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Figure 1: Learned transforms for factored feature volumes. Latent decompositions with fixed, axis-aligned projections
(left) introduce biases for axis-aligned signals. A more robust, transform-invariant latent decomposition (TILTED) can be
recovered by treating projections to feature grids as learnable functions, here parameterized by τt.

Abstract

Factored feature volumes offer a simple way to build more
compact, efficient, and intepretable neural fields, but also
introduce biases that are not necessarily beneficial for real-
world data. In this work, we (1) characterize the undesir-
able biases that these architectures have for axis-aligned
signals—they can lead to radiance field reconstruction dif-
ferences of as high as 2 PSNR—and (2) explore how learn-
ing a set of canonicalizing transformations can improve rep-
resentations by removing these biases. We prove in a simple
two-dimensional model problem that a hybrid architecture
that simultaneously learns these transformations together
with scene appearance succeeds with drastically improved
efficiency. We validate the resulting architectures, which we
call TILTED, using 2D image, signed distance field, and
radiance field reconstruction tasks, where we observe im-
provements across quality, robustness, compactness, and
runtime. Results demonstrate that TILTED can enable ca-
pabilities comparable to baselines that are 2x larger, while
highlighting weaknesses of standard procedures for evalu-
ating neural field representations.

1. Introduction
Our physical world layers complexity on top of regular-

ity. Tucked below the details that imbue our environments
with character—the intricate fibers of a fine-grained veneer,

or the light-catching specularities of everyday metal, plastic,
and glass—one finds the simple geometric primitives and
symmetries associated with built and natural structures. The
challenge of representations for the world, such as those used
for 3D reconstruction, anchors itself in the interaction be-
tween the two ends of this dichotomy: point clouds and voxel
grids offer versatility, but their inability to capture structure
results in resource usage that can grow too intractably to be
useful for complex details; meshes harness the uniformity
of surfaces for compactness, but still fail on entities with de-
tails that step outside of an acceptable regime—consider fog
or deviations on curves.

In this work, we build on the idea that scalably capturing
the details of a complex signal is only possible when a repre-
sentation enables capture of its structure. We use this theme
to study and improve state-of-the-art hybrid neural fields,
which typically pair neural decoders with factored feature
volumes [32, 51, 63, 66–68]. Aided by an ability to exploit
sparse and low-rank structure, factorization is simple to im-
plement and offers a host of advantages, such as compact-
ness, efficiency, and interpretability. However, naive factor-
ization also introduces the disadvantage of an implicit frame
of representation, which is not guaranteed to be aligned with
the structure of scenes or signals one aims to represent.
Drawing on insights from both low-rank texture extraction
[9] and implicit regularization in optimization methods for
factorization [21, 42], we theoretically characterize the im-
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portance of this alignment and then show how it can moti-
vate practical improvements to neural field architectures that
rely on factored feature volumes. Our contributions are as
follows:

(1) We theoretically characterize the fragility of fac-
tored grids in a two-dimensional model problem, where re-
source efficiency on simple-to-capture structures can be un-
dermined even by small planar rotations (Section 3). We
prove that this fragility can be overcome by jointly optimiz-
ing over the parameters of the representation and a trans-
formation of domain capturing pose, when the underlying
structure is well-aligned in some frame of representation.

(2) We study how this same weakness affects practical
neural field architectures, where it can lead to radiance field
accuracy differences of as high as 2 PSNR. We propose opti-
mization of more robust, transform-invariant latent decom-
positions (TILTED) via a modification of existing factored
representations (Section 4). TILTED models recover canon-
ical factors by jointly recovering factors of a decomposed
feature volume with a set of canonicalizing transformations,
which are simple to add to existing factorization techniques.

(3) We evaluate the TILTED family of models on three
tasks: 2D image, signed distance field, and neural radi-
ance field reconstruction (Section 5). Our experiments high-
light biases in existing neural field architecture and eval-
uation procedures, while demonstrating TILTED’s advan-
tages across quality, robustness, compactness, and runtime.
For real-world scenes, TILTED can simultaneously improve
reconstruction, halve memory consumption, and accelerate
training times by 25%.

