

+ Qi , (1)

where K and V respectively denote key and value maps ex-
tracted from the image features. The index i denotes the
cross-attention layer, j is the 2D spatial location on the im-
age, and fq denotes the query transformation function.

The updated queries Qi+1 are then used to predict
bounding boxes B(i+1) and query scores S(i+1) by feed-
ing them into two parallel linear layers fbox and fscore
respectively, i.e., B(i+1) = fbox(Q(i+1)) and S(i+1) =
fcls(Q(i+1)). The query score matrix S(i+1) of size N ×
(C+1) contains the class probabilities for all input queries,
where C is the number of classes of the dataset. This de-
coder design is generally used in [5, 29, 30, 24].

3.2. Cascade-DETR Architecture

In this section, we describe the architecture of Cascade-
DETR, which injects local object-centric bias into the con-
ventional transformer decoder in Section 3.1. Similar to
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Figure 3. The transformer decoder of our Cascade DETR. We feed
in the encoded image features from the transformer encoder along
with learnable queries. The box-constrained cross-attention re-
gions (inside the yellow predicted boxes) are iteratively refined
per decoder layer, which, in turn, further promotes detection ac-
curacy. The score recalibration is used in the last transformer de-
coder layer during inference. The red box denotes the ground truth
object box. We omit the transformer encoder and positional em-
bedding for clarity.

existing DETR-based methods, such as DAB-DETR [29]
and DN-DETR [24], our architecture contains a trans-
former encoder for extracting image features. The en-
coded features combined with the positional encoding are
fed to the transformer decoder. The learnable queries
are also fed into the decoder to localize and classify ob-
jects through cross-attention. The two new modules in
our Cascade-DETR are cascade attention and IoU-aware
query re-calibration, which only bring negligible computa-
tion overhead or model parameters while significantly im-
proving the detection quality and generalizability.

3.3. Cascade Attention

In the standard DETR decoder, learnable queries attend
globally over the entire image features, as in Eq. 1. How-
ever, to accurately classify and localize the object, we ar-
gue that local information around each object is most cru-
cial. The global context can be extracted via self-attention
between queries. In Figure 4, we observe that the cross-
attention distribution during COCO training tends to con-
verge to the surrounding regions of the predicted object
locations. While the transformer model can learn this in-
ductive bias end-to-end, it requires large amounts of data.

DN-DETR Cascade-DN-DETR DN-DETR Cascade-DN-DETR

COCO Cityscapes

Init

Final

Mid

Training 
Stage

Figure 4. Visual comparison of cross-attention map between DN-
DETR [24] and our Cascade-DN-DETR on COCO and Cityscapes
datasets. At different network training stages, we visualize the
cross-attention map of the last transformer decoder layer, where
the learnable query corresponds to the object inside the red box.

This problem becomes more pronounced for small or task-
specific datasets with image styles radically different from
those exhibited in ImageNet.

To address the above issue, we treat the object-centric
prior as a known constraint to incorporate into both the ini-
tialization and training procedures, as depicted in Figure 3.
We design the cascade attention in layer i+ 1 as,

Qi+1 =
∑
j∈Si

exp(fq(Qi) · Kj
i )V

j
i∑

k∈Si
exp(fq(Qi) · Kk

i )
+ Qi , (2)

Si = M(Bi) = M(fbox(Qi)) , (3)

where Si is the set of 2D locations inside the predicted
bounding box Bi from the preceding decoder layer i. The
cascade structure utilizes the property that the predicted Bi

will be more accurate after every decoder layer in DETR-
based detectors [5]. Thus, the box-constrained cross-
attention region Si not only brings object-centric bias, but
will also be iteratively refined (see Figure 3). With more ac-
curately cross-attended features per layer, cascade attention
in turn promotes the detection accuracy per layer.

We validate our assumption by visualizing the attention
map in Figure 4. The initial and final attention maps of a
baseline DN-DETR model are shown both in COCO and
Cityscapes. On COCO, we observe both the cross-attention
of a randomly initialized query eventually converges on se-
mantically distinct locations using DN-DETR or Cascade-
DN-DETR. However, on Cityscapes, there is an obvious
contrast between the two methods, where the integration of
object-centric knowledge is more important to focus the at-
tention on the most relevant parts of the image.

