
FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation Models

Jianglong Ye1 Naiyan Wang2 Xiaolong Wang1

1UC San Diego 2TuSimple

(a)

Input Rendered Feature Map 2D Keypoints Transfer

2D Part Co-segmentation

3D Keypoints Transfer

3D Part Co-segmentation
(b)

Figure 1: While most generalizable NeRFs focus on novel-view synthesis, we propose a framework named FeatureNeRF to
learn 3D semantic representations by distilling vision foundation models. After distillation, FeatureNeRF allows to render
novel-view feature maps given a single input image (a), which can be leveraged to various downstream tasks. Here, we show
how we propagate part segmentation labels and keypoints to different views and instances in both 2D and 3D domains (b).

Abstract

Recent works on generalizable NeRFs have shown
promising results on novel view synthesis from single or
few images. However, such models have rarely been ap-
plied on other downstream tasks beyond synthesis such as
semantic understanding and parsing. In this paper, we pro-
pose a novel framework named FeatureNeRF to learn gen-
eralizable NeRFs by distilling pre-trained vision founda-
tion models (e.g., DINO, Latent Diffusion). FeatureNeRF
leverages 2D pre-trained foundation models to 3D space
via neural rendering, and then extract deep features for
3D query points from NeRF MLPs. Consequently, it al-
lows to map 2D images to continuous 3D semantic fea-
ture volumes, which can be used for various downstream
tasks. We evaluate FeatureNeRF on tasks of 2D/3D se-
mantic keypoint transfer and 2D/3D object part segmenta-
tion. Our extensive experiments demonstrate the effective-
ness of FeatureNeRF as a generalizable 3D semantic fea-
ture extractor. Our project page is available at https:
//jianglongye.com/featurenerf/.

1. Introduction
Neural fields have emerged as a compelling paradigm for

representing a variety of visual signals [8, 10, 31, 32, 37]. In

particular, the Neural Radiance Fields (NeRF [32]), which
implicitly encodes density and color via Multi-Layer Per-
ceptrons (MLPs), has shown high quality novel view syn-
thesis results from dense input images. A body of follow-
up works [7, 27, 45, 54, 66] further reduce the dependency
on dense inputs and generalizes NeRF to unseen objects by
learning priors from large-scale multi-view image datasets.
With the remarkable abilities on reconstruction and view
synthesis of generalizable NeRFs, we ask the question:
Can we adapt such models to learn 3D representations as
foundations for general 3D applications (e.g., recognition,
matching) beyond view synthesis?

Recent years have witnessed the rise of vision founda-
tion models [5, 40, 43, 67] that are pre-trained on web-scale
image datasets and demonstrate generalization capabilities
across massive vision tasks (e.g., CLIP [40], DINO [5], La-
tent Diffusion [47]). The feature space constructed by foun-
dation models captures rich semantic and structural infor-
mation of 2D visual data and make it possible to identify
object categories, parts and correspondences even without
extra supervisions [1, 5, 30]. Motivated by these works, our
goal is to leverage the powerful 2D foundations models to
obtain generalizable 3D features.

In this paper, we present FeatureNeRF, a unified frame-
work for learning generalizable NeRFs from distilling pre-
trained 2D vision foundation models. Unlike previous gen-
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eralizable NeRFs [45, 66], which utilize 2D encoder solely
for novel view synthesis, FeatureNeRF explores the use of
deep features extracted from NeRFs as generalizable 3D
visual descriptors. We show that distilling 2D foundation
models into 3D space via neural rendering equips the NeRF
features with rich semantic information. As a result, Fea-
tureNeRF allows to predict a continuous 3D semantic fea-
ture volume from a single or a few images, which can be
applied to various downstream tasks such as semantic key-
point transfer and object part co-segmentation. Examples
of these applications are shown in Fig. 1.

Specifically, we adopt an encoder to map 2D images to
corresponding 3D NeRF volume similar to previous gener-
alizable NeRFs. Apart from density and color, we propose
to extract deep features of the query 3D points from the in-
termediate layers of NeRF MLP. To enrich semantic infor-
mation of the NeRF features, we further transfer knowledge
from the foundation models to the encoder via neural ren-
dering during training: The rendered feature outputs should
be consistent with the feature extracted from the foundation
models, which is enforced by a distillation loss.

