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Abstract

Video-language pre-training has advanced the perfor-
mance of various downstream video-language tasks. How-
ever, most previous methods directly inherit or adapt typical
image-language pre-training paradigms to video-language
pre-training, thus not fully exploiting the unique charac-
teristic of video, i.e., temporal. In this paper, we pro-
pose a Hierarchical Temporal-Aware video-language pre-
training framework, HiTeA, with two novel pre-training
tasks for yielding temporal-aware multi-modal representa-
tion with cross-modal fine-grained temporal moment infor-
mation and temporal contextual relations between video-text
multi-modal pairs. First, we propose a cross-modal moment
exploration task to explore moments in videos by mining the
paired texts, which results in detailed video moment rep-
resentation. Then, based on the learned detailed moment
representations, the inherent temporal contextual relations
are captured by aligning video-text pairs as a whole in dif-
ferent time resolutions with multi-modal temporal relation
exploration task. Furthermore, we introduce the shuffling
test to evaluate the temporal reliance of datasets and video-
language pre-training models. We achieve state-of-the-art
results on 15 well-established video-language understand-
ing and generation tasks, especially on temporal-oriented
datasets (e.g., SSv2-Template and SSv2-Label) with 8.6%
and 11.1% improvement respectively. HiTeA also demon-
strates strong generalization ability when directly trans-
ferred to downstream tasks in a zero-shot manner.

1. Introduction

Vision and language are two primary signals that con-
stitute the real-world perception of humanity. With the
success of image-language pre-training [8,22,25,47], video-
language pre-training [23,26,27,34] has recently received in-
creasing attention. Large-scale video-language pre-training
helps the model to learn effective multi-modal representa-
tion, which has shown significant improvement on a va-
riety of video-language downstream tasks, such as video-
text retrieval, video question answering and video caption-
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Figure 1: Comparison between existing paradigms and ours
for video-language pre-training. (a) Previous methods align
video and text within global perspective as the pretext. (b)
We introduce HiTeA by varying video in different temporal
views and modeling cross-modal temporal information be-
tween moments and texts, as well as the temporal contextual
relations between multi-modal pairs.

ing [5,33,44,48,50,53,59].

Inspired by the success of image-language pre-training
paradigm, various methods [ 10, 11,23,26,27] have been pro-
posed to adapt it to video-language pre-training. ClipBERT
[21] and Singularity [20] directly build on representations
from image encoders and aggregate them via score aggre-
gation function and temporal encoder. Furthermore, MIL-
NCE [34] and Frozen [2] switch image encoder to video en-
coder for spatio-temporal video representation learning and
align the video with corresponding text. In addition, some
advanced pre-training tasks are designed through modeling
entity [23], reconstructing masked patches [10] and predict-
ing frame order [26,61]. Despite their promising perfor-
mance on downstream tasks, they treat video within global
perspective illustrated in Figure 1(a), thus failing to consider
fine-grained temporal information and temporal contextual
relations which are essential to video-language pre-training.

Since untrimmed video contains various temporal details,
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directly treating the video globally has two main limitations:
(1) Less effective in modeling the fine-grained moment in-
formation including atomic actions and moments. As illus-
trated in Figure 1(b), we vary time resolutions and generate
two views (long & short) for the input video. As a result,
the short-view video clip tends to represent the moment in-
formation and the long-view video may express more event-
level information. For example, the short-view video clip
in Figure 1(b) only describes the moment of "lick fingers"
rather than "eating ice cream". Such fine-grained moment
information is hard to be captured by the long-view video
under global event perspective; (2) Ignoring the temporal
contextual relations implicitly existed in the video. Know-
ing the event expressed by the text, the moment "eating
ice cream" can be inferred from the moment "lick fingers"
shown by short-view video. However, such implicit tempo-
ral contextual relations between the moment and the event
are rarely explored in previous works.