Unlike previous approaches such as DAB-DETR [29]
and Deformable DETR [55], which utilize soft constraints,
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the design of our Cascade-DETR is much simpler. The pre-
diction boxes in each layer of the DETR decoder is directly
used as constraints to limit the cross-attention range in the
following layer. This inductive bias enables DETR to con-
verge quickly and achieve superior performance, especially
for small and diverse datasets.

3.4. IoU-aware Query Recalibration

Most DETR-based detectors take 300 [24, 29] or even
900 [52] learnable queries as input to the transformer de-
coder and predict one box per query. When computing final
detection results, classification confidence is adopted as a
surrogate to rank all query proposals. However, the classi-
fication score does not explicitly account for the accuracy
of the predicted bounding box, which is crucial for select-
ing high-quality proposals. We therefore introduce an IoU-
aware scoring of the predicted queries in order to achieve
more well-calibrated confidence, which better reflects the
quality of the predictions.

Instead of scoring queries by classification confidence,
we score them by the expected IoU with the ground-truth
box. Let E(IoUq) be the expected ground-truth IoU of
query q. Further, let P (objq) denotes the probability of
q indicating an object, as obtained from the classification
probability. The expected IoU of a query is computed as

E(IoUq)

= E(IoUq | objq)P (objq) + E(IoUq | ¬objq)P (¬objq)

= E(IoUq | objq)P (objq) (4)

Here, ¬ denotes the negation of the binary random variable.
The second equality follows from that the expected IoU for
a prediction that is not an object is zero: E(IoUq | ¬objq) =
0.

To predict the expected IoU (4), we introduce an addi-
tional branch that predicts the expected IoU for a present
ground-truth object E(IoUq | objq), as illustrated in Fig-
ure 3. Specifically, we simply use another linear layer in
parallel to the classification and box regression branches.
As derived in Eq.(4), the final query score is then obtained
as the product between the predicted IoU and the original
classification confidence P (objq).

We supervise the IoU prediction with an L2 loss to the
ground-truth IoU, denoted IoUGT

q ,

LIoU =
∥∥E(IoUq | objq)− IoUGT

q

∥∥2 . (5)

The loss is only applied for queries q with an assigned
ground-truth, as we condition on the presence of the object
in the expectation. Note that the L2 loss implies learning
the mean, i.e. expectation, of a Gaussian distribution over
the IoU values. We ablate this choice of loss in Table 5 of
the experiment section.

Figure 5. Sparsification plot between query localization quality
(IoU to GT boxes) and query ranking (scoring). For 5k COCO
validation images with 50 outputs for each image, we sort all the
outputs by their confidence scores. We then compute the IoU with
ground truth for each prediction and show a cumulative average
of IoU. Oracle: Cumulative average of IoU sorted by IoU itself.
Compared to the blue curve before recalibration, ours re-calibrated
orange curve is closer to the Oracle and has a much higher local-
ization quality.

To analyze the advantage of our IoU-aware query re-
calibration, we generate sparsification plots over all pre-
dictions on COCO in Figure 5. All predictions are sorted
with respect to the confidence score. The average IoU with
ground-truth is then plotted for the N predictions with the
highest confidence score, by varying N across the x-axis.
The Oracle represents the upper bound, obtained by taking
the top N predictions in terms of ground-truth IoU. Com-
pared to Cascade-DN-DETR without query recalibration
(blue curve), our recalibrated result (orange curve) achieves
a substantially better ranking of the results, leading to a
higher IoU.

3.5. Training and Inference

Our Cascade-DETR is trained in an end-to-end manner
using a multi-task loss function,

LDetect = LBox + λ1LClass + λ2LIoU, (6)

where LDetect supervises both the position prediction and the
category classification borrowed from the DETR [5] detec-
tor. The hyper-parameters λ1 and λ2 balances the loss func-
tions, and set to {1.0, 2.0} respectively on the validation
set. Following [24, 29], FFNs and the Hungarian loss are
adopted after each decoder layer. FFNs share their model
parameters in each prediction layer.