To evaluate FeatureNeRF, we tackle the tasks of 2D/3D
semantic keypoint transfer and object part segmentation.
To the best of our knowledge, our work is the first to re-
solve these 3D semantic understanding tasks without 3D
supervision. We validate our framework with two founda-
tion models: (i) DINO [5], a self-supervised vision trans-
former aware of object correspondences, and (ii) Latent
Diffusion [47], a diffusion-based model that achieves state-
of-the-art text-to-image generation performance. Our ex-
tensive experiments demonstrate the effectiveness of Fea-
tureNeRF as a generalizable 3D semantic feature extractor.

2. Related Work
Generalizable NeRFs. In the past few years, neural

fields have gained significant attention and led to rapid
progress in representing various visual signals [8, 10, 25,
31, 32, 36, 37, 50, 52, 61]. In particular, NeRF [32] achieves
photo-realistic results on novel view synthesis by mapping
3D coordinates and 2D viewing directions to density and
color via MLPs. However, the original NeRF requires enor-
mous posed images and time-consuming optimization for
each single scene. To address these issues, a large number
of follow-up methods [9, 23, 27, 45, 46, 54, 56, 66] propose
to learn generalizable NeRFs from large-scale multi-view
image datasets. For example, PixelNeRF [66] employs an
image encoder to condition NeRF on image features, which
enables novel views synthesis from a single image and gen-
eralizes NeRF to unseen objects. CodeNeRF [23] learns
to disentangle shape and texture by learning separate em-
beddings, allowing shape and texture editing by varying the
latent codes. Recent work TransINR [9] is proposed to infer
NeRF parameters directly with a vision transformer to over-

come the information bottleneck of encoder-decoder archi-
tecture. However, most of these works focus only on view
synthesis. Our work differs from them by learning general-
purpose 3D representations for multiple downstream tasks.

Vision Foundation Models. The term foundation model
is introduced in [3] to refer to the model pre-trained from
data at scale and capable of generalizing to a wide range
of downstream tasks. After demonstrating huge impacts in
NLP [4, 15, 41], a large family of vision foundation mod-
els [5, 40, 42, 43, 47, 58, 62, 67] have been proposed and ef-
fectively transferred to various vision tasks. For example,
the CLIP model [40] is trained from large-scale image-text
data using contrastive learning, and it is shown to be trans-
ferable to multiple tasks in a zero-shot manner. The DINO
model [5] has shown object segment can emerge automat-
ically with only self-supervision, and the learned feature
can be applied in a wide range of visual correspondence
and recognition tasks [1, 12, 30, 57]. Besides contrastive
learning, recent text-conditioned generative model such as
diffusion models [16, 21, 35, 47] have been introduced and
shown astonishing performance on image generation. Sub-
sequently, feature spaces learned by these generative mod-
els have also been used for recognition tasks such as seman-
tic segmentation [2, 59]. In contrast to the success of 2D
foundation models, the 3D counterparts are still suffering
from the lack of large-scale annotated datasets and effective
architectures [18,49,60]. In this paper, we propose to distill
the features from 2D foundation models to 3D space via the
generalizable NeRFs.

Feature Distillation. For the purpose of model compres-
sion and knowledge transfer, distillation has been widely
studied by the community. After the pioneering work
by Hinton et al. [20], which matches the softmax output
distribution of the teacher model to that of the student,
numerous methods have been proposed to tackle various
tasks [19, 22, 38, 39, 53, 64]. Recently, researchers also pro-
pose to distill features from 2D models to 3D space by opti-
mizing neural feature fields [26, 55]. Multiple editing tasks
are shown as applications. However, these methods not only
require test-time optimization for each single scene, but the
learned features are also not generalizable to unseen objects,
which makes them unsuitable for general semantic under-
standing tasks and differ from our work fundamentally.

