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Abstract

Recent progress in weakly supervised object detection
is featured by a combination of multiple instance detection
networks (MIDN) and ordinal online refinement. However,
with only image-level annotation, MIDN inevitably assigns
high scores to some unexpected region proposals when gen-
erating pseudo labels. These inaccurate high-scoring re-
gion proposals will mislead the training of subsequent re-
finement modules and thus hamper the detection perfor-
mance. In this work, we explore how to ameliorate the qual-
ity of pseudo-labeling in MIDN. Formally, we devise Cyclic-
Bootstrap Labeling (CBL), a novel weakly supervised ob-
ject detection pipeline, which optimizes MIDN with rank
information from a reliable teacher network. Specifically,
we obtain this teacher network by introducing a weighted
exponential moving average strategy to take advantage of
various refinement modules. A novel class-specific rank-
ing distillation algorithm is proposed to leverage the out-
put of weighted ensembled teacher network for distilling
MIDN with rank information. As a result, MIDN is guided
to assign higher scores to accurate proposals among their
neighboring ones, thus benefiting the subsequent pseudo la-
beling. Extensive experiments on the prevalent PASCAL
VOC 2007 & 2012 and COCO datasets demonstrate the
superior performance of our CBL framework. Code will
be available at https://github.com/Yinyf0804/
WSOD-CBL/.

1. Introduction
With the rapid advancements in deep neural networks,

object detection has experienced significant progress. Nev-
ertheless, state-of-the-art object detection methods are con-
tingent upon accurate instance-level annotations obtained
through fully-supervised learning settings. The process of
collecting such annotations is both arduous and costly. Such
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Figure 1. Comparison between the basic WSOD pipeline and our
proposed CBL framework (feature extractor is omitted for simplic-
ity). In the CBL framework, the subsequent refinement modules
of MIDN are finally utilized to distill MIDN in turn, forming a
cyclic-bootstrap procedure.

facts motivate the exploration of weakly supervised object
detection (WSOD) [2, 32, 44, 43, 48, 25], which achieves
the object detection task using only image-level labels.

Most existing WSOD approaches in the literature [32,
44] generally follow the training pipeline of Fig. 1(a). First,
a multiple instance detection network (MIDN) [2] is ob-
tained by leveraging multiple instance learning scheme for
optimization, which converts WSOD into a multi-class clas-
sification problem over bottom-up generated region pro-
posals [35]. The region proposals with high scores out of
MIDN are then exploited to generate pseudo ground-truth
boxes, which are used for the training of refinement mod-
ules, e.g., online instance classifiers (OICs), and regressors
(R-CNN head). By introducing MIL to the training pro-
cess, MIDN obtains the capability of estimating whether an
object exists in the corresponding region. However, many
high-scoring region proposals from MIDN only cover the
discriminative part of an instance (e.g., the head of a bird),
or contain some background regions [32, 48]. The improper
scoring assignment of MIDN leads to the generation of in-
accurate pseudo ground-truth boxes, which further hinder
the training of subsequent refinement modules.
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This problem has been recognized by the community,
and several approaches have been proposed to address it. In
the literature, C-MIDN [43] and P-MIDN [42] design com-
plementary MIDN modules to find the remained discrimi-
native parts other than the top-scoring ones. IM-CFB [46]
develops a class feature bank to collect intra-class diversity
information, and devises an FGIM algorithm to ameliorate
the region proposal selection. These approaches primar-
ily concentrate on the issue that the high-scoring proposals
cover only the most discriminative parts, while struggling
to address other inaccurate scoring-assignment issues. Be-
sides, most of these attempts involve an auxiliary model,
without offering assistance in the training of MIDN.

To this end, in this paper, we propose the Cyclic-
Bootstrap Labeling (CBL) framework, which advances
WSOD from the one-way pipeline (see Fig. 1 (a)) to a
cyclic-bootstrap procedure (see Fig. 1 (b)). As shown in
Figure, the subsequent modules of MIDN are eventually
utilized to enhance itself. In comparison to the prior ap-
proaches, CBL exerts an additional rank-based supervision
on MIDN, which is capable of handling a broader set of
inaccurate scoring-assignment cases.