During inference, our cascade attention is consistently
used as it only relies on the predicted boxes in each trans-
former decoder layer. For the query scoring calibration
manner, as described in 4, we only apply it on the final
transformer decoder layer.
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4. Experiments

4.1. Experimental Setup

COCO We perform evaluation on the challenging MS
COCO 2017 object detection benchmark [27]. Models are
trained with 118k training images in train2017 split and
evaluated on the 5k validation images in val2017. We re-
port the standard average precision (AP) result under differ-
ent IoU thresholds.
UVO and Cityscapes To generalize on universal object
detection, we also conduct experiments on two challeng-
ing datasets, UVO [43] and Cityscapes [12]. UVO is an
exhaustively labeled open-world dataset with 15k training
images and 7k validation images. Cityscapes is an urban
street scene dataset which contains 3k training images and
500 validation images. We perform results comparison fol-
lowing the standard training and model evaluation setting
on the two benchmarks.
UDB10 Benchmark There is a wide variety of detec-
tion applications in real-life scenarios. To facilitate the re-
search on universal detection, we construct a large-scale
UDB10 benchmark which is composed of 10 different
datasets across wide domains. Besides the aforementioned
COCO [27], Cityscapes [12] and UVO [43], the other 7
task-specific datasets includes BDD100K [48], Brain Tu-
mor [17], Document Parts [31], Smoke [32], EgoHands [1],
PlantDoc [37] and People in paintings [33]. UDB10 con-
tains 228k images, which covers a great variety of domains
such as medical, traffic, nature, office, art, ego-view, etc.
We follow the official training/evaluation settings on each
dataset component. Along with the UDB10 benchmark, we
design UniAP metric to evaluate the detection performance
among detectors. After detectors are trained individually on
each dataset component, UniAP is computed as the mean
over the AP scores across all datasets.

In Table 2, we compare UDB10 with two other existing
universal detection benchmarks UODB [45] and Roboflow
100 [11], where we find UDB10 has significantly more im-
ages and annotated instances per dataset component. We es-
tablish UDB10 aims to evaluate the detection performance
of data-sensitive DETR-based methods in diverse domains.
Implementation Details In our experiments, we use
two different backbones: ResNet-50 and ResNet-101 pre-
trained on ImageNet-1k, and train our model with an initial
learning rate 1×10−5 for backbone and 1×10−4 for trans-
former. We use the AdamW optimizer with weight decay
1 × 10−4. We train on 8 Nvidia GeForce RTX 3090 GPUs
with total batch size of 8, and adopt two training sched-
ules. For small datasets (less than 10k images), we train
DETR-based methods for 50 epochs with a learning rate
decay after 40 epochs. For large datasets (greater than or
equal to 10k images), we adopt DETR-based methods for
12 epochs with a learning rate decay after 10 epochs. The

Table 2. Comparison between the universal detection benchmarks.
# Images / set denotes the average number of training images per
dataset component, while # Instances / set is the average number
of annotated boxes per dataset component.

Benchmarks # Images # Images / set # Instances / set
UODB [45] 113k 10.2k 69k
Roboflow 100 [11] 224k 2.2k 25k
UDB10 (Ours) 228k 22.8k 239k

original DETR uses 100 queries, while in all other exper-
iments we use 300 queries except DINO [52], where 900
queries are used to be consistent with their paper. For multi-
scale features, we use DN-Deformable-DETR [55] with a
deformable encoder. For the first layer cascade attention in-
put box, we use the initial learnable anchor box proposed in
DAB-DETR [29]. For Faster-RCNN, we use 1X schedule
for large datasets and 3X schedule for small datasets. For
mask attention ablation on COCO, we train an extra mask
head with ground truth mask annotations and do not use
query recalibration. More details are in the Supp. file.

4.2. Ablation Study

We conduct detailed ablation studies for Cascade-DETR
using ResNet-50 as backbone on the Cityscapes [12] and
UVO [43] datasets. We analyze the impact of each proposed
component of our Cascade-DETR.
Ablation on Cascade Attention (CA) In Table 3, we study
the effect of Cascade Attention (CA). Built on the baseline
DN-DETR, CA significantly promotes the performance for
3.7 AP on UVO and 9.9 AP on Cityscapes. In Table 4,
we further compare our cascade attention in the transformer
decoder to the mask attention [10]. We perform compar-
isons on both UVO and COCO as both these two datasets
in UDB10 have corresponding GT mask labels per box. We
design the mask attention by an additional mask prediction
branch, which is supervised by the GT mask labels. This
can be regarded as an oracle analysis as many object detec-
tion benchmarks have no annotated GT mask labels. Our
cascade attention achieves similar results to mask attention
by improving 0.6 AP on COCO but decreasing 0.6 AP on
UVO. This indicates that accurate object mask shape is not
necessary for object detection.
Ablation on Query Recalibration (QR) In Table 3, we
also validate the effect of Query Recalibration (QR), which
promotes 3.6 AP on UVO and 4.1 AP on Cityscapes.
Specifically, on UVO, QR improves 4.9 AP75 which is
much larger than gain of 3.0 AP50. We further perform de-
tailed ablation experiments on the query recalibration loss
types (Table 5), recalibration methods (Table 6) and recal-
ibration training strategies (Table 7). In Table 5, the per-
formance boost is similar using L2 or L1 loss while outper-
forming Huber Loss with 0.6 AP.