Semantic Correspondences. Given a pair of visual
observation, semantic correspondences learning aims to
find corresponding points between them. Several super-
vised [13, 24, 51] and self-supervised [1, 11, 28] methods
have been proposed to resolve this task in 2D and 3D
domain respectively. In particular, Amir et al. [1] show
that utilizing pre-trained 2D foundation models in a zero-
shot manner can achieve competitive results with super-
vised methods on semantic correspondences. Cheng et
al. [11] propose to learn point cloud correspondences via
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Figure 2: Pipeline of FeatureNeRF. Given a single image I as input, FeatureNeRF adopts an encoder to extract the image
feature Eπ(x), and then concatenate it with the query point x as well as the view direction d as the inputs for NeRF MLPs.
Apart from density σ and color c, we add two MLP branches to predict the feature vector v and coordinate x̂, which are
supervised by two novel loss terms Ldistill and Lcoord respectively. Consequently, we distill knowledge from 2D vision
foundation models to FeatureNeRF. Besides, we propose to extract internal NeRF feature vNeRF as 3D-consistent feature
representation.

self-reconstruction and cross-reconstruction of 3D shapes.
To the best of our knowledge, our work is the first to ad-
dress semantic correspondences in both 2D and 3D space
with only 2D observations.

3. Method
We present FeatureNeRF, a unified framework for learn-

ing generalizable NeRF from vision foundation models. We
give an overview of generalizable NeRFs in Sec. 3.1 and
elaborate our feature distillation process in Sec. 3.2. Then
we introduce how to learn internal NeRF features for 3D
semantic understanding in Sec. 3.3 and downstream appli-
cations in Sec. 3.4. The overall pipeline of FeatureNeRF is
illustrated in Fig. 2.

3.1. Preliminary: Generalizable NeRF

Neural Radiance Fields (NeRF [32]) consists of two
functions: σ(x) : R3 7→ R+ that maps a 3D point x to
the density σ and c(x,d) : R3×3 7→ R3 that maps a 3D
point as well as a unit viewing direction d to color. The
radiance field can be rendered and optimized via differen-
tiable volume rendering [29]. Given a pixel’s camera ray
r(t) = o + td, which is defined by the camera origin
o ∈ R3, view direction d and depth t with bounds [tn, tf ],
the estimated color of the ray can be calculated by:

Ĉ(r) =

∫ tf

tn

T (t)σ (r(t)) c (r(t),d) dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(s)ds

)
. In practice, the in-

tegral is approximated with numerical quadrature by sam-

pling points along the ray. NeRF is optimized to a single
scene with multi-view posed images by minimizing the fol-
lowing reconstruction loss:

Lrec =
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2
2
, (2)

where C(r) is the ground truth color of the ray and R is the
set of rays generated from camera poses.

In order to generalize to novel scenes, the NeRF model
can be conditioned on the input image I ∈ RH×W×3:

σ(x, I) = gσ
(
x, f(I)π(x)

)
c(x,d, I) = gc

(
x,d, f(I)π(x)

)
,

(3)

where gσ and gc are MLPs that predict density and color
respectively, f is an image encoder and π is the projection
function.

As shown in the left part of Fig. 2, the image I is firstly
passed to an encoder fenc (blue blocks in the figure) to ob-
tain a feature map E = f(I). The query point x is projected
onto the image plane using known pose and intrinsics to ex-
tract the corresponding feature vector Eπ(x). Then the fea-
ture vectors are concatenated with the positional-encoded
point x and direction d, and passed to subsequent MLPs
gσ and gc (yellow blocks in the figure) to predict appear-
ance and geometry. When multi-view images are available,
feature vectors from different views are aggregated with the
average pooling before passing to MLPs.

3.2. Feature Distillation from Foundation Models

While most generalizable NeRFs only predict density σ
and color c, it’s possible to extend NeRF to predict other
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quantities of interests. For example, SemanticNeRF [68]
and PanopticNeRF [17] propose to add a branch to predict
segmentation labels to achieve a 3D-consistent semantic
segmentation of a scene. However, these methods require
expensive semantic labels during optimization, which is im-
practical for general cases. In this paper, we aim to trans-
fer knowledge from a pre-trained foundation model fteacher
to our generalizable NeRFs to perform 3D semantic under-
standing. To this end, we add a branch to output a high-
dimensional feature vector v ∈ RD for the query point x,
where D is the feature channels. Similar to the color ren-
dering (Eq. 1), we can aggregate the feature vectors along a
ray as follows:

V̂(r, I) =

∫ tf

tn

T (t)σ (r(t), I)v (r(t),d, I) dt

v (x,d, I) = gv
(
x,d, f(I)π(x)

)
,

(4)

where gv is the MLP that predicts feture vectors. Note that
our model is still conditioned on the image I in the above
equation.