Specifically, following the common practice of WSOD,
we first employ MIDN to generate pseudo labels, which
serve as the initial supervision for subsequent refinement
modules. To obtain more accurate classification results, we
construct a weighted ensemble teacher (WET) model, in-
spired by the success of mean teacher methods [34, 23].
The WET model is updated through the weighted exponen-
tial moving average (W-EMA) strategy, which takes advan-
tage of multiple student candidates in the refinement mod-
ules. Subsequently, leveraging the WET results, we propose
a class-specific ranking distillation (CRD) algorithm to su-
pervise MIDN with rank-based labels in a distillation man-
ner. This additional rank-based supervision allows MIDN to
achieve an improved scoring (ranking) assignment, where
accurate proposals will be assigned higher scores among
their neighboring ones. Moreover, we observe that the WET
model can also act as a reliable teacher for the R-CNN head
in the basic WSOD pipeline [44]. To this end, we propose a
multi-seed R-CNN (MSR) algorithm to mine multiple posi-
tive seeds according to the WET results, calculate their con-
fidence scores, and utilize them to generate pseudo labels
for the supervision of the R-CNN head.

Our main contributions are summarized as follows:
• We propose a novel cyclic-bootstrap labeling (CBL)

framework for weakly supervised object detection.
The proposed CBL contains a weighted ensemble
teacher model to generate reliable detection results,
a class-specific ranking distillation algorithm to distill
the MIDN module with rank information, and a multi-
seed R-CNN algorithm to mine accurate positive seeds
for the training of the R-CNN head.

• We provide a new perspective that the subsequent
modules of MIDN are finally utilized to distill MIDN
in turn, forming a cyclic-bootstrap procedure, which is
rarely explored in previous WSOD works.

• Extensive experiments on the prevalent PASCAL VOC
2007 & 2012 and COCO datasets demonstrate the su-
perior performance of our CBL framework.

2. Related Work
In this section, we briefly review the related methods in-

cluding Weakly supervised object detection (WSOD) and
Knowledge distillation.

2.1. Weakly Supervised Object Detection

Weakly supervised object detection (WSOD) [2, 17, 32,
31, 10, 28, 51, 40, 7, 19, 16, 33, 37, 1, 43, 36, 44, 48, 11, 21,
25, 4, 45, 46, 42, 49, 5, 50, 9, 27, 47, 15, 26, 20, 14, 30] has
attracted much attention in recent years. Most recent works
utilize Multiple Instance Learning (MIL) strategy to convert
WSOD into a multi-class classification task, and adopt WS-
DDN [2] as the basic multiple instance detection network
(MIDN) in their frameworks. WSDDN adopts MIL into a
CNN network with a two-stream structure (i.e., classifica-
tion stream and detection stream), and combines the scores
obtained from these two streams to generate instance-level
scores. To improve the detection capability, on one hand,
some works add several modules based on WSDDN for on-
line refinement. OICR [32] first adds several cascaded on-
line instance classifiers to refine the classification results,
and adopts a top-scoring strategy to obtain pseudo seeds for
training these classifiers. To obtain more accurate seeds,
WSOD2 [48] adopts bottom-up object evidence to update
the original classification score during selection, [40] and
[45] utilize results from the other tasks for assistance and
MIST [25] proposes a multiple instance self-training algo-
rithm. Furthermore, Yang [44] constructs a multi-task rcnn-
head to adjust the positions and shapes of proposals.

On the other hand, some works propose to improve the
basic MIDN. C-MIDN and P-MIDN [43, 42] design a (sev-
eral) complementary MIDN module(s) to find the remained
object parts other than the top-scoring one, WS-JDS [28] in-
troduces the segmentation task for assistance, and IM-CFB
[46] constructs a class feature bank to collect intra-class di-
versity information for amelioration. This work also aims
to improve MIDN, but different from them, we propose to
re-adjust the rank distribution of MIDN among neighbor-
ing positive instances, thus helping to generate more high-
quality pseudo labels for subsequent refinement.