2. Related Work

2.1. Neural Fields

In its standard form, a neural field is implemented us-
ing an MLP that takes coordinates as input and returns a
vector of interest. For example, a basic neural radiance
field [29] with network parameters θ maps spatial positions
p = (px, py, pz) ∈ R3 to RGB colors c ∈ [0, 1]3 and densi-
ties σ ∈ R≥0:

p
MLPθ−−−→ (c, σ). (2.1)

This framework is highly versatile. Instead of only position,
inputs can include additional conditioning information such
as specularity-enabling view directions [29], per-camera ap-
pearance embeddings [38], or time [66]. Instead of radiance,
possible outputs also include representations of binary oc-
cupancy [24, 25], signed distance functions [26, 27], joint
representations of surfaces and radiance [39, 45, 46], ac-
tions [52, 62], and semantics [44, 53, 56, 71]. The core
ideas behind TILTED are not tied to specific input or out-
put modalities.

(a) CP (b) Tri-plane (c) Vector-matrix

Figure 2: Tensor decompositions for 3D features volumes
studied by prior work [32, 51, 66]. Note that all assume a
fixed, axis-aligned structure; TILTED instead proposes to
learn transformations of this structure.

2.2. Hybrid Neural Fields

When a single MLP is used as a data structure, as in (2.1),
all stored information needs to be encoded and entangled
in the network weights θ. The result is expensive for both
training and inference. To address this, several works have
proposed forms of hybrid neural fields, which have two com-
ponents: an explicit geometric data structure from which la-
tent vectors are interpolated and a neural decoder [43, 55].
In the case of 3D coordinate inputs and radiance outputs, as
in (2.1), these architectures can be instantiated as

p
VoxelTrilerpφ−−−−−−−−−→ Z

MLPθ−−−→ (c, σ), (2.2)

where VoxelTrilerpφ interpolates the ‘latent grid’ param-
eters φ to produce a latent feature Z ∈ Rd, which is then
decoded to standard radiance field outputs by an MLP with
parameters θ.

Instead of implementing the latent feature volume φ as
a dense voxel grid, a common pattern is to decompose this
tensor into lower-dimensional factors φ = {F1 . . .FF }. In
this way, factored hybrid neural field approaches [32, 51, 59,
63, 64, 66] generalize (2.2) by (i) projecting input coordi-
nates onto each of F lower-dimensional coordinate spaces,
(ii) interpolating F feature vectors from the corresponding
factors, and (iii) reducing—for example, by concatenation,
multiplication, or addition—the set of latent features into the
final latent Z:

Z = Reduce
([

InterpF1
(Proj1(p))

]
, . . . ,[

InterpFF
(ProjF (p))

])
.

(2.3)

Interpolating only on lower-dimensional feature grids
F1, . . . ,FF , which may be 1D or 2D whenp is 3D or higher,
provides efficiency advantages.

Hybrid neural fields offer a unique set of advantages.
In contrast to techniques based on caching and distillation,
which require a pretrained neural network [33–35, 41, 47,
57], hybrid neural field architectures accelerate both train-
ing and evaluation. They also offer unique opportunities
in generation [32, 60, 65], real-time rendering [74, 78] up-
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sampling [51], incremental growth [49, 69, 72, 79], inter-
pretable regularization [66], anti-aliasing [68], exploiting
sparsity [67], and dynamic scene reconstruction [63, 73, 75].

Existing latent grid factorization methods, which can be
formalized under (2.3) (Appendix E), constrain the Proj op-
erations to axis-aligned projections (Figure 2). Similar to
what has been observed in axis-aligned positional encod-
ings [30] (and pointed out by concurrent work [67]), this
results in a bias for axis-aligned signals. TILTED proposes
to learn a set of transforms that removes this bias.

2.3. Learning With Transformations of Domain

TILTED improves reconstruction performance via opti-
mization over transformations of domain, a mathematical
idea dating back to the earliest days of computer vision. A
concrete example is the image registration problem [3, 4, 7,
8], where we seek a transformation τ that deforms an ob-
served image Y to match a target X via gradient descent.
TILTED takes inspiration from many tried-and-tested tech-
niques for robustly solving problems of this type, including
coarse-to-fine fitting and other regularization schemes (e.g.,
[5, 6, 15]). Although this type of ‘supervised’ registration is
studied in the context of neural fields [54], it is less relevant
to learning neural implicit models like (2.2) and (2.3), where
ground-truth is rarely available. Instead, we build TILTED
around an insight of Zhang et al. [13]: for scenes consist-
ing of natural or built environments, the transformation that
‘aligns’ the scene with its intrinsic coordinate frame yields
the most compact representation. In the case of 2D images,
Zhang et al. [13] instantiate this principle as a search for a
transformation that minimizes the sum of the singular values
of the image, a relaxation of the rank:

min
τ

‖Y ◦ τ‖∗. (2.4)