We then minimize the difference between rendered
pixel feature vector V̂ and the teacher’s feature V =
fteacher(I)π(x). In this way, we distill the teacher network
into our generalizable NeRFs via neural rendering. We add
a distillation loss to penalize the difference:

Ldistill =
∑
r∈R

∥∥∥V(r)− V̂(r)
∥∥∥2
2
. (5)

FeatureNeRF can be trained jointly for image recon-
struction and feature distillation by combing two losses
(Eq. 2 and Eq. 5). We show both color rendering and feature
rendering processes in the right part of Fig. 2. We empha-
size that, after distillation, FeatureNeRF can obtain a 3D
semantic feature function v in a single forward pass, which
can be used for downstream applications. Our experiments
show that the feature function v, learned with only 2D ob-
servation, contains accurate 3D semantic information.

Our framework can be built on top of any foundation
model, and in this work we employ DINO [5] and Latent
Diffusion [47] as teacher networks. DINO is a vision trans-
former trained with self-distillation, and we simply extract
features from the deepest layer as teacher features. La-
tent Diffusion firstly transforms input image I to the la-
tent space, and utilizes a U-Net [48] architecture to esti-
mate the noise for the backward diffusion process. Besides,
the denoising module can be conditioned on inputs like text
and segmentation maps. We add noise to the original im-
age, condition the pre-trained model with fixed language
prompts (e.g. “Car”, “Chair”) and extract features from the
intermediate layers of U-Net. Distilling these foundation
models that pre-trained on large-scale image datasets brings
open-world knowledge to our generalizable 3D representa-
tion.

3.3. Learning Internal NeRF Features for 3D Se-
mantic Understanding

Although we have distilled features from foundation
models, it is still questionable whether the final feature out-
put is best suitable for 3D semantic understanding. Here we
explore using internal NeRF features as view-independent
representations for 3D semantic understanding and intro-
duce a new coordinate loss for learning spatial-aware NeRF
features.

While previous works only utilize final outputs of MLPs,
we explore whether we can use features from intermediate
layers as continuous 3D visual descriptors. Given a input
image I , we firstly learn a function vNeRF(x, I) to predict
NeRF features and utilize several shallow MLPs to predict
other quantities:

vNeRF(x, I) = gNeRF

(
x, f(I)π(x)

)
σ(x, I) = gσ (vNeRF(x, I))

c(x,d, I) = gc (d,vNeRF(x, I))

v(x,d, I) = gv (d,vNeRF(x, I)) ,

(6)

where gNeRF is MLP that predicts NeRF features. Note that
the proposed function vNeRF can be learned without the
feature distillation introduced in Sec. 3.2, therefore it can
be applied to all generalizable NeRFs. The feature extrac-
tion process is demonstrated in the bottom of Fig. 2. We
compare the performance of NeRF features with and with-
out feature distillation in our experiments.

Even for the feature distillation version, since teacher’s
features V are always not 3D-consistent, using a view-
independent representation vNeRF and modeling view-
dependent effect using another MLP gv that conditioned
on view direction d further boosts the performance (See
Sec. 4.4 for the ablation study).

The supervision of most generalizable NeRFs are RGB
values, which do not contain spatial information. To en-
hance the spatial perception of the NeRF feature, we pro-
pose to utilize another MLP branch gx (shown at the top of
Fig. 2) to regress the input coordinates x given the NeRF
feature vNeRF:

x̂ = gx (vNeRF(x, I)) . (7)

We add a cycle-consistent loss to penalize the difference:

Lcoord =
∑
r∈R

tf∑
t=tn

∥r(t)− gx (vNeRF (r(t), I))∥22 . (8)

The final loss function is the weighted sum of all three
losses: L = Lrec + λdistillLdistill + λcoordLcoord, where
λdistill and λcoord are weights for different losses. All losses
and their forward flows are shown in Fig. 2.
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3.4. Applications of FeatureNeRF

We demonstrate the effectiveness of the learned 3D se-
mantic NeRF feature function vNeRF on various down-
stream applications: 2D/3D semantic keypoint transfer and
object part segmentation. We deliberately apply simple,
zero-shot methodologies on NeRF features, without any
fine-tuning or post-process, to validate the proposed repre-
sentations.
2D Tasks. Given a single image I , we can render its NeRF
feature map F ∈ RH×W×D using Eq. 4. Then we can
render novel-view feature map F ′ from other viewpoints.
For feature vectors V and V′ of two pixels from F and
F ′, we use cosine similarity to measure their distance in the
feature space: D(V,V′) = V·V′

∥V∥2·∥V′∥2
. For the part co-

segmentation task, for each pixel feature V′ in F ′, we take
the segmentation label of its closest pixel feature V in F
as the predicted segmentation label. For the keypoint trans-
fer task, we adopt a similar process, for the feature V of
each keypoint in F , we take the pixel location of its closest
feature in F ′ as the predicted keypoint.