To address these problems, we propose a Hierarchical
Temporal-Aware video-language pre-training framework,
HiTeA, for both multi-modal understanding and generation.
Except for the standard pre-training tasks, HiTeA introduces
two novel temporal-aware video-language pre-training tasks,
named cross-modal moment exploration (CME) and multi-
modal temporal relation exploration (MTRE), which not
only model the fine-grained temporal moment information
but also captures temporal contextual information hierarchi-
cally, yielding temporal-aware multi-modal representations
for both understanding and generation. Specifically, we first
generate the long-view and short-view videos with different
time resolutions to build hierarchy of the input video. Then,
based on the similarities of words and short-view video, we
select the most relevant words as positive and leave the rest
of the words as hard negatives. The CME pre-training task
is applied to align the positive words and short-view video
representations in the same embedding space. Moreover, to
capture association between moments and the event for tem-
poral contextual modeling, we match different views for the
same video. However, directly matching two views visually
would be noisy due to the background similarity [39]. To this
end, we perform multi-modal pair alignment between video-
text pairs via the MTRE pre-training task. More specifically,
the short-view video guided by most relevant words and the
long-view video guided by text will be aligned, which en-
ables the model to extrapolate the contextual information
from the short-view with language signal while enhancing
temporal reasoning ability. Empowered by above two novel
temporal-aware video-language pre-training tasks, HiTeA is
capable of modeling temporal-aware multi-modal informa-
tion revealed in video-text data including both fine-grained
moment information and temporal contextual relations.

In spite of a good performance, recent studies [4,20] re-
veal most video-language downstream datasets are biased to-

wards still objects, scenes, efc., while the temporal dynamics
are negligible. To evaluate the temporal performance of the
video-language pre-training model and temporal reliance of
downstream datasets, we introduce temporal shuffling test
for these datasets. This enables a comprehensive evalua-
tion of temporal modeling capability in the video-language
pre-training field. Besides, our method achieves significant
improvement on the datasets with heavy temporal reliance.
In summary, our key contributions are the followings:

* We propose a novel hierarchical temporal-aware video-
language pre-training framework with both video-
language understanding and generation capabilities.

We introduce temporal-aware pre-training tasks to
generate temporal-aware multi-modal representation
through modeling fine-grained temporal moment in-
formation as well as capturing the temporal contextual
relations between moment and event.

Extensive experiments demonstrate the effectiveness
and generalization ability of HiTeA, and it achieves
state-of-the-art performance on 15 video-language
downstream datasets including video-text retrieval,
video question answering, and video captioning, es-
pecially on temporal-oriented datasets (e.g., SSv2-
Template and SSv2-Label) with 8.6% and 11.1% im-
provement respectively.

2. Related Work

Video-Language Pre-training Benefiting from a large
number of image/video-text pairs, video-language pre-
training (VLP) exhibits superior capabilities on various
video-text benchmarks. The method of VLP is constantly
evolving. Traditional approaches [26, 30,42, 62] leverage
offline-extracted dense video features for pre-training to
circumvent the expensive computation overhead. In con-
trast, ClipBERT [21] suggests that sparse sampling can
enable affordable end-to-end learning and improve per-
formance simultaneously. Recent emerging approaches
[2,11,14,21,23,27,52,57] adopt this strategy and propose
new model architectures and pre-training tasks. Frozen [2]
trains jointly on image and video datasets via video-text
contrastive learning (VTC). ALPRO [23] proposes a new
visually-grounded pre-training task combined with VTC,
video-text matching (VITM) and masked language model-
ing (MLM) [9] to learn fine-grained region-entity align-
ment. LAVENDER [27] formulates all pre-training and
downstream tasks as MLM so that a unified architecture
can used for all video-text tasks. Apart from above repre-
sentative works, frame order modeling (FOM) [26,61] and
masked video modeling (MVM) [10] are designed for VLP.
However, the temporal characteristic of video still remains
largely unexplored. To this end, we introduce a novel hierar-
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Figure 2: Illustration of the proposed HiTeA. We first generate two different temporal views for the input video, where the
long-view is the video itself and the short-view is randomly truncated from the input video. To explore the moment revealed
in the short-view, cross-modal moment exploration (CME) selects the candidate words from the input text with Lcyge. Then,
we perform multi-modal temporal relation exploration (MTRE) for modeling the temporal contextual relations between two
video-text pairs with different views by Lyrre. Note that the multi-modal encoders and the text features are shared.

chical temporal-aware VLP framework which not only mod-
els the fine-grained moment information but also captures
contextual relations with different temporal granularities.

Temporal Modeling The temporal characteristic acts as a
vital role in VLP since it provides the model with the capa-
bilities of reasoning and understanding causality. Previous
efforts in this field can be roughly divided into three cate-
gories. First, several methods directly transfer image-text
models to video-text tasks by simply concatenating video
frame [22,24] or building an extra temporal encoder [31,32].
Second, some works [2, 10,23, 27] switch the image en-
coder to video encoder for learning spatio-temporal contexts
within videos. Third, HERO [26] and MERLOT [61] design
FOM task to explicitly recover the correct temporal order of
shuffled frames. Nonetheless, ATP [4] and Singularity [20]
reveal the existence of a static appearance bias in popu-
lar video-language datasets, and they develop single-frame
models to achieve strong performance, comparable or even
better than above methods with explicit temporal modeling.
Therefore, they recommend SSv2 [20] and NExT-QA [48]
datasets to test the temporal ability of VLP models. Different
from previous approaches, we vary the temporal resolutions
and generate two views of video so as to construct the tem-
poral hierarchy, which equips the model with the ability to
learn both fine-grained temporal moment information and
temporal contextual representation at the same time.