As derived in Eq. 4, our expected IoU is computed as a
product between the classification confidence and IoU pre-
diction. Table 6 compares this fusion with other strategies
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Table 3. Ablation study on the Cascade Attention (CA) and Query
Recalibration (QR). We use ResNet-50 based DN-DETR [24] with
deformable encoder as our baseline.

UVO Cityscapes
Model CA QR AP AP50 AP75 AR AP AP50 AP75

DN-DETR [24] 22.3 41.5 21.2 51.4 19.0 39.3 15.7
✓ 26.0↑3.7 43.0 25.6 57.8 28.9↑9.9 52.1 27.0

✓ 25.9↑3.6 44.5 26.1 53.9 23.1↑4.1 44.1 20.7
Ours ✓ ✓ 28.4↑6.1 44.9 28.7 58.2 29.0↑10.0 49.5 28.4

Table 4. Detection performance comparison between cascade and
mask cross-attention schemes in the transformer decoder on UVO
and COCO. Both two cross-attention schemes are taking DN-
Deformable-DETR as baseline. Oracle: We add an extra mask
head with GT mask supervision, and use predicted outputs as at-
tention mask in the transformer decoder.

Cross-attention Type UVO COCO
AP AP50 AP75 AR AP AP50 AP75

Mask Attention (Oracle) 29.0 46.4 29.5 56.8 44.2 61.1 47.8
Cascade Attention (Ours) 28.4↓0.6 44.9 28.7 58.2 44.8↑0.6 62.7 48.4

Table 5. Ablation study on the query recalibration loss on the UVO
dataset. Baseline: DN-Deformable-DETR.

Loss type AP AP50 AP75 AR
Baseline 22.3 41.5 21.2 51.4
Huber Loss 25.3↑3.0 43.8 25.4 53.6
L1 Loss 25.9↑3.6 44.6 26.3 53.9
L2 Loss 25.9↑3.6 44.5 26.1 53.9

for computing the final query score. Our principled ap-
proach achieves the best performance of 25.9 AP. It out-
performs the baseline classification-only by 3.6 AP and the
sum fusion by a large margin of 2.4 AP. We also compare
with directly predicting a single confidence score, super-
vised both by the baseline classification loss and our IoU
loss (second row). While achieving a significant gain of 2.5
AP over the baseline, it does not reach the performance of
our derived expected IoU based fusion.

Since the expected IoU scores in Eq. 5 are conditioned
on the presence of the object, we only add this loss on pre-
dictions which are matched with ground-truth boxes. We
ablate this choice in Table 7 by adding the loss to all predic-
tions. The latter results in a performance only marginally
above the baseline without IoU-awareness. Again, this
demonstrates the advantage of our principled IoU-based
query scoring.

4.3. Comparison with State-of-the-art

We compare Cascade-DETR with the state-of-the-art ob-
ject detection methods on COCO, UVO, Cityscapes and
our constructed UDB10 benchmark. We integrate Cascade-
DETR on three representative methods [24, 29, 52], and find
that Cascade-DETR attains consistent large gains over the
strong baselines.
COCO Table 8 compares Cascade-DETR with state-
of-the-art object detection methods on COCO bench-
mark. By integrating with SOTA DETR-based detectors,
Cascade-DETR achieves consistent improvement on differ-

Table 6. Comparison of various score recalibration methods be-
tween classification (cls) score and predicted IoUs on UVO dataset
during testing. Baseline: DN-Deformable-DETR trained without
query recalibration.