Since FeatureNeRF is a generalizable NeRF conditioned
on the input image, it can be further applied to cross-
instance tasks in addition to novel-view tasks for a single
instance. Given images I1 and I2 of two instances, we can
render their feature maps F1 and F2. Then we can resolve
semantic correspondence tasks in a process similar to the
novel-view tasks.
3D Tasks. The FeatureNeRF model learned with only 2D
observations can also be leveraged to 3D tasks. Given im-
ages I1 and I2 of two instances, we can construct two con-
tinuous 3D feature fields. For feature vectors v1 and v2 of
two 3D points x1 and x2, we still utilize cosine similarity
to measure their distance: D(v1,v2) =

v1·v2

∥v1∥2·∥v2∥2
. Then

we can resolve semantic correspondence tasks in a process
similar to the 2D tasks.

4. Experiments

4.1. Experimental Setting

Datasets. Our experiments are mainly conducted on 6 cate-
gories from the ShapeNet [6] dataset: Chair, Car, Airplane,
Table, Bottle and Motorcycle. We evaluate our model us-
ing annotations from from KeypointNet [65], ShapeNet part
dataset [63] and PartNet [34]. In addition, we train our
model on the real-world CO3D [45] dataset and evaluate
its keypoint transfer performance on the Spair [33] dataset.
For ShapeNet, we split each category into training (70%),
validation (10%), and testing (20%) splits. All shapes are
normalized so that the longest edges of the bounding box
are equal. For the training set, 50 random camera poses
from the upper hemisphere are sampled. For validation and
testing sets, 50 fixed camera poses are used. We employ

blender [14] to render RGB images, with a resolution of
128× 128, the same as in PixelNeRF [66]. For PartNet, we
use level-1 annotations. All annotations are in 3D and can
be used for the evaluation of 3D tasks directly. For the eval-
uation of 2D tasks, we employ PyTorch3D [44] rasterizer to
render 2D part segmentation labels and 2D keypoints.
Baselines. We mainly compare FeatureNeRF quantitatively
and qualitatively to two foundation models DINO [5] and
Latent Diffusion [47]. We extend PixelNeRF [66] with the
mechanisms mentioned in Sec. 3.3 to make it possible for
semantic understanding tasks and report its performance as
“NeRF feature” in all results. In addition, for the 2D co-
segmentaion task, we re-implement a one-shot generaliz-
able SemanticNeRF* [68] by adding a semantic branch in
PixelNeRF, and train it with the source segmentation labels.
Implementation Details. Following PixelNeRF [66], we
employ a ResNet-34 model pre-trained on ImageNet as the
image encoder f . The batch size is 4 (objects) and 1024
rays per object. We train a single model for each object
category for 500k steps. The weights for different losses
are λdistill = 0.25 and λcoord = 0.25. The dimension of the
internal NeRF feature is 512. MLP for NeRF feature gNeRF

is 4-layer, all other shallow MLPs for final outputs (gσ , gc,
gv and gx) are one-layer.
Teacher Networks. We employ DINO [5] and Latent Dif-
fusion [47] as teacher networks, which are pre-trained and
publicly available. The patch size of DINO is 8. The fi-
nal feature map has dimension 32 × 32 × 384. For La-
tent Diffusion, we extract the outputs of the 4th layer in
U-Net as teacher features. The language prompts used to
condition denoising modules are class names (e.g. “Chair”,
“Car”) from ShapeNet. The final feature map has dimen-
sion 128× 128× 960. The weights of teacher networks are
fixed during distillation.