TILTED combines this core insight with the emerging the-
oretical understanding of implicit regularization in various
overparameterized matrix factorization problems [21, 42,
77], which implies that an implicit bias toward low-rank
structures in factored grid representations learned with gra-
dient descent obviates the explicit rank regularization of
(2.4).

A parallel line of work seeks to imbue a broader family
of neural network architectures with invariance or ‘equiv-
ariance’ to transformations or symmetries that the network
should respect. These include parallel channel networks [10,
16, 18, 36], approaches based on pooling over transforma-
tions [12, 14, 22], and approaches with learnable deforma-
tion offsets [17, 19, 20, 48]. Other approaches aim to con-
struct networks that are transformation-invariant by design
[11, 23, 50]. With TILTED, we demonstrate how to com-
bine the benefits of transformation invariance with a variety
of hybrid neural field architectures—as we discuss in Sec-
tion 3, naive factorizations can be severely limited.
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Figure 3: Limitations of low-rank feature grids. (a): The
square template X� is axis-aligned, and has a maximally-
compact (rank one) representation. (b): After a rotation by
π/4 radians, the square template (in red) only changes its
orientation, but its approximability by a low-rank grid dete-
riorates dramatically. We draw the scaled eigenvectors and
approximation for F = 3. (c): By optimizing over transfor-
mations, a rank-one grid can be used to represent all rota-
tions of X�. (d): We plot the number of components needed
to achieve varying PSNR levels as a function of image res-
olution for ν = π/4. The number of components is always
significantly larger than is necessary when transform opti-
mization is used.

3. Low-Rank Grids Are Delicate Creatures

In this section, we theoretically justify the use of trans-
form optimization in TILTED in a simple 2D image recon-
struction problem. We omit the MLP decoder in (2.2) and
focus only on the bottleneck imposed by the factored feature
grid of (2.3). Note that the capacity of the MLP decoder
is tightly constrained by performance considerations; both
TensoRF [51] and K-Planes [66], for example, use only a
single nonlinearity to decode density and proposal fields.

Concretely, let X� ∈ Rn×n denote the grayscale im-
age corresponding to the axis-aligned square pattern in Fig-
ure 3(a). We can decompose X� as X� = u�v

∗
� , where u�

and v� are one-dimensional square pulses aligned with the
support of X�; X� has rank one, and can be perfectly recon-
structed by a maximally-compact low-rank feature grid. In
contrast, consider exactly the same scene, but with an addi-
tional rotation by an angle of ν ∈ [0, π/4] applied to yield
a transformed scene Xν = X� ◦ τν (Figure 3(b)). As ν
approaches its maximum value, the rank of the transformed
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scene grows to a constant multiple of the resolutionn, imply-
ing that perfect representation of Xν by a low-rank feature
grid demands essentially as many components as a generic
n×n matrix. Moreover, even approximate representation of
the transformed scene by a pure low-rank grid is inefficient,
as we prove:

Theorem 1 (informal version of Theorem F.1). There exist
absolute constants c0, c1 > 0 such that for any target chan-
nel count F ≤ c0n

1/6, every rank-F approximation X̂ to
Xπ/4 satisfies

1

n2

∥∥∥X̂ −Xπ/4

∥∥∥2
F
≥ c1

1 + F
.

Theorem 1 asserts that a broad class of sublinear-rank ap-
proximations toXν have mean squared error at least as large
as the reciprocal number of components. Our proofs suggest
this lower bound is tight up to logarithmic factors—in partic-
ular, as we illustrate numerically in Figure 3(d), target PSNR
levels that are more stringent require larger grid ranks F as
the image resolution grows. This situation stands in stark
contrast to what can be achieved by capturing the structure
ofX\: there exists a transformed coordinate system in which
Xν can be represented by a grid with F = 1, regardless of
the image resolution. We prove that the F = 1 instantiation
of TILTED successfully represents Xν by jointly optimiz-
ing over grid factors and transformations (Figure 3(c)):

Theorem 2 (informal version of Theorem F.2). The infinite-
resolution limit of the optimization procedure

min
φ,u

∥∥Xπ/4 − (uu∗) ◦ τφ
∥∥2

F (3.1)

solved with randomly-initialized constant-stepping gradient
descent converges to the true parameters (π/4,u\), up to
symmetry, at a linear rate.