2.2. Knowledge Distillation

Knowledge distillation is firstly proposed in [13] to
transfer knowledge from complicated teacher models to dis-
tilled student models, which makes the students achieve
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similar performance to that of teachers. Knowledge distilla-
tion has been explored by a series of works in different tasks
[3, 39, 12, 18, 41, 38]. [3] propose two new losses for better
knowledge distillation on the classification and regression
task, and combine hint learning to help the training process.
[39] employ the inter-location discrepancy of teacher’s fea-
ture response on near object anchor locations for knowl-
edge distillation. [12] use KL divergence loss to distill the
classification head while processing proposals and negative
proposals separately. [18] apply a similar rank distillation
strategy with our CRD algorithm, while their main differ-
ence is that our work focuses on the WSOD task which
does not have instance-level labels. To address this prob-
lem, we generate a reliable positive proposal set based on
the more accurate WET results and propose a weighted KL
divergence loss to alleviate the negative effects brought by
noisy labels.

Previous WSOD work SoS [30] also adopts the knowl-
edge distillation strategy. However, the usage in [30] simply
follows the semi-supervised object detection paradigm and
will not ameliorate the original WSOD network. In con-
trast, our method adopts data distillation in the WSOD train-
ing procedure to improve the rank distribution of MIDN,
thus benefitting the whole WSOD network.

3. Our Method
The overall architecture of the proposed framework is

shown in Fig. 2. An input image and a set of region propos-
als are first fed into the basic WSOD module. The proposal
features are obtained through a CNN backbone and an RoI
Pooling layer followed by two FC layers. Then, these fea-
tures are fed into the MIDN module to produce instance-
level scores. Meanwhile, the image and corresponding pro-
posals are sent to the weighted ensemble teacher (WET)
model, which is gradually updated by the basic WSOD
module via a W-EMA strategy. After that, the WET results
are utilized to distill the MIDN module with rank informa-
tion through the class-specific ranking distillation (CRD) al-
gorithm. Furthermore, WET acts a teacher to supervise the
R-CNN head with the multi-seed R-CNN (MSR) algorithm.

3.1. Basic WSOD Module

Due to the lack of instance-level annotations in the
WSOD settings, many existing works combine Multiple In-
stance Learning (MIL) with a CNN model, denoted as Mul-
tiple Instance Detection Network (MIDN), to accomplish
the detection task. Following previous works [32, 31], we
utilize a two-stream weakly supervised deep detection net-
work (WSDDN) [2] as our MIDN module.

Given an image I , we denote its image-level label as
Yimg = [y1, y2, · · · , yC ] ∈ RC×1, where yc = 1 or
0 indicates the presence or absence of the class c. The
generated region proposal set for image I is denoted as

R = {R1, R2, · · · , RN}. We first extract proposal fea-
tures through a CNN backbone and an RoI Pooling layer
followed by two FC layers. Then, these proposal features
are fed into two sub-branches in MIDN, i.e., classification
branch and detection branch. For classification branch, the
score matrix xcls ∈ RC×|R| is produced through a FC layer,
where C and |R| denote the number of categories and pro-
posals, respectively. Then, a softmax operation is applied
on xcls along the categories to produce σcls(x

cls). Simi-
larly, the score matrix xdet ∈ RC×|R| is produced in the de-
tection branch by another FC layer. A softmax operation is
then applied on xdet along proposals to produce σdet(x

det).
After that, the classification score for each proposal can be
obtained by an element-wise product of these two scores:
xmidn = σcls(x

cls) ⊙ σdet(x
det). Finally, the image-level

classification scores are generated through the the summa-
tion over all proposals: ximg

c =
∑|R|

i=1 x
midn
c,i . In this way,

we train the MIDN module with binary cross-entropy loss:
Lmidn = −

∑C
c=1

[
yclogx

img
c + (1− yc) log

(
1− ximg

c

)]
We further follow OICR [32] to add several cascaded on-

line instance classifiers (OICs) to refine the classification re-
sults. Specifically, for each existing class, OICR selects the
top-scoring proposal of the i-th classifier and its surround-
ing ones as positive samples to generate hard pseudo la-
bels Yrefi ∈ RC+1×|R|. These labels are then used to train
the subsequent (i + 1)-th classifier using a weighted cross-
entropy loss Loic. Particularly, pseudo labels of the first
classifier OIC1 are generated utilizing the MIDN scores.