4.2. 2D Semantic Understanding Tasks

As mentioned in Sec. 3.4, we evaluate FeatureNeRF on
tasks of 2D keypoints transfer and part segmentation labels
transfer under two settings: (i) Cross-instance: given im-
ages of two instances, we transfer keypoints/segmentation
labels from the source image to the target image and com-
pare the transferred labels in the target image with the
ground truth. (ii) Novel-view: given a single image of an
instance, we render a novel-view feature map, transfer la-
bels from the source viewpoint to the target viewpoint and
compare the transferred labels in the target viewpoint with
the ground truth.
Metrics. For the task of 2D keypoints transfer, we re-
port the percentage of predicted keypoints whose distances
from their corresponding ground truths are below thresh-
olds of (2.5, 5.0, 7.5, 10.0) pixels in the target image. We
denote this percentage as Correspondence Accuracy in the
following. For the task of part segmentation labels trans-
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Figure 3: Correspondence accuracy for cross-instance semantic keypoints transfer. The first row is for 2D keypoints
transfer and the second row is for 3D. Our approach distilled with different features consistently outperforms baselines for
all categories in both 2D and 3D domains.

Ours-DINOSource Diff. DINO NeRF Feat.Target

(a) 2D results

Diff. DINO NeRF Feat. Ours-DINO

(b) 3D results

Target

Figure 4: Qualitative results for cross-instance semantic keypoints transfer. Both 2D (a) and 3D (b) results are presented
here. Each row contains a source image with keypoints annotations and its pairwise transfer results.

fer, we calculate the mean intersection over union (mIoU)
over every part category for each object class. For both set-
tings, we randomly generate 1000 combinations per cate-
gory. While generating, we make sure that the source view-
points/instances and target viewpoints/instances have inter-
secting keypoints/segmentation labels.

2D Keypoints Transfer. We report correspondence accu-
racy of 2D cross-instance keypoints transfer in the first row
of Fig. 3. We show that for all 6 categories, keypoints
transferred via our proposed method are more accurate than
baselines. The performances of distilling diffusion and
DINO features are similar. Using NeRF feature without dis-
tilling foundation models (denoted as “NeRF feature” in the
figure) also achieves a reasonable performance compared to
2D foundation model baselines. Fig. 4 (a) shows the qual-

itative results for 2D keypoints transfer. It can be seen that
despite various appearances and structures of instances, our
method can successfully transfer keypoints based on seman-
tic understanding, while baselines often fails.

FeatureNeRF learns a 3D representation from 2D ob-
servations, which allows to synthesize novel-view feature
maps for different viewpoints and performs keypoints trans-
fer on top of it. Fig. 6 (a) shows qualitative results of novel-
view keypoints transfer. Since 2D foundation models can
not synthesize novel-view feature maps, we do not apply
them to this novel-view setting.

2D Part Segmentation Label Transfer. We report mIoU
results of 2D cross-instance part segmentation label trans-
fer in the left part of Tab. 1. FeatureNeRF distilled with
DINO features significantly outperforms other approaches
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Source Diff. DINO NeRF Feat. Ours-Diff. Ours-DINOTarget Diff. DINO NeRF Feat. Ours-Diff. Ours-DINO

(a) 2D results (b) 3D results

Figure 5: Qualitative results for cross-instance part segmentation label transfer. Each row contains a source image and
its 2D/3D transfer results. After distilling, FeatureNeRF learns richer semantic information, produces better boundaries and
preserves details like small parts. Note that the segmentation label for the source instance is omitted.

Source NeRF Feat. Ours-Diff. Ours-DINOTargetSource NeRF Feat. Ours-Diff. Ours-DINOTarget

(a) Keypoints transfer (b) Part co-segmentation

Figure 6: Qualitative results of novel-view keypoints transfer and part co-segmentation. FeatureNeRF learns a 3D
representation from 2D observations, which makes it possible to synthesize feature maps from other viewpoints and transfer
keypoints and segmentation labels to them.

2D part co-segmentation 3D part co-segmentation
Chair Car Plane Table Bottle Motorbike Chair Car Plane Table Bottle Motorbike

SemanticNeRF∗ 50.32 34.61 56.19 54.87 51.58 27.62 -
Diffusion Baseline 41.59 42.46 44.60 57.77 41.72 25.50 33.60 24.74 30.45 44.34 53.81 20.01
DINO Baseline 62.43 54.59 57.81 64.01 59.73 37.05 52.67 29.72 40.16 49.98 70.79 29.25
NeRF Feature 72.02 58.57 72.57 70.41 55.87 44.00 65.23 59.19 71.23 61.64 66.63 44.88
Ours (Diffusion) 65.39 63.02 72.95 70.59 53.91 44.84 63.65 61.27 73.41 63.93 66.91 49.05
Ours (DINO) 76.55 66.85 74.60 74.06 61.13 49.56 73.85 64.99 74.20 66.52 72.33 52.56