Scoring Manner AP AP50 AP75 AR
Baseline 22.3 41.5 21.2 51.4
Single score (cls. & IoU superv.) 24.8↑2.5 44.3 24.4 53.7
Sum Fusion (cls. prob + IoU) 23.5↑1.2 38.5 24.4 51.4
Expected IoU (cls. prob × IoU) 25.9↑3.6 44.5 26.1 53.9

Table 7. Ablation study on the training strategies for query re-
calibration on UVO. Baseline: Default DN-Deformable-DETR
training manner. All: Input all queries for query recalibration loss
computation. Positive: Only input Hungarian matched outputs
for loss computation. We assign GT IoU scores to the unmatched
queries by greedy matching to the GT boxes.

Training strategies AP AP50 AP75 AR
Baseline 22.3 41.5 21.2 51.4
All 22.5 38.7 22.6 49.4
Positive 25.9 44.5 26.1 53.9

ent backbones with negligible increase in model parame-
ters, demonstrating its effectiveness by outperforming DN-
Def-DETR [24] by 2.1 AP and 2.4 AP respectively on
R50 and R101 backbone. Cascade-DETR consistently at-
tains larger increase in the strict AP75 than the loose AP50,
which reveals our advantages in predicted box quality. Us-
ing R50 as backbone, we also compare Cascade-DINO to
DINO [52] by replacing its deformable attention [55] in the
transformer decoder with our cascade attention. Cascade-
DINO outperforms DINO by 1.0 AP75 with a much simpler
attention design, removing the necessity for predicting 2D
anchor points and sampling offsets.
UVO and Cityscapes Table 9 tabulates the results on UVO
benchmark, and Table 10 tabulates the results on Cityscapes
benchmark. Cascade-DETR achieves the best 28.4 AP
on UVO, where our approach significantly surpasses the
strong baselines DN-DETR [24] and DAB-DETR [29], re-
spectively with a large margin of 8.7 and 7.5 points in
AP75. The significant increase in AP75 is also consistent
on Cityscapes. Comparing to our baseline DN-DETR, in
Table 10, Cascade-DN-DETR substantially improves the
AP75 from 15.7 to 28.4.
UDB10 Benchmark Table 11 shows the detailed results
comparison between Faster R-CNN [35], DN-DETR [24]
and our Cascade-DN-DETR on the constructed UDB10
benchmark. We compute UniAP as the mean of AP scores
for each individual dataset component, where Cascade-DN-
DETR obtains the highest 44.2 AP by improving the base-
line performance for 5.7 AP and outperforms Faster R-CNN
by 2.9 AP under the same R-50 backbone. The significant
advancements reveal the generalizability of our approaches,
without requiring any domain adaptation designs.

For the six task-specific and small-scale datasets in

6710



Figure 6. Detection results comparison between DN-DETR [24] (Baseline) and Cascade-DN-DETR (Ours) per training epoch on UVO [43],
Cityscapes [12], Brain tumor [17], and Documentparts [31] datasets. These datasets cover four various detection application domains.
Cascade-DN-DETR achieves stable performance growth during training, and consistently outperforms the strong baseline DN-DETR [24]
with a significant margin. Note that DN-DETR has already been significantly sped up during training by its denoising branch.

Table 8. Comparison with SOTA methods on COCO val2017. All
comparing methods are trained for 12 epochs. Asterisked mod-
els (*) were trained by ourselves. Def: deformable. We imple-
ment DAB-Deformable-DETR by removing the dn part in DN-
Deformable-DETR.
Model Base AP AP50 AP75 APS APM APL Params

Faster-RCNN [35] R50 37.9 58.8 41.1 22.4 41.1 49.1 40M
Cascade-RCNN [2] R50 40.4 58.9 44.1 22.8 43.7 54.0 69M
DETR [5] R50 15.5 29.4 14.5 4.3 15.1 26.7 41M
Def DETR [55] R50 37.2 55.5 40.5 21.1 40.7 50.5 40M
CondDETR [30] R50 32.0 51.8 33.5 14.1 34.7 47.9 43M
DAB-DETR(DC5) [29] R50 38.0 60.3 39.8 19.2 40.9 55.4 44M
DE-CondDETR [44] R50 35.6 55.2 37.8 20.6 38.5 48.3 44M

DN-Def-DETR [24] R50 43.4 61.9 47.2 24.8 46.8 59.4 48M
Cascade-DN-Def-DETR R50 45.5↑2.1 62.2↑0.3 49.4↑2.2 27.3 50.0 62.4 48M