3. Method

3.1. Overview

Figure 2 sketches the overview of the HiTeA. In concrete,
our model consists of two unimodal encoders for encoding
video and text separately, a multi-modal encoder for video
and text interaction, and a text decoder for generation which
is omitted here for simplicity and detailed in Appendix.

For video representation, previous methods [21,23,27]
encode the whole input video as a single-view feature, ig-
noring the rich temporal details contained in the video.
Thus, we first treat the video into two views with differ-
ent time resolutions to build hierarchy of the input video.
Specially, the untrimmed video is regarded as a long-view
video V¥ for capturing event information, and a video seg-
ment is randomly truncated from the input video as the
short-view for capturing moment information denoted as
V'S, Then, we use the video encoder to encode an arbitrary
view of video V € RT*H*W into a sequence of embed-
dings: V = {vas, v1,- -+ ,var} € RMXDP where M is the
number of flattened patches, D is hidden size, and v is the
embedding of the visual [CLS] token which provides global
representation of the video. For text representation, we use
the text encoder to transform the text 7 into a sequence of
embeddings: T = {wes, w1, -+ ,wy} € RVXP where N
is length of the text. After that, the multi-modal encoder
takes video features V and text features 7 as inputs and
yields the multi-modal representation v for the video.
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In order to take full advantage of the different views of
the video, we introduce cross-modal moment exploration
(CEM) to explore the proper words or phrases from input
text to align the short-view video with Lcovme for captur-
ing the fine-grained temporal moment information in Sec-
tion 3.2. Furthermore, to model the temporal contextual
relations between the short-view video containing moment
information and the long-view video with event informa-
tion, we propose multi-modal temporal relation exploration
(MTRE) to match the multi-modal representation of short-
view and long-view videos by Lyrrg in Section 3.3. Lastly,
we introduce the overall pre-training objective for training
the model in Section 3.4.

3.2. Cross-Modal Moment Exploration

The video with short temporal range (i.e., short-view of
video) with the paired text tends to be accompanied with
fine-grained temporal moment information. However, the
paired text partially describes the short-view of video bring-
ing noise to the fine-grained moment representation thus
degrading the performance. To this end, we propose a novel
pre-training task named cross-modal moment exploration
(CME), which enables the model to understand fine-grained
moment information by leveraging the partially aligned text.

Formally, we first discover the possible positive words for
the video in short-view by computing the cosine similarity
of the word embedding sequence {wq, - ,wy} from text
encoder and the short-view video representation v, from
video encoder as:

K:{ﬂ(l)"" 77T(K)}7 (1)

where © : {1,--- ,N} — {1,---,N} is a permutation
function for ranking such that s(wy(1),v5,) > >
s(Wa(ny, vS,), and K is the set of selected word indices,
K is the number of possible selected words, and s(z,y) =
2Ty /||x||2]|y||2 represents the cosine similarity between x
and y. After obtaining the words for the video in short-view
as the positive pair, the cross-modal moment exploration
loss Leme is computed with negative pairs from other words
in the input text, which is defined as:

1 (1
ﬁCMEZ—EZ; mzl()g

kex

exp((v5,)] wik/7)
S exp((vS) ] Wi /T)

2)

where 7 is the learnable temperature hyper-parameter that
controls the sharpness of the output distribution, and it is
initialized as 0.07. As a consequence, the model is able
to understand moment information via the proposed cross-
modal exploration scheme.

3.3. Multi-Modal Temporal Relation Exploration

While the video encoder has demonstrated its ef-
fectiveness in learning temporal representation implicitly

)

[10,23,56], it remains a challenge to discover the inher-
ent temporal contextual relations. As a result, the lim-
ited capabilities in temporal modeling deteriorate the down-
stream task in temporal reasoning. This is in particular a
missing point for the existing video-language pre-training
paradigm [11,21,23,27], which usually focuses on bridging
video and text neglecting the function of text for guiding
the video temporal contextual representation learning thus
losing the temporal cues.