Table 1: Cross-instance part segmentation label transfer results. We report mIoU of part co-segmentation for each
category. The left part is for 2D and the right is for 3D. By distilling features to the 3D space, our proposed representation
contains richer semantic information which is apt for this co-segmentation task.

for all 6 categories. However, the performance of FeatureN-
eRF distilled with diffusion features is not as good as the
DINO one. This is possible since the keypoints transfer task
may focus on predicting accurate locations of sparse pixels
that contain the richest semantic information, but part co-
segmentation requires denser correspondences. Qualitative
results are shown Fig. 5 (a). We can find that NeRF feature
often produces unexpected artifacts. We attribute this phe-
nomenon to NeRF feature’s training only relying on RGB

information. In contrast, by distilling pre-trained features,
our method produces better boundaries and preserves de-
tails like small parts. Note that the segmentation label of
the source object is also required during the transfer pro-
cess, which is omitted in the figure.

We also perform novel-view part co-segmentation and
report both quantitative and qualitative results in Tab. 2 and
Fig. 6 (b) respectively. The rendered feature maps from
other viewpoints still exhibit promising performance for co-
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Figure 7: Keypoints transfer on SPair. Our method outperforms NeRF feature on 5 categories on the real-world dataset.

Source Target Source Target

Figure 8: Keypoints and segmentation label transfer on
CO3D. After training on CO3D, our method can accurately
transfer keypoints and segmentation labels with in-the-wild
image inputs

segmentation, which proves that FeatureNeRF learns a 3D-
consistent feature representation.
Real-world Experiments. To show the generalizability
to real-world images, we fine-tune our model on CO3D
datasets and evaluate its keypoints transfer performance on
two categories from the SPair dataset. The results in Fig. 7
confirm the effectiveness of our approach over NeRF fea-
ture on real images. The qualitative results on CO3D are
shown in Fig. 8. Even with in-the-wild images, our method
can still transfer keypoints and segmentation labels accu-
rately. Note that pre-process steps (e.g. segment and nor-
malize the foreground object) are required.

4.3. 3D Semantic Understanding Tasks

We further validate our proposed method on 3D seman-
tic understanding tasks, which aims to find semantic corre-
spondences between two sets of 3D points based on image
observations. We only evaluate under the cross-instance set-
ting for 3D tasks.
Metrics. The metrics for 3D tasks are 3D versions of their
counterparts in 2D tasks. For the keypoints transfer, we uti-
lize Euclidean distance instead of 2D pixel distance with

Chair Car Plane Table Bottle Motorbike
NeRF Feat. 80.73 75.10 69.45 84.65 87.14 67.49
Ours (Diff.) 73.45 71.16 59.16 83.91 88.01 64.28
Ours (DINO) 81.93 76.50 71.57 87.97 87.89 68.22

Table 2: Novel-view 2D part segmentation label transfer
results. The rendered feature maps from other viewpoints
still exhibit promising performance for co-segmentation,
which proves that FeatureNeRF learns a 3D-consistent fea-
ture representation.

the threshold of (0.025, 0.05, 0.075, 0.1) in the normalized
space. For the part co-segmentation, we calculate mIoU
based on point clouds instead of pixels. We randomly gen-
erate 1000 combinations per category for the evaluation.
3D Keypoints Transfer. For each 3D keypoint from the
source shape, we try to find its corresponding point from
a set of sampled candidate points from the target shape.
For DINO and diffusion baselines, we simply project the
3D points onto 2D feature maps and utilize the interpolated
feature vectors for matching. As those features are not 3D-
aware, it is expected that their performance will be subop-
timal. The quantitative results are shown in the second row
of Fig 3. We can find that our method has a larger advantage
in 3D tasks, which can also be observed from the qualita-
tive results in Fig 4. Our learned 3D representation contains
accurate semantic information and thus are able to transfer
3D keypoints in a more accurate way.
3D Part Segmentation Label Transfer. Similar to key-
points transfer, we try to propagate segmentation labels
from the source point cloud to the target point cloud based
on image observations. Note that the point cloud is only
used as a query for segmentation, our method constructs
a semantic feature volume for the whole 3D space and al-
lows predicting feature vectors for any given 3D points. The
right part of Tab 1 reports mIoUs for all methods. FeatureN-
eRF consistently outperforms all baselines in all categories,
suggesting that distilling feature to 3D-aware representation
leads to improved 3D co-segmentation performance. Fig. 5
presents qualitative results. Note that even for occluded ar-
eas in 2D images, FeatureNeRF can transfer its labels cor-
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Method Chair Plane
w/o Lcoord 75.39 72.83
w/o internal features 74.62 72.29
full model 76.55 74.60

Table 3: Ablation study. The coordinate loss and the use
of internal NeRF features both boost performance.