DINO* [52] R50 48.8 66.2 53.1 31.1 52.0 63.0 47M
Cascade-DINO R50 49.7↑0.9 67.1↑0.9 54.1↑1.0 32.4 53.5 65.1 48M

DAB-Def-DETR* [29] R101 37.1 55.6 40.0 19.3 41.2 51.6 67M
Cascade-DAB-Def-DETR R101 42.7↑5.6 60.0↑4.4 46.3↑6.3 24.5 47.7 58.4 67M

DN-Def-DETR [24] R101 44.1 62.8 47.9 26.0 47.8 61.3 67M
Cascade-DN-Def-DETR R101 46.5↑2.4 63.7↑0.9 50.4↑2.5 27.5 50.6 63.8 67M

UDB10, we further compare model finetuning results by
taking their corresponding COCO pretrained model as ini-
tialization. We find that the result of Faster R-CNN with
COCO pretraining only has a slight increase in most dataset
components. However, the COCO finetuning is much
more crucial for DETR-based approaches. For example,
with COCO initialization, the AP75 of DN-Def-DETR on
Paintings [33] improves drastically from 1.2 to 19.9, while
Cascade-DN-Def-DETR boosts from 9.0 to 21.5. However,
Cascade-DN-Def-DETR still consistently outperforms the
strong baseline DN-Def-DETR on all dataset components.
Convergence Speed Comparison In Figure 6, we provide
the convergence speed comparison on four task-specific
benchmarks UVO [43], Cityscapes [12], Brain tumor [17]
and Documentparts [31]. Note that DN-DETR has already
been significantly sped up by its denoising branch during
training. Our Cascade-DN-DETR outperforms the strong
baseline DN-DETR across all datasets by a significant mar-
gin at various training stages, and converges much faster.

4.4. More Results Comparison on UDB10

In Table 13, we provide comprehensive and detailed
experiment results comparison on all 10 dataset compo-

Table 9. State-of-the-art results comparison on UVO [43]. All
comparing methods are trained for 12 epochs. Both Cascade-
DN-Def-DETR and Cascade-DAB-Def-DETR significantly sur-
pass their strong baselines for over 7.0 AP75.

Model Base AP AP50 AP75 APS APM APL AR
Faster-RCNN [35] R50 24.7 48.4 22.1 11.1 21.0 32.9 43.6
Def DETR [55] R50 17.7 34.9 16.3 6.7 15.8 25.3 51.4
DE-CondDETR [44] R50 17.4 32.1 16.4 7.5 14.0 25.6 52.5
DAB-Def-DETR [29] R101 20.0 38.8 18.9 7.4 17.0 28.2 50.4
Cascade-DAB-Def-DETR R101 27.3↑7.3 44.1↑5.3 27.6↑8.7 11.0 23.1 37.7 58.0
DN-Def-ETR [24] R50 22.3 41.5 21.2 7.1 16.9 33.1 51.4
Cascade-DN-Def-DETR R50 28.4↑6.1 44.9↑3.4 28.7↑7.5 10.7 22.5 40.7 58.2

Table 10. State-of-the-art results comparison on Cityscapes [12].
Both Cascade-DN-Def-DETR and Cascade-DAB-Def-DETR
achieve over 10.0 AP75 performance gain over their counterparts.

Model Base Epoch AP AP50 AP75 APS APM APL

Faster-RCNN [35] R50 36 30.1 53.2 30.3 8.5 31.2 51.0
DETR [5] R50 300 11.5 26.7 8.6 2.5 9.5 25.1
Def DETR [55] R50 50 27.3 49.2 26.3 8.7 28.2 45.7
CondDETR [30] R50 50 12.1 28.0 9.1 2.2 9.8 27.0
DE-CondDETR [44] R50 50 26.8 47.8 25.4 6.8 25.6 46.6
DAB-Def-DETR [29] R101 50 17.3 34.5 15.0 4.1 17.9 32.3
Cascade-DAB-Def-DETR R101 50 25.4↑8.1 43.9↑9.4 25.0↑10.0 6.7 25.8 46.4
DN-Def-DETR [24] R50 50 19.0 39.3 15.7 4.9 19.8 35.5
Cascade-DN-Def-DETR R50 50 29.0↑10.0 49.5↑10.2 28.4↑12.7 9.1 28.4 51.5

Table 11. Detailed results comparison on the proposed UDB10
benchmark using R50 backbone. All methods are initialized from
ImageNet pretrained model. We take DN-Def-FETR as the strong
baseline to build our Cascade-DN-Def-FETR.