To this end, we introduce multi-modal temporal relation
exploration (MTRE), a novel temporal-aware pre-training
task that improves models’ capacities in capturing temporal
context in video with fine-grained text guidance by align-
ing multi-modal pairs. Specially, the short-view video V5
would represent moment information with respect to the
whole video. On the contrary, the long-view video V' ex-
presses the event and topical information. To obtain the
text-guided video features, we feed videos in different tem-
poral views into the video encoder individually. Then, the
text features are extracted and interact with the video fea-
tures by the multi-modal encoder and yield text-guided video

representations v}, € R and v3, € RP as follows:

v(:[fs = f({v(ﬁsvva o 7”&[}7 {wdsvwla o awN})v (3)
v(ﬁs = f({vfl'svva e 7U]€J}7 {w6157w17 e ,U)N}), (4)

where f(V,T) represents the multi-modal encoder with
video features V and text features 7. However, since the
short-view of the video is partially aligned with the text, us-
ing the whole text is not reasonable for generating accurate
text-guided video feature for short-view. Meanwhile, im-
proper video-text pairs would yield noisy multi-modal rep-
resentation thus degrading the performance of the model.
Therefore, thanks to the positive words mined by cross-
modal moment exploration, we can calibrate representation
for short-view video by:

vcsls = f({’Ugs, Uiga T

where KC; € K is the index of the set for selected positive
words. Then, we aim to match the representation of pro-
duced text-guided video features in different granularities in
order to enable the model to predict the past and the future
from the short-view of video, which benefits for capturing
the general structure of the video. Specifically, we adopt
the SimSiam framework [6] for minimizing their negative
cosine similarity:

7U]€[}a{wK17"' >wlCK})7 ()

s L

D z
D(p?, k) = — . ,
( A P

where p° = h(g(v5,)) and z* = g(vk)). The g and h are

projection MLP head and prediction MLP head [7, 13]. Min-

imizing D(p?, z") is equivalent for minimizing the mean

(6)
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MSRVTT DiDeMo LSMDC ActivityNet Caption
Method #PTData | R@l R@5 R@10 | R@l R@5 R@10 | R@l R@5 R@10 | R@l R@5 R@I0
ClipBERT [21] 0.2M 220 468 59.9 204 480 60.8 - - - 213 49.0 63.5
Frozen [2] 5M 310 595 70.5 31.0 59.8 72.4 150 308 39.8 - - -
ALPRO [23] 5M 339 60.7 73.2 35.9 67.5 78.8 - - -
BridgeFormer [11]  5M 376 648 75.1 37.0 62.2 73.9 17.9 354 44.5 - - -
Singularity [20] M 36.8 65.9 75.5 474 752 84.0 - - - 43.0  70.6 81.3
LAVENDER [27] 5M 37.8 63.8 75.0 474 747 82.4 222 438 53.5 - - -
HiTeA 5M 444 693 78.9 51.8 791 85.3 271 46.2 54.5 45.1 73.5 84.2

Table 1: Performance comparison on text-to-video retrieval. All results are reported on R@1/R@5/R@10. We gray out
methods that use significantly more pre-training data for fair comparison. # PT Data is the number of video-text pairs for

pre-training.

square error between p° and z%, which encourages the
videos in different temporal magnitudes to be similar. Fol-
lowing [6, | 3], we defined a symmetrized loss as:

Lumee = = [D(p",s9(2%)) + D(0°,s9(z"))], (D)

N =

where sg(-) is the stop-gradient operation that prevents the
model from collapse during training [6].

3.4. Pre-training Objectives

Apart from the two proposed temporal-aware pre-training
tasks, we follow proven video-text pre-training approaches
[2,23,27] to adopt the standard pre-training tasks including
video-text contrastive (VTC), video-text matching (VTM),
masked language modeling (MLM), and prefix language
modeling (PrefixLM) described in the related work. Pre-
cisely, VITC and VTM align the video and text from the
global perspective, while MLM and PrefixLM contribute
to multi-modal understanding and generation capabilities of
the model. Details of these objectives are described in the
Appendix. We simply combine these as the base training ob-
jective Lpqse for our model. Therefore, the full pre-training
objective is computed as:

L = Lyase + Lome + LMTRE- (®)

4. Experiments
4.1. Experiment Setup

Pre-training Datasets Following the recent work [2, 11,20,

,27], we pre-train our model on a webly-sourced video
dataset WebVid-2M [2] with 2.5M video-text pairs and a
image-text dataset Google Conceptual Captions (CC3M)
[41] with 3M image-text pairs. Unlike previous methods,
we do not pre-train our model on the large-scale video-text
datasets like HowTo100M [34] with 136M video-text pairs
and YT-Temporal-180M [61] due to the heavy computation.