Chair Car Plane Table Bottle Motorbike

PSNR
PixelNeRF [66] 23.29 22.86 24.46 25.61 26.04 20.36
Ours (Diff.) 23.36 23.09 24.39 25.42 25.75 20.64
Ours (DINO) 23.20 22.92 24.49 25.69 26.01 20.59

SSIM
PixelNeRF [66] 0.92 0.91 0.93 0.89 0.89 0.80
Ours (Diff.) 0.92 0.91 0.91 0.87 0.89 0.81
Ours (DINO) 0.91 0.91 0.91 0.89 0.90 0.80

Table 4: Novel-view synthesis results. The proposed distil-
lation process does not hurt the performance of novel-view
synthesis, our method achieves comparable performance
with PixelNeRF on novel-view synthesis.

rectly in 3D space.

4.4. Ablation Study

We mainly ablate the coordinate loss Lcoord and the use
of internal NeRF features vNeRF (instead of final output
feature vector v) for semantic understanding. We conduct
experiments of 2D parts co-segmentation on the Chair and
Plane classes. The mIoU results are reported in Tab. 3. We
can see that both design choices boost performance.

In addition, we compare the performance of novel-view
synthesis with PixelNeRF [66] to see if the proposed fea-
ture distillation technique hurts the synthesis ability. Both
FeatureNeRF and PixelNeRF are trained on our rendered
dataset with the same parameters. From Tab. 4, we see that
our method achieves comparable performance with Pixel-
NeRF on novel-view synthesis.

4.5. Editing Applications

The learned FeatureNeRF model can also be leveraged
to editing applications. Here, we take the 3D part texture
swapping as an example. Given a source image and its part
segmentation label, we can construct a 3D feature volume
for the source image. Then, for a target image, we also con-
struct its 3D feature volume and transfer the segmentation
label from the source image to it. When rendering the target
image, for a 3D point xtgt that belongs to the part of inter-
ests (e.g. chair back) in the target feature volume, we find
its closet point in the source feature volume:

xcloset = argmin
xsrc

∥vNeRF (xtgt)− vNeRF (xsrc) ∥2,

where xsrc ∈ Xsrc and Xsrc is the set of sampled points in
the source feature volume. Finally, we use the color of the

Source Targets

Figure 9: Editing application: 3D part texture swapping.
The part textures from source images are successfully trans-
ferred to the target images. Note that the edited target ob-
jects can also be rendered from novel views, please see our
video for 3D visualizations.

closet point xcloset to replace the original color of xtgt for
the rendering.

The results are shown in Fig. 9. We can find that the part
textures from source images are successfully transferred to
the target images. Besides, the details are also well pre-
served (the brown boundary from the source image at the
second row still exists in the target images). Note that
the edited target instances can also be rendered from novel
views, please see our video for 3D visualizations.

5. Conclusion

In contrast to the success of 2D foundation models, it is
still unclear how to build foundation models in 3D given
the lack of web-scale datasets and effective architecture. In
this paper, we present FeatureNeRF, a unified framework
for learning generalizable NeRFs from distilling 2D vision
foundation models. FeatureNeRF explores the use of in-
ternal NeRF features as 3D visual descriptors and distills
knowledge from 2D foundation models into 3D space via
neural rendering. Given a single image, FeatureNeRF al-
lows to predict a 3D semantic feature representation, which
can be leveraged for downstream tasks. Specifically, we
demonstrate the effectiveness of FeatureNeRF on the tasks
of 2D/3D keypoints transfer and part co-segmentation from
a single image. In addition, FeatureNeRF can also serve
as a general-purpose feature extractor for downstream 3D
tasks such as open-world 3D classification/segmentation
and robotics tasks.
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