Moreover, we add an R-CNN head following [44, 46],
which consists of two parallel branches for the classifica-
tion and regression task, respectively. The R-CNN head is
supervised by the pseudo labels generated from the last on-
line instance classifier. The weighted cross-entropy loss and
smooth-L1 loss are applied for the two tasks, respectively.

3.2. Weighted Ensemble Teacher

In this section, we construct a sibling model of the ba-
sic WSOD module, Weighted Ensemble Teacher (WET), to
produce more accurate detection predictions. Similar to the
former, the WET model consists of a feature extractor and
a classification head. An intuitive way to update the WET
model is to apply Exponential Moving Average (EMA) fol-
lowing the traditional mean teacher methods [34, 23]:

θt ← αθt + (1− α)θs, (1)

where θt and θs represent the parameters of the same net-
work in the teacher model and the student model, respec-
tively, and α is a smoothing coefficient. Through the EMA
strategy, the slowly progressing teacher model can be con-
sidered as the ensemble of the student models in different
training iterations [23]. We treat WET and the basic WSOD
module as the teacher and student models, respectively.
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Figure 2. An overview of our CBL framework. Proposal features are first fed into the MIDN module to produce instance-level scores.
Meanwhile, the image and corresponding proposals are sent to the weighted ensemble teacher (WET) model, which is gradually updated
by the basic WSOD module via a W-EMA strategy. After that, the WET results are utilized to distill the MIDN module with rank
information through the class-specific ranking distillation (CRD) algorithm. Furthermore, WET also acts as a teacher to supervise the
R-CNN head with the multi-seed R-CNN (MSR) algorithm.

However, a problem arises that for the classification head
in WET, many candidate networks can be treated as the
student models, i.e., K online instance classifiers (OICs)
and classification branch (CLS branch) in R-CNN head.
The most direct way is to choose CLS (or OICK) branch
as the student network, considering the fact that they al-
ways have better performance among these candidates due
to their relatively accurate pseudo labels after several re-
finements. However, this strategy overlooks the potential
positive influence of the other candidate student networks.

To this end, we propose to modify EMA to accommodate
multiple students. To be specific, we can use the average
parameters of all these candidate student networks during
EMA (A-EMA) instead of selecting a single candidate:

θt ← αθt +
(1− α)

S

S∑
s=1

θs, (2)

where S = K+1 represents the number of candidates. Nev-
ertheless, assigning the same weight to all the candidates is
not the most efficient strategy due to the discrepancies in
their performance. To enable the classification head to ben-
efit more from the better candidate, we devise a weighted

EMA (W-EMA) to adjust the weight of these candidates
accordingly:

θt ← αθt +
(1− α)

2
(
1

K

K∑
k=1

θk + θcls), (3)

where θk and θcls represent the parameters of k-th OIC and
CLS branch, respectively. As a result, the weight of CLS
branch is amplified to K+1

2 of its original value, while the
weights of other candidates are decreased. It is noteworthy
that W-EMA does not add extra hyperparameters, since it
can be viewed as a two-step average of different student
parameters (1st for OICs, 2nd for OIC-avg & CLS).

Overall, we employ EMA for updating feature extractor
and W-EMA for updating classification head. In this paper,
we refer to them collectively as W-EMA strategy. The WET
model with W-EMA strategy has two main advantages:
First, it can reduce the adverse effects of noisy pseudo la-
bels. Second, the WET model can be regarded as an en-
semble model of different student models at different time
steps. These advantages enable the WET model to generate
more reliable classification results xwet ∈ R(C+1)×|R|.
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3.3. Class-Specific Ranking Distillation

Given the image-level supervision, MIDN is likely to as-
sign high scores to some erroneous region proposals, such
as detecting only the most discriminative parts or contain-
ing background noises. To alleviate this problem, we pro-
pose to employ additional supervision on the MIDN mod-
ule. An intuitive way is to generate classification-based su-
pervision with hard pseudo labels, similar to those used for
refinement modules [32, 31]. However, this will exceed the
limits of the original MIL constraint and, more importantly,
contradict our original goal of solving the inaccurate scor-
ing assignment problem of MIDN. For further discussions
please refer to Supplementary Material.