Theorem 2 provides theoretical grounding for TILTED’s
transformation optimization approach in an idealized set-
ting: importantly, there exist conditions under which the
joint learning of the visual representation and pose param-
eters provably succeeds. The proof of Theorem 2 reveals
an important conceptual principle that underlies the success
of this disentangled representation learning: there is a sym-
biotic relationship between the model’s representation ac-
curacy and its alignment accuracy, due to its constrained
capacity (i.e., F = 1 feature channels). More precisely,
incremental improvements to representation quality when
the scene is aligned inaccurately help the model localize
the scene content and create texture gradients that promote
improvements to alignment; meanwhile, improvements to
alignment allow the model to leverage its constrained capac-
ity to more accurately represent the scene. In the remainder
of the paper, we describe the necessary components to in-
stantiate the optimization procedure (3.1) in practice.

4. TILTED
We design TILTED around two goals: (1) Robustness.

TILTED aims for reconstruction ability that is invariant to
rotations. As established theoretically in Section 3 and later
empirically in Section 5, this does not hold for naively de-
composed feature volumes. (2) Generality. TILTED does
not attempt to re-invent the wheel; instead, it is designed
to be compatible with and build directly upon existing ap-
proaches [51, 64, 66] for factoring feature volumes.

Rather than assuming that the projection functions Proji

in (2.3) are static and axis-aligned, the core idea of TILTED
is to replace Proji with learnable functions Proji,τ , where
τ is a set of learnable transformation parameters. By substi-
tuting into (2.3), the feature volume interpolation function
then becomes:

Z = Reduce
([

InterpF1
(Proj1,τ (p))

]
, . . . ,[

InterpFF
(ProjF,τ (p))

])
.

(4.1)

The transformations τ enable mapping from arbitrary scene
coordinates to canonicalized domains for each factor Fi. As
llustrated in Figure 1, this can be interpreted as a spatial
transformation of factors to a set of configurations that align
best to the underlying structure of a signal or scene.

4.1. Applying Transformations

The design space for the parameterization of τ and how
it is applied to input coordinates p is large. We develop
TILTED for the case where τ is a set of T randomly initial-
ized rotations τ = {τ1 . . . τT }, parameterized by the unit
circle S1 in 2D and S3 (the universal cover of the set of rota-
tion matrices SO(3); i.e., unit quaternions) in 3D. We suffix
variants with the value of T ; TILTED-4, for example, refers
to TILTED with 4 learned rotations.

All experiments build atop feature volumes studied in
prior work: for 3D, the CP [1], vector-matrix [51], and K-
Planes [66] decompositions, which are each detailed in Ap-
pendix E. K-Planes in 3D is equivalent to a tri-plane [32],
but uses a multiplicative reduction. We characterize each
decomposition architecture using the channel dimension d
of its reduced latent vector Z ∈ Rd. We constrain T such
that it evenly divides d, and apply rotations to the input coor-
dinates such that each rotation τt is used to compute d/T of
the final output channels. This can be interpreted as a vec-
torized alternative to instantiating T instances of a given de-
composition, each with channel count d/T , applying a dif-
ferent learned rotation to the input of each decomposition,
and concatenating outputs. The resulting formulation has
several desirable qualities:

Robustness. When τ is defined by a family of trans-
forms and optimized from a random initialization, we see
two related advantages. First, as established in Section 3,
the latent feature volume becomes able to represent signals
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and scenes having non-axis-aligned poses with vastly im-
proved parameter efficiency. Second, reconstruction quality
becomes invariant to the transformation group encompassed
by τ . When τ is constrained to rotations, a rotation applied
to the scene becomes equivalent to a rotation applied to the
random initialization of τ .