Downstream Datasets We evaluate our pre-trained model
on 18 video-language benchmarks including video-text re-
trieval, video question answering, and video captioning
tasks. Specifically, video question answering (VideoQA)
can be categorized as Multiple-Choice (MC) and Open-
Ended (OE) settings. The evaluation datasets are briefly
summarized in below. Details can be found in the Appendix.

* Video-Text Retrieval: MSRVTT [
LSMDC [38], ActivityNet Caption [
and SSv2-Template [20];

¢ VideoQA (MC): TGIF-Action, TGIF-Transition [15],
MSRVTT-MC [58], LSMDC-MC [44], and NExT-QA
[43];

* VideoQA (OE): TGIF-Frame [I5], MSRVTT-QA,
MSVD-QA [50], LSMDC-FiB [33] and ActivityNet-QA
[59].

* Video Captioning: MSRVTT [

], DiDeMo [1],
1, SSv2-Label [20],

] and MSVD [5].

Implementation Details Our implementation of HiTeA is
based on PyTorch [35]. In detail, we instantiate the video en-
coder with MViT-Base model [28] pretrained on ImageNet-
21K [37]. The text encoder is initialized from first six layers
of pre-trained BERT-Base [9], and the multi-modal encoder
is initialized with last six layers of pre-trained BERT-Base.
We pre-train HiTeA for 10 epochs, using a batch size of
16 on 8 NVIDIA A100 GPUs. We use AdamW [17] op-
timizer with a weight decay of 0.02 and betas (0.9, 0.98).
The learning rate is first warmed up to 5e-5 in the first 1000
iterations, and decays following a cosine schedule. During
pre-training stage, following with [10, 14,23], we sparsely
sample 4 frames for short and long view while preserving
their order in-between and resize them to 224 x 224. The
duration of short view is restricted as the 1/8 of the whole
video duration. K is empirically set to 5. The MLM mask
ratio is set to 15%. Details of fine-tuning stage are described
in Appendix.
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TGIF MSRVTT LSMDC MSVD ActivityNet
Method #PT Data | Action Transition Frame | MC QA | MC FiB QA QA
ClipBERT [21] 0.2M 82.8 87.8 60.3 | 882 374 | - - - -
ALPRO [23] M - - - - 421 - - 46.3 -
Singularity [20] ~ 5M - - - 920 42.7| - - - 41.8
LAVENDER [27] 5M 96.6 99.1 722 196.6 4421860 569 | 554 -
Clover [14] M 94.9 98.0 714 1950 439832 54.1| 519 -
HiTeA M 96.8 98.8 725 972 454|858 54.6| 55.6 45.1

Table 2: Performance comparison on video question answering. Accuracy is reported for evaluation. We gray out methods
that use significantly more pre-training data for fair comparison.

on LSMDC dataset, which proves that our model can lever-
age the various moments presented in fruitful movie clips

with cross-modal moment exploration.

Method #PT Data | MSRVIT MSVD
UniVL [30] 180M 49.9 -
SwinBERT [29] - 53.8 120.6
MV-GPT [40] 53M 60.0 -
CLIP4Caption [43]  400M 571 -
LAVENDER [27] SM 58.0 142.9
HiTeA SM 62.5 145.1

4.2.2 Video Question Answering

Table 3: Performance comparison on video captioning.

CIDEr [45] is reported for evaluation.
Method MSRVTT-Ret. LSMDC-Ret. MSRVTT-QA MSVD-QA
Frozen [2] 31.0/59.5/70.5  15.0/30.8/39.8 - -
ALPRO [23] 33.9/60.7/73.2 -/-1- 42.1 46.3
BridgeFormer [11] 37.6/64.8/75.1  17.9/35.4/44.5 -
Singularity [20] 36.8/65.9/75.5 -I-I- 4.7 -
TimeSformer (Lome) 37.6/62.0/72.3  19.2/38.7/48.0 415 490
HiTeA with TimeSformer | 39.7/65.0/75.1 21.8/40.7/49.9 437 524

Table 4: Performance comparison of different SOTA meth-
ods with TimeSformer [3]. For text-to-video retrieval, Re-
call@1/5/10 are reported. For video question answering
task, we report the Top-1 accuracy.

4.2. Comparison to Prior Arts

In this section, we compare HiTeA with numerous state-
of-the-art video-language pre-training methods on several
downstream datasets under fine-tuning setting.