To this end, instead of applying supervision for each in-
dividual proposal, we turn to distill MIDN with the rank-
based information among associated proposals. The most
straightforward approach for rank distillation is to drive
MIDN to generate a rank distribution similar to that of WET
for all proposals. However, this approach has two main
drawbacks: On one hand, learning the rank distribution
among inaccurate samples or irrelevant samples is futile.
On the other hand, without instance-level annotations, some
positive samples will inevitably be assigned lower scores
than some negative ones. To ameliorate these issues, we de-
sign a Class-Specific Ranking Distillation (CRD) algorithm
to guide MIDN to adjust to a more appropriate rank distri-
bution among confident associated proposals.

Specifically, for an existing object class c (i.e., yc = 1),
we first select the proposal with the highest WET score on
this class Ric , which is the most confident positive sample.
Then, we calculate the overlaps between all proposals with
the top-scoring one Ric , and set an overlap threshold τ to
construct a neighboring positive proposal set Pc:

Pc = {Ri|IoU(Ri, Ric) > τ,Ri ∈ R}. (4)

Furthermore, to encourage MIDN to focus on the rank dis-
tribution under different views, we continuously increase
the overlap threshold τ with a linear growth strategy:

τ = τ0 + (τ1 − τ0)
itercur
itermax

, τ ∈ [τ0, τ1], (5)

where itercur represents the current iteration, and itermax

represents the total training iteration using CRD algorithm.
τ0 and τ1 are set to 0.5 and 1.0 naturally following the com-
mon evaluation metrics for selecting positive proposals.

After obtaining the positive proposal set Pc for class c,
we use their predicted scores to represent the rank distri-
bution, since a higher score implies that the corresponding
proposal will receive a higher rank in a particular class. We
opt for the soft score instead of a hard ranking number since
the soft supervision target in distillation is more effective in
preserving detailed rank information. Then, a softmax op-
eration is applied on their c-th scores for normalization to

Figure 3. Comparison of the top-scoring proposals of the MIDN
module in different frameworks at 20k iteration. The proposals
from basic WSOD framework are in red and proposals from our
CBL framework are in yellow.

represent the rank distribution for class c:

s′c,j =
ex

midn
cj∑|Pc|

k=1 e
xmidn
ck

, t′c,j =
ex

wet
cj∑|Pc|

k=1 e
xwet
ck

, Rj , Rk ∈ Pc,

(6)
where s′c and t′c represent the rank distribution of MIDN
(student) and WET (teacher) for class c.

Finally, we utilize a weighted KL divergence loss to dis-
till the MIDN with rank distributions from WET:

Lcrd = −
∑
c

I(yc = 1)
wc

|Pc|

|Pc|∑
j=1

t′c,j log(
s′c,j
t′c,j

), (7)

where wc represents the loss weight of class c. We apply the
highest WET score on this class (xwet

cic
) as wc to represent

the confidence of the selected proposal set of this class (Pc).
By utilizing the CRD algorithm, MIDN is encouraged

to adjust higher ranks to more accurate proposals compared
with that in the original framework, as shown in Fig. 3.

3.4. Multi-Seed R-CNN

Due to its good performance, WET model can serve as a
reliable teacher to other networks in the basic WSOD mod-
ule apart from MIDN. In this section, we propose to employ
WET for the supervision of the R-CNN head.

The pseudo label generation for R-CNN head in the orig-
inal WSOD module can be divided into two steps: First,
the top-scoring proposal (scores are from the last online in-
stance classifier OICK) for an existing class is selected as
the positive seed for this class. Then, pseudo labels of all
proposals are generated according to the overlaps with the
positive seed. This procedure guarantees the quality of the
selected seeds, yet overlooks the potential advantages from
other possible seeds in the same image.