Convergence. Transformation optimization problems
like camera registration are typically challenging and prone
to local minima, but optimization in TILTED is better po-
sitioned to succeed. We initialize many transforms: for any
given structure in a scene, only one of these many trans-
forms needs to fall into the basin of attraction for success.
Optimization of individual transforms is also highly sym-
metric. Consider rotation optimization over a 2D grid: each
increment of 90 degrees results in a representation with
equivalent structure. Our theoretical analysis, namely The-
orem F.2, verifies that these properties are sufficient for op-
timization to succeed under idealized conditions.

Overhead. Finally, notice that rotations in this form are
inexpensive both to store and apply. Standard hybrid neu-
ral fields can have on the order of millions of parameters;
a library of geometric transformations requires only dozens.
Because coordinate transformations reduce to simple matrix
multiplications, the exerted runtime penalty is also small.

4.2. Coarse-to-Fine Optimization

When optimizing over transformations, high frequency
signals produce undesirable local minima. We improve con-
vergence via two coarse-to-fine optimization strategies.

Dynamic low-pass filtering. Similar to prior work [51,
61], we encode features interpolated in TILTED’s RGB and
SDF experiments with a Fourier embedding [30]. When
these features are used, we adopt the coarse-to-fine strategy
proposed for learning deformation in Nerfies [40] and for
camera registration in BARF [37]. Given J frequencies, we
weight the j-th frequency band via:

wj
k(ηk) =

1− cos(πclamp(ηk − j, 0, 1))

2

where k is the training step count and ηk is interpolated from
a linear schedule ∈ [0, J ].

Two-phase optimization. Effective recovery of τ is cou-
pled with the rank of latent decompositions. As rank is in-
creased, high-frequency signals become easier to express
and overfit to; as a target signal becomes more explainable
without a well-aligned latent structure, optimizers have less
incentive to push τ toward improved solutions.

To help disentangle the τ recovery from the capacity of
latent feature volumes in radiance field experiments, we ap-
ply a two-phase strategy inspired by structure from motion,
where procedures like the 8-point algorithm can be used
to initialize Newton-based bundle adjustment. In the first
phase, we train a hybrid field using a channel-limited CP

Figure 4: Two-phase optimization. Two TILTED neural
fields are trained: the first trained using a rank-constrained
bottleneck representation (left); all parameters are discarded
except for the projection parameters τbneck, which are used
for initialization of the final representation (right).

decomposition, which has limited representational capac-
ity. This produces “bottlenecked” MLP decoder parameters
θbneck, feature grid parameters φbneck, and projection param-
eters τbneck. We discard all parameters but τbneck, and then
simply set:

τinit = τbneck

to initialize the final, more expressive neural field. Example
reconstructions after each phase are displayed in Figure 4.

5. Experiments
5.1. 2D Image Reconstruction

To build intuition in a simple setting, we begin by study-
ing TILTED for 2D image reconstruction with low-rank fea-
ture grids, analogous to our theoretical studies in Section 3.
To evaluate sensitivity to image orientation, we evaluate two
model variants—with an axis-aligned decomposition and
with a TILTED decomposition—on four images rotated by
angles sampled uniformly between 0 and 180, at 10 degree
intervals. The setup of models can be interpreted as the 2D
version of a CP decomposition-based neural field [51, 67].
In the axis-aligned case, latent grids are decomposed into
d = 64 vector pairs, where each vector ∈ R128. The full la-
tent grid can be computed by concatenating the outer prod-
ucts of each pair. In the TILTED variant, we introduce a set
ofT = 8 2D rotations, each of which are applied to d/T vec-
tor pairs. Experiments are run by fitting a hybrid field with
a 2-layer, 32-unit decoder to a randomly subsampled half of
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Figure 5: Evaluation images and results for 2D image re-
construction. We apply rotations to each input image, and
plot holdout PSNR for a model trained at each angle. Axis-
aligned feature decompositions are sensitive to transforma-
tions of the input, while TILTED retains a constant PSNR
across angles.

Figure 6: Fine details without (left) and with (right)
TILTED. The TILTED reconstruction of the whiskers mit-
igates artifacts from axis-aligned factors.

the pixels in an image (in an approximation of radiance field
reconstruction), and using the other half for evaluation. Re-
sults from this process over 5 seeds are reported in Figure 5.
We observe from the experiments:

(1) TILTED improves robustness. When an axis-
aligned decomposition is used, recovered PSNRs are more
volatile, with a difference of as high as 1 PSNR for the Bricks
test image. With the introduction of learned transforms, re-
construction quality becomes stable to input rotations.