4.2.1 Text-to-Video Retrieval

Table 1 summarizes the results on MSRVTT [53], DiDeMo
[1], LSMDC [38], and ActivityNet Caption [ | 8] under fine-
tuning settings. Our method outperforms all of the existing
video-language pre-training model by a large margin under
the same data scale. In particular, our method yields 6.6%
lift in terms of R@1 on MSRVTT dataset while only ex-
ploiting SM video-text pairs. Note that we also include the
comparison with the recent works that utilize the powerful
encoder from CLIP [36], our method still can be compara-
ble with them even surpass them, which shows the validness
of the proposed method. Besides, we can notice that our
method achieves the best result among all of listed methods

Table 2 lists the results of HiTeA and current state-of-the-
art approaches on nine VideoQA datasets. It can be noticed
that our method achieves the best performance in most of
VideoQA datasets even with less pre-training data. Specif-
ically, it achieves absolute improvement 1.1% on TGIF-
FrameQA, 2.2% on MSRVTT-MC, 1.5% on MSRVTT-QA,
0.2% on MSVD-QA, and 3.3% on ActivityNet-QA. We be-
lieve the moments learned by the cross-modal exploration
are useful for finding the clue of answers in VideoQA.

4.2.3 Video Captioning

Table 3 compares HiTeA with existing methods on video
captioning datasets MSRVTT and MSVD. As shown in
the table, although we use less pre-training data than com-
pared approaches, HiTeA still obtains significant improve-
ment compared to those large-scale pre-trained models. On
MSRVTT Caption, our method surpasses SoTA method
MV-GPT [40] by 2.5% CIDEr. Note that MV-GPT is pre-
trained for multi-modal video captioning and it leverages
the ASR transcripts from audio as the additional input. By
contrast, our method only utilizes video as the input during
generation.

4.3. Discussion

In this section, we discuss the temporal characteristics of
our model and the datasets.

Generalization on Plain Backbone. Table 4 delivers the
performance of SOTA methods with the plain visual back-
bone. We instantiate the video encoder with TimeSformer
[3] pretrained on ImageNet-21K [37] following [2, | 1,23].
We can observe that HiTeA with TimeSformer significantly
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Method MSRVTT-Retrieval SSv2 Template-Retrieval NEXT-QA (Hard) MSVD-QA
R@l R@5 R@10 AveR R@1 R@5 R@10 AveR Acc@C Acc@T Acc.
Lbase 400 68.0 77.1 61.7 805 100.0 100.0 935 44.0 46.4 52.7
Liase + LMTRE 416  69.1 782 63.0 833 989 100.0 94.1 46.3 46.4 54.8
Loase + LcME 420 693 797 637 839 994 1000 944 46.3 48.3 543
Lovase + Love + Lumre | 444 693 789 642 856 1000 1000 952 47.8 48.6 55.6

Table 5: Evaluation of the proposed methods on four downstream video-language tasks. For text-to-video retrieval, R@]1,
R@5, R@10, and the average are reported. For video question answering, we report the accuracy.

SSv2-Label SSv2-Template
Method #PTData | R@l R@5 R@10 | R@l R@5 R@I0
Frozen [2] SM - - - 529 94.8 99.4
Singularity [20]  SM 44.1 73.5 822 77.0 98.9 994
HiTeA M 55.2 814 89.1 85.6  100.0  100.0

Table 6: Comparison of existing methods on Something-to-
Something (SSv2) text-to-video retrieval.

Method # PT Data ‘ Acc@C  Acc@T Acc@D  Acc.
Full Set

HCRN [19] - 459 49.3 53.7 48.2
HGA [16] - 46.3 50.7 59.3 49.7
VGT [49] 0.18M 534 56.4 69.5 56.9
HiTeA M 62.4 58.3 75.6 63.1
Hard Split

HiTeA M 47.8 48.6 / /

Table 7: Comparison of existing methods on NExT-QA [48].
We report accuracy on the Causal (C), Temporal (T), De-
scriptive (D) splits and overall accuracy on validation set. *
stands for using CLIP as the initialization of visual encoder.