To this end, we propose a simple Multi-Seed R-CNN
(MSR) algorithm to generate more credible seeds by lever-
aging the reliable WET results. First, we use the ensemble
of the WET results with the results from the original teacher
OICK : xmsr = (xwet + xOICK )/2. Next, we propose to
narrow the search range of positive seeds. Taking into ac-
count the fluctuating distribution of scores during the train-
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ing stage, we set a soft threshold to accomplish this. To
be specific, for each existing class c, the threshold σs

c is de-
noted as the highest xmsr of this class multiplied with a fac-
tor µs. To avoid leaving too many proposals, we further set
a threshold σn to limit the number of remaining proposals.
σn is denoted as the number of whole proposals multiplied
with a factor µn:

σs
c = µs maxxmsr

c , σn = µn|R|. (8)

We first select the top-σn proposals and then filter out the
proposals with scores lower than σs

c . Then, we apply the
Non-Maximum Suppression (NMS) algorithm to the re-
mained proposals and regard the kept ones as positive seeds.

To further reduce the impact of noisy seeds, we apply
the original results (i.e., OICK and WET scores) as refer-
ences to assess their confidence. Specifically, according to
each result, we first remove negative proposals using Eq. 8.
Then, for each seed i, we identify if there is one that is very
close to it in the remaining proposals. After that, we calcu-
late the proportion pi,c of such case for seed i according to
all the results. A high proportion indicates that the seed is
recognized as “positive” by multiple classifiers, thus mak-
ing it more confident. Finally, the confidence of a seed is
obtained as follows:

wi = xmsr
i,c · (1 + pγi,c). (9)

We generate corresponding pseudo labels according to
these positive seeds for the classification branch and regres-
sion branch in R-CNN head. We apply weighted cross-
entropy loss and weighted smooth-L1 loss to train these two
branches, respectively. The confidence wi is used as the
weight and the loss for the R-CNN head Lrcnn is obtained
by combining these two losses. For more details, please
refer to Supplementary Material.

3.5. Training Objectives

The overall training objective is the combination of
MIDN, online instance classifiers (OICs), and R-CNN head,
which is elaborated as follows:

Ltotal = λLmidn+(1−λ)Lcrd+

K∑
k=1

Loic+Lrcnn, (10)

where λ controls the weight of image-level supervision
Lmidn and ranking distillation Lcrd. At the start of training
process, MIDN needs to focus on the basic MIL learning for
better multi-class classification, while gradually transition-
ing its focus to adjusting the rank distribution as the training
progresses. To this end, we apply a linear decay strategy
to adjust λ from 1 to 0 with the increment of training iter-
ation. Additionally, we start using MSR algorithm at the
0.4 ·maxiter iteration, considering WET is still in the ini-
tial update stage at the beginning of the training procedure.

Methods mAP@0.5 mAP@[.5, .95]
PCL [31] 19.4 8.5
MIST [25] 24.3 11.4
CASD [15] 26.4 12.8
Ours 27.6 13.6

Table 1. Performance comparison among the state-of-the-art meth-
ods with single model on MSCOCO dataset.

4. Experiments and Analysis
4.1. Datasets

We evaluate our method on the prevalent Pascal VOC
2007, Pascal VOC 2012 [8] and MSCOCO [22] datasets.
For VOC 2007 & 2012 datasets, we train on trainval split
(5,011 and 11,540 images for VOC 2007 & 2012), and re-
port the average precision (AP) on test set, together with
the correct localization rate (CorLoc) on trainval set. Only
when the Jaccard overlap between the predicted bound-
ing box and the corresponding ground-truth box is above
0.5, the prediction is regarded as a true positive one. For
MSCOCO dataset, we train on the train split (82,738 im-
ages), and test on its val split (4,000 images). During evalu-
ation, we apply two metrics mAP@0.5 and mAP@[.5, .95]
following the standard MSCOCO criteria, respectively.

4.2. Implementation Details

We follow the common practice [32, 31] to exploit
VGG16 [29] pre-trained on Imagenet [6] as the backbone
network, and to apply Selective Search [35] for region pro-
posal generation. We use SGD for optimization, and mo-
mentum and weight decay are set to 0.9 and 5 × 10−4 re-
spectively. The learning rate is set to 1 × 10−3 for the first
50K iterations and 1×10−4 for the following 20K iterations.
We set α = 0.999, γ = 0.4, µs = 0.7 and µn = 0.05, and
K is set to 3 following the common practice. itermax is set
to 80k for VOC 2007 & 2012 datasets. Following previous
works [32, 25], multi-level scaling and horizontal flipping