(2) TILTED improves detail recovery. We qualitatively
evaluate results by zooming into reconstructed images in
Figure 6. TILTED improves reconstruction particularly in
fine features like the whiskers, which are jagged and bot-
tlenecked by the factorization in the axis-aligned case, but
rendered with fewer artifacts when we apply TILTED.

IoU ↑ 30 60 90

K-Planes 0.949±0.015 0.952±0.015 0.952±0.016
w/ TILTED 0.989±0.002 0.990±0.002 0.991±0.002

IoU ↑ 45 90 135

Vector-Matrix 0.970±0.007 0.979±0.005 0.982±0.003
w/ TILTED 0.982±0.003 0.989±0.002 0.988±0.003

Table 1: Aggregated metrics across models used for SDF
experiments. Three channel count variations are used for
each latent decomposition structure. TILTED improves re-
constructions consistently.

5.2. Signed Distance Field Reconstruction

Next, we study the impact of TILTED on reconstruction
of signed distance fields. We follow the mesh sampling
strategy used for studying signed distance fields in prior
work [58, 64] to produce a set of 8M training points and
16M evaluation points, and then train hybrid fields based on
both VM and K-Plane decompositions. Evaluation metrics
are reported using intersection-over-union (IoU).

We sweep reconstructions based on both K-Planes and
VM, with three channel counts for each architecture, on 8
different meshes. Each representation uses 3 resolutions—
32, 128, and 256. For K-Planes, we use channel counts of
30, 60, and 90; for VM, we use channel counts of 45, 90,
135. All experiments use a 3-layer, 64-unit decoder and 5
transforms. We observe:

(1) Improved reconstructions across architectures
and models. We report the average IoU for eight objects
in Table 1. TILTED improves results for all decomposition
and channel count variants. When we disaggregate results
by model (Section B), TILTED outperforms its axis-aligned
counterpart in all but one (of 48) examples.

(2) Implicit 3D regularization. To better understand
how TILTED impacts SDF reconstruction, we apply march-
ing cubes [2] to learned fields after training. Qualitative ex-
amples are shown in Figure 7. Renders reveal that the hybrid
field architectures we use, which were proposed for and have
not been extensively studied beyond the context of radiance
fields, are prone to floating artifacts in recovered meshes.
The typical solution for artifacts like these is to adjust the
model size or regularization, for example to increase chan-
nel count or encourage spatial smoothness with total varia-
tion. We find that TILTED achieves a similar effect without
expanding the factorization size or changing the optimized
cost function.
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w/ TILTED-5
IoU↑:0.981

w/ TILTED-5
IoU↑:0.981

Figure 7: Signed-distance field reconstruction before
(above) and after (below) TILTED. TILTED reduces float-
ing artifacts without expressiveness-limiting regularization.

5.3. Neural Radiance Fields

5.3.1 Synthetic Study

We begin with a quantitative study using the NeRF-
Synthetic [29] dataset. While this dataset is commonly used
for evaluation of neural implicit architectures, it is unreal-
istic because objects are rendered in Blender and perfectly
axis-aligned. The bricks of the Lego scene, for example,
are exactly lined up with the coordinate system that camera
poses are defined in. To better understand the robustness
of representations, we compare NeRF-Synthetic against the
randomly rotated variant proposed by [30]. We refer to this
dataset as NeRF-SyntheticSO(3). In NeRF-SyntheticSO(3), an
experiment for any given random seed begins training by
applying a uniformly sampled SO(3) rotation to all cam-
era poses. Robustness against this basic operation is critical
for real-world data, where canonical orientations are rarely
well-defined (let alone provided).