Dataset Original T Shuffled | Gap 1
MSRVTT [53] 64.2 63.3 0.9
DiDeMo [1] 72.1 70.2 1.9
LSMDC [38] 42.6 41.7 0.9
ActivityNet Caption [18] 67.6 66.8 0.8
SSv2 Template [20] 95.2 72.4 22.8
SSv2 Label [20] 76.7 73.5 32

Table 8: Dependency on temporal information for text-to-
video retrieval datasets with temporal shuffling test. The
average recall of Recall@1, Recall@5, and Recall@10 are
reported. We evaluate the performance drop when shuf-
fling the input during inference. “Original” and “Shuffled”
denote the original and shuffled input videos, respectively,
and “Gap” is the difference between the Original and Shuf-
fled metric. The larger "Gap" indicates the dataset relies on
temporal information, and the model utilizes more temporal
information to solve the task.

outperforms other SOTA methods (e.g., ALPRO, Bridge-
Former, and Singularity) with the same pre-training data
and the number of frames. In addition, it shows that our
proposed temporal-aware pre-training tasks can boost the

Dataset Original T Shuffled |  Gap T
MSRVTT-QA [50] 454 452 0.2
MSVD-QA [50] 55.6 55.5 0.1
TGIF-FrameQA [15] 72.5 72.1 0.4
ActivityNet-QA [59] 45.1 45.0 0.1
NEXT-QA (Hard) [48] 47.1 45.6 0.5

Table 9: Dependency on temporal information for video
question answering datasets by temporal shuffling test. We
report the accuarcy for each dataset. For NExT-QA dataset,
we evaluate with the hard split of the validation set [4].

performance of TimeSformer (Lyas) With 2.6% average im-
provement on MSRVTT-Retrieval and 3.4% on MSVD-QA.
More related discussions are demonstrated in the Appendix.

Impact of Loss Terms. We investigate the contribution
of individual loss terms and the results are shown in Ta-
ble 5. It can be observed that the combining both Lcpg and
Lyvrre improves the performance of text-to-video retrieval
and video question answering by at least 1.7% and 2.9% in
Average Recall and Average accuracy respectively. In addi-
tion, we also find that the performance of Lcyg surpasses
that of Lytrg on MSRVTT retrieval dataset that largely
dominated by the appearance information. This can be ex-
plained that the cross-modal moment exploration loss not
only select the positive verbs for the video from the text but
also choose the acting object for alignment, which can boost
the retrieval performance.

Evaluation on Temporal-aware Tasks. Lei et al. [20] re-
veal that the previous four retrieval datasets are prone to
being biased for appearance while rarely relying on tempo-
ral information, thus introducing Something-to-Something
v2 (SSv2) Template and SSv2 Label retrieval datasets to
test models’ true temporal modeling capability. In partic-
ular, SSv2 Template retrieval task requires a deeper under-
standing of the moment and temporal relation since no ob-
jects information are presented. The performance on these
datasets are summarized in Table 6. It can be observed
that HiTeA achieves significant improvement with +8.5%
gains in terms of R@1 on these two temporal-oriented text-
to-video retrieval datasets, which demonstrates the effective-
ness of our proposed method through exploring fine-grained
moment information and modeling temporal relation. In ad-
dition, we evaluate our model on NExT-QA [48] dataset that
explicitly designed for temporal and causal understanding.
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“Cartoon characters are talking to a pokemon”

Video
Frames

Baseline

“Poking [something] so that it spins around”

BECETRRER
BLCRERFES
BUTUEREEE

Figure 3: Visualizations of learned cross-attention maps from multi-modal encoder. We present samples from MSRVTT [5
and SSv2 Template [20] retrieval dataset. HiTeA attends to the patches related to objects motion by tracking trajectory.

As presented in Table 7, our method significantly surpasses
its competitive counterparts, even those methods equipped
with powerful image-text pre-trained encoders. Quantita-
tively, HiTeA obtains an absolute improvement +9% on the
causality split with the help of intrinsic temporal relation.
Recently, Buch et al. [4] filter out the trivial question for the
dataset, and build the hard split for causality and temporal
related questions for evaluate the causality and temporal of
the model. As we can see in the table, even for the questions
that heavily rely on causality, our model can still achieves
a relative gain of 4.1% on the model with specific design
for VideoQA, which indicates that our model do not solely
depend on static appearance.

Temporal Reliance of Datasets. Previous methods [11,21,
23] only evaluate the performance of models on the exist-
ing datasets to demonstrate the superiority of the methods.
However, Buch et al. [4] and Lei et al. [20] reveal that the
most of the evaluation are biased towards the static concepts.
Here, we investigate the temporal reliance for the evaluated
datasets by introducing the temporal shuffling test. Specifi-
cally, we compute the performance changes between running
inference on the ordered video versus its shuffled version.
The large performance drop indicates the dataset has less
spatial bias and needs for temporal information. Table 8 and
Table 9 conclude the performance gap between ordered and
shuffled input video for text-to-video retrieval and VideoQA
datasets. For text-to-video retrieval task, SSv2 Template
shows the large performance drop after shuffling the input
video, which demonstrates that it depends most on the dy-
namic information thus verifying our assumption. On the
contrary, the performance on ActivityNet Caption dataset
is barely affected (-0.8 on Mean Recall) since the text al-
most describes the static objects without relying on tempo-
ral information. For video question answering dataset, we
observe that the MSVD-QA and ActivityNet-QA are less
sensitive to the order of video frames. This is because these
two datasets contain more questions requiring frame-region
information, such as object categories, scenes, and species.
We believe this can be used to evaluate the temporal reliance
of the datasets as well as the utilization for temporal cue by