Faster RCNN [35] DN-Def-DETR [24] Cascade-DN-Def-DETR
Dataset AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

COCO [27] 37.9 58.8 41.1 43.4 61.9 47.2 45.5↑2.1 62.2↑0.3 49.4↑2.2
UVO [43] 24.7 48.4 22.1 22.3 41.5 21.2 28.4↑6.1 44.9↑3.4 28.7↑7.5
Cityscapes [12] 30.1 53.2 30.3 19.0 39.3 15.7 29.0↑10.0 49.5↑10.2 28.4↑12.7
BDD100K [48] 31.0 55.9 29.4 28.2 53.9 24.8 30.2↑2.0 55.0↑1.1 27.9↑3.1
Brain tumor [17] 43.5 75.1 45.0 38.9 71.6 38.6 46.5↑7.6 75.6↑4.0 49.4↑10.8
Document [31] 48.0 66.2 55.6 44.7 64.1 50.3 50.9↑16.2 66.6↑2.5 58.4↑8.1
Smoke [32] 67.1 92.9 80.6 66.5 91.6 77.8 71.8↑5.3 91.9↑0.3 82.9↑5.1
EgoHands [32] 74.9 96.9 90.4 74.4 97.4 89.2 77.6↑3.3 98.3↑0.9 91.5↑2.3
PlantDoc [37] 38.9 60.8 44.9 45.0 61.7 53.7 49.1↑4.1 63.9↑2.2 56.5↑2.8
Paintings [33] 17.0 50.1 6.3 2.2 5.8 1.2 13.4↑11.2 33.1↑27.3 9.0↑7.8
UniAP 41.3 38.5 44.2↑5.7

Table 12. Finetuning results for the six small-scale task-specific
datasets in our UDB10 benchmark using R50 backbone. All fine-
tuned methods are from their COCO pretrained model.

Faster RCNN [35] DN-Def-DETR [24] Cascade-DN-Def-DETR
Dataset AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Brain tumor [17] 44.2 74.1 46.3 48.0 78.1 51.7 51.5↑3.5 79.6 56.0
Document [31] 49.7 67.7 58.0 51.6 67.7 60.8 52.7↑1.1 68.0 61.1
Smoke [32] 68.3 90.3 82.4 72.9 94.9 86.0 74.3↑1.4 93.7 86.8
EgoHands [1] 75.8 96.9 90.0 77.4 98.7 92.1 79.4↑2.0 97.9 93.4
PlantDoc [37] 37.5 57.3 39.9 50.2 62.9 57.3 52.7↑2.5 66.5 61.1
Paintings [33] 24.1 59.5 15.4 28.6 66.3 19.9 29.4↑0.8 66.0 21.5
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Table 13. Quantative Results Comparison on the constructed UDB10 benchmark using R50 backbone. All methods are initialized from
ImageNet pretrained model. We take DN-Def-DETR [24] as the baseline to build our Cascade-DN-Def-DETR. We also take DINO [52] as
a stronger baseline, replacing the deformable transformer decoder with our cascade transformer decoder and building our Cascade-DINO.
The UniAP metric computes the mean of AP for each individual dataset component.

Faster RCNN [35] DN-Def-DETR [24] Cascade-DN-Def-DETR Cascade RCNN [2] DINO [52] Cascade-DINO
Dataset AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