For each of the NeRF-Synthetic and NeRF-SyntheticSO(3)

datasets, we train every combination of: (1) two decompo-
sitions: VM and K-Planes, (2) three parameterizations of
τ : axis-aligned (baseline), 4 transforms, and 8 transforms,
(3) eight scenes: chair, drums, ficus, hotdog, lego, materi-
als, mic, and ship, and (4) three random seeds: we use 0,
1, and 2. To eliminate the possibility of bounding box clip-
ping artifacts interfering with results, we use enlarged scene
bounding boxes of [−1.6, 1.6]; this exerts a noticeable but
uniform penalty on PSNR metrics relative to results with
standard smaller bounding boxes. We additionally incorpo-
rate the proposal fields, histogram loss, and distortion losses
proposed by MipNeRF-360 [31]. Our core conclusions are:

(1) Naive hybrid representations have strong axis-

K-Planes VM

Lego 35.31±0.02 → 33.29±0.11 34.24±0.04 → 32.63±0.01

Avg. 32.12±0.02 → 31.62±0.04 31.30±0.03 → 30.76±0.03

Table 2: PSNR decrease of prior methods, before
and after random scene rotation. Metrics are reported
from NeRF-Synthetic (standard, axis-aligned) → NeRF-
SyntheticSO(3)(randomly rotated). Without TILTED, a sim-
ple rotation of the scene coordinate frame can lead to as high
as a 2 PSNR drop in performance.

K-Planes w/ TILTED VM w/ TILTED

Lego 33.29±0.11 34.35±0.07 32.63±0.01 33.90±0.06

Avg. 31.62±0.04 31.91±0.04 30.76±0.03 31.08±0.02

Table 3: PSNR improvement after incorporating
TILTED, on the NeRF-SyntheticSO(3) dataset. TILTED
offers transform-invariant reconstruction quality and mod-
erate PSNR improvements.

8 transforms 4 transforms

Two-Phase 34.35±0.07 34.19±0.22

Without 33.95±0.15 33.83±0.08

Table 4: Ablations on the Lego synthetic dataset. Two-
phase optimization and an increased number of transforms
synergistically improve reconstruction quality. Similar but
weaker trends can be found in less structured scenes. Re-
ported metrics use the K-Planes model.

alignment biases. Results from the axis-aligned factoriza-
tions mirror our theoretical results in Section 3. When an
axis-aligned decomposition is used, the quality of recon-
structions becomes highly sensitive to the orientation of the
target input. In Table 2, we observe as high as a 2 PSNR
drop from scene rotation on the Lego dataset. In contrast,
TILTED is designed with invariance in mind, and is thus
robust to these transformations.

(2) TILTED improves reconstructions. On the NeRF-
SyntheticSO(3) dataset, we observe performance increases
from learned transforms, increasing the number of opti-
mized transformations, and adopting two-phase optimiza-
tion. Table 3 highlights how TILTED improves PSNRs for
the NeRF-SyntheticSO(3) dataset, while Table 4 demonstrates
how components of our method (multiple transforms and
two-phase optimization) improve results.

5.3.2 Real-World Study

In our final set of experiments, we apply TILTED to 18
real-world scenes made available via Nerfstudio [76]. We
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(a) Kitchen (b) Giannini

(c) Stump (d) Storefront

Figure 8: Real-world radiance field comparisons, before (left) and after (right) TILTED. For each scene, we arrange in
three rows the outputs of (i) rendering RGB images, (ii) visualizing the structure-revealing �2-norm of interpolated features,
and (iii) mapping the top three principal components of interpolated features to RGB. TILTED feature volumes result in better
reconstruction quality, with more structured, interpretable, and expressive features. Results in this figure are from K-Planes.
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use a nearly identical architecture and set of parameters as
for experiments in the synthetic setting, but adopt (a) an
`∞ norm-based scene contraction (Equation A.1) to han-
dle the unbounded nature of real-world data, (b) camera
pose optimization to account for noisy camera poses, and (c)
NeRF-W-style appearance embeddings [38]. Once camera
pose optimization and per-camera appearance embeddings
are enabled, we lose the ability to reliably compute evalu-
ation metrics [76]. Instead, we examine how incorporating
TILTED impacts training PSNRs and qualitative results.

(1) On real-world data, TILTED can simultaneously
halve the memory footprint of a model, accelerate train-
ing by 25%, and improve reconstructions. In Table 5, we
compare standard factored neural field representations with
two techniques for improving reconstructions: doubling the
feature volume channel count and TILTED. Compared to an
axis-aligned model of the same size, TILTED improves re-
construction performance on all scenes. It also outperforms
axis-aligned models with 2x higher channel counts in most
cases (72% of the time for VM, 56% for K-Planes), thus cut-
ting parameter count by almost half while being 25% faster
to train (11:04 vs 14:46 for 30k steps).