Method #PT Data | MSRVIT-QA  MSVD-QA
Just Ask [54] 69M 2.9 7.5
LAVENDER [27] M 4.5 11.6
MERLOT Reserve [60] 1B 5.8 -
FrozenBiLM [55] 10M 6.4 11.7
HiTeA 5M 8.6 18.2
BLIP [24] 129M 19.2 35.2
mPLUG [22] 100M 21.1 372
HiTeA M 21.7 374

Table 10: Zero-shot evaluation on video question answer-
ing. Accuracy is reported. We gray out those methods ad-
ditionally supervised pre-training on VQA v2 [12] dataset.

models in the future work.

Qualitative Analysis. To verify that our model can capture
the motion information with respected to the given text rather
than inferring from the static signal, we present the query
text in SSv2 Template dataset which has masked all of the
object information, and also visualize the query in MSRVTT
dataset. As we can see in the Figure 3, the attention map of
atomic action "talking" mainly focuses on the mouse of the
cartoon characters while the baseline largely focusing on the
characters, which indicates that our method can understand
the moment better when adopting the temporal-aware pre-
training tasks. In another example, the word "spins" can
reveal the trajectory of the object showing that our method
is able to capture the temporal motion presented in the video.

4.4. Zero-shot Generalizability

To demonstrate the generalizability of proposed video-
text pre-trained model, we perform zero-shot evaluation on
video-language downstream tasks. We evaluate the zero-
shot performance on VideoQA task in Table 10. Our method
attains competitive zero-shot performance on MSRVTT-QA
and MSVD-QA datasets even without help of audio signal
supervision [60] or additional generated video question pairs
[54]. In particular, less pre-training data (i.e. SM < 69M)
are used while our method can still outperform other SoTA
approaches. We also evaluate the zero-shot performance of
models supervised on VQA v2 [12]. We can find that our
method surpasses the powerful multi-modal SoTA methods
(e.g. mPLUG [22]) with only 5M pre-training data showing
the better generalization ability of HiTeA.
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MSRVTT DiDeMo LSMDC
Method #PTData | R@l R@5 R@I0 | R@l R@5 R@I0 | R@l R@5 R@I0
Frozen [2] 5M 187 395 516 | 21.1 460 562 | 93 220  30.1
ALPRO [23] sM 241 447 554 | 238 473 579 - - -

BridgeFormer [11]  5M 260 464 564 | 256 506 6.1 | 122 259 322
Singularity [20] 5M 284 502 595 | 369 6L6 693 - - -

HiTeA sM 299 542 629 | 361 601 703 | 155 311 398

Table 11: Zero-shot evaluation on text-to-video retrieval. All results are reported on R@1/R@5/R@10.
methods that use significantly more data for fair comparison.

We also perform zero-shot evaluation on text-to-video
retrieval task. Table 11 summarizes the performance of our
model and compared approaches on text-to-video retrieval.
We can observe that our model yields more than 3.4% lift
in R@1 on MSRVTT dataset [53] while exploiting fewer
video-text pairs. Besides, our method surpasses all of the
compared models in terms of LSMDC dataset showing the
superiority of our method’s generalizability.

5. Conclusion

In this work, we introduce HiTeA, a novel hierarchi-
cal temporal-aware video-language pre-training framework
with both understanding and generation capabilities. We
vary the video with different views and model cross-modal
temporal information between moments and texts as well
as temporal contextual relations between multi-modal pairs
in a hierarchical way. Specifically, a cross-modal moment
exploration pre-training task is proposed to explore the
fine-grained temporal information between the paired text
and video moment by overcoming the partially semantic
alignment. Moreover, multi-modal pairs are constructed to
learn temporal contextual relations between moments and
the event presented by the video with multi-modal temporal
relation exploration pre-training task. We also demonstrate
that our proposed pre-training tasks can consistently boost
performance significantly on downstream tasks regardless
of the backbone showing the generalization ability. Even
pre-trained on less data, HiTeA still achieves state-of-the-art
performance on a wide range of video-language downstream
datasets, which clearly shows the superiority of our method.
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