COCO [27] 37.9 58.8 41.1 43.4 61.9 47.2 45.5↑2.1 62.2 49.4 40.4 58.9 44.1 48.8 66.2 53.1 49.7↑0.9 67.1 54.1
UVO [43] 24.7 48.4 22.1 22.3 41.5 21.2 28.4↑6.1 44.9 28.7 26.2 46.7 25.2 30.2 46.9 30.5 32.7↑2.5 50.2 33.4
Cityscapes [12] 30.1 53.2 30.3 19.0 39.3 15.7 29.0↑10.0 49.5 28.4 31.8 54.4 30.9 34.5 56.6 34.5 34.8↑0.3 57.3 33.7
BDD100K [48] 31.0 55.9 29.4 28.2 53.9 24.8 30.2↑2.0 55.0 27.9 32.4 56.3 31.6 34.4 60.7 32.7 35.6↑1.2 61.8 34.0
Brain tumor [17] 43.5 75.1 45.0 38.9 71.6 38.6 46.5↑7.6 75.6 49.4 46.2 74.2 49.6 46.4 76.8 49.1 48.6↑2.2 77.8 52.2
Document [31] 48.0 66.2 55.6 44.7 64.1 50.3 50.9↑16.2 66.6 58.4 50.3 66.3 58.9 47.7 63.2 55.9 49.6↑1.9 65.8 58.1
Smoke [32] 67.1 92.9 80.6 66.5 91.6 77.8 71.8↑5.3 91.9 82.9 70.4 91.3 83.5 69.4 92.4 80.7 69.7↑0.3 92.6 80.4
EgoHands [32] 74.9 96.9 90.4 74.4 97.4 89.2 77.6↑3.3 98.3 91.5 76.4 96.9 91.5 77.7 97.9 91.8 78.0↑0.3 98.0 91.6
PlantDoc [37] 38.9 60.8 44.9 45.0 61.7 53.7 49.1↑4.1 63.9 56.5 37.5 55.3 43.6 35.1 49.7 39.9 38.3↑3.2 53.8 44.2
Paintings [33] 17.0 50.1 6.3 2.2 5.8 1.2 13.4↑11.2 33.1 9.0 18.0 50.7 8.1 12.0 30.3 6.7 13.4↑1.4 34.3 7.9
UniAP 41.3 38.5 44.2↑5.7 43.0 43.6 45.0↑1.4
UniAP75 44.6 42.0 48.2↑6.2 46.7 47.5 49.0↑1.5
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Figure 7. Predicted boxes and corresponding scores of Cascade-DN-DETR before and after IoU-aware query re-calibration. In the first
row, we visualize both the box prediction by our Cascade-DN-DETR and the corresponding GT boxes (in a dotted line of red color). The
first row shows that for low-quality predicted boxes (with small IoUs to the GT boxes), their confidence scores after re-calibration will
have an obvious decrease to align with the low localization quality. The second row shows that for high-quality box predictions with high
IoUs to GT boxes (not shown here due to overlapping), the re-calibration has a negligible influence on the original classification score.

nents of the constructed UDB10. The compared six meth-
ods include Faster R-CNN [35], Cascade R-CNN [2], DN-
Def-DETR [24], Cascade-DN-Def-DETR (Ours), the most
recent DINO [52] and Cascade-DINO (Ours). Cascade-
DINO achieves the best UniAP 45.0 and UniAP75 49.0
among all comparing methods. It’s worth mentioning that
both Cascade-DINO and Cascade-DN-Def-DETR boost the
performance of their strong baselines on all 10 dataset
components consistently. This shows the generalizability
and effectiveness of our proposed cascade attention and
IoU-aware query re-calibration. Interestingly, we observe
that although DINO obtains over 3.3 AP advantage over
Cascade-DN-Def-DETR on the COCO dataset, its UniAP is
0.6 points lower than our Cascade-DN-Def-DETR (43.6 vs.
44.2). This indicates that the robustness of the most recent
DINO [52] across domains still has improvement space.

4.5. Qualitative Analysis

In Figure 7, we visualize the predicted boxes and cor-
responding confidence scores before and after IoU-aware

query re-calibration. For the low-quality box predictions
with small IoUs to GT, their scores typically have an obvi-
ous decrease of around 0.2. However, for the high-quality
boxes, the re-calibration has minor influences (around 0.02)
on the predicted scores. The recalibration adjusts the box
confidence score to better reveal its localization quality.

5. Conclusion
We present Cascade-DETR, the first DETR-based detec-

tor targeting for high-quality universal detection. To benefit
future research on universal detection, we propose a large-
scale universal object detection benchmark UDB10, which
is composed of 10 sub-datasets from various real-life do-
mains. Injected with local object-centric prior, Cascade-
DETR achieves significant advantages in a wide range of
detection applications, especially in higher IoU thresholds.
We hope the detection community to focus more on real-
life and practical applications when evaluating the detector
performance, not only considering the de facto COCO, es-
pecially for the data-sensitive DETR-based approaches.
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