(2) Recovered transforms align factors to underlying
scene geometry. In Figure 8, we visualize renders next to
visualizations of underlying latent features. We display a
norm-based approach, which involves volume rendering a
map of feature norms using standard NeRF densities for each
transform and then selecting the highest-valued map, and a
PCA-based approach, which maps latent vectors to RGB.
TILTED feature volumes interpretably align themself to the
geometry of the scene, while enabling more detailed and ex-
pressive feature volumes.

(3) Standard evaluations incentivize axis-alignment
biases. Despite significantly outperforming axis-aligned
baselines on both real-world data and NeRF-SyntheticSO(3),
we note that TILTED underperforms against baselines on
the axis-aligned NeRF-Synthetic dataset. This hints at room
for further performance optimizations of our method, while
highlighting flaws in the way that radiance fields architec-
tures are often evaluated. Concretely, these results suggest
that the baselines are overfit to axis-aligned datasets, and that
optimizing for standard evaluation metrics (like PSNR on
the NeRF-Synthetic dataset) can end up undermining real-
world capabilities.

6. Conclusion
We demonstrate the importance of alignment for factored

feature volumes via TILTED, an extension to existing hybrid
neural field architectures based on the idea of canonical fac-
tors. For hybrid neural fields, canonicalizing factors via a
learned set of transformations improves real-world recon-
struction results, enabling improvements across reconstruc-
tion detail, compactness, and runtime. We also developed

Dataset K-Plane / 2x / TILTED VM / 2x / TILTED

Kitchen 25.95 / 26.91 / 27.12 25.63 / 26.54 / 26.90
Floating 24.58 / 25.17 / 25.06 24.03 / 24.70 / 25.04
Poster 33.14 / 33.71 / 33.79 32.84 / 33.49 / 33.61
Redwoods 23.55 / 24.08 / 24.12 23.22 / 23.81 / 23.85
Stump 26.82 / 27.29 / 27.28 26.33 / 26.83 / 26.97
Vegetation 21.62 / 22.10 / 22.10 21.11 / 21.55 / 21.73
BWW 24.64 / 25.06 / 24.95 24.22 / 24.75 / 24.80
Library 25.24 / 25.68 / 25.78 25.50 / 25.78 / 25.84
Storefront 29.71 / 30.12 / 29.87 29.15 / 29.77 / 29.87
Dozer 22.37 / 22.88 / 22.69 21.91 / 22.46 / 22.40
Egypt 20.69 / 21.10 / 21.12 20.84 / 21.17 / 21.09
Person 24.83 / 24.93 / 25.36 25.28 / 25.38 / 25.39
Giannini 20.51 / 20.90 / 20.82 20.27 / 20.64 / 20.60
Sculpture 23.20 / 23.40 / 23.40 22.86 / 23.07 / 23.28
Plane 22.75 / 23.00 / 23.01 22.53 / 22.84 / 22.74
Aspen 15.99 / 16.20 / 16.21 15.98 / 16.15 / 16.20
Desolation 22.14 / 22.40 / 22.25 21.88 / 22.11 / 22.12
Campanile 24.27 / 24.64 / 24.37 23.97 / 24.35 / 24.19

Table 5: For real-world data, TILTED improves PSNRs
on all evaluated scenes, typically outperforming even
much larger axis-aligned models. We compare: standard
hybrid neural fields (K-Plane, VM), axis-aligned fields with
channel counts doubled (2x), and the fields with the original
channel count but addition of TILTED (TILTED).

the theoretical foundations for this methodology; our analy-
sis can be viewed as providing the first provable guarantee
for explicit disentangled representation learning with visual
data beyond spatial deconvolution (e.g., [28]), here disen-
tangling appearance and pose.

Many directions exist for extending our work, both prac-
tically and theoretically. On the practical side, these include
further studying and improving convergence characteristics
and exploring more diverse families of transformations, par-
ticularly for 4D (dynamic scene) factorizations; on the the-
oretical side, they include extending our results to overpa-
rameterized models, MLPs, and scenes with visual clutter.
We also note that our work compares TILTED neural fields
only to their axis-aligned equivalents: while an abundance
of prior work has shown the unique advantages of these rep-
resentations over alternatives, many applications may still
benefit from alternative techniques [58, 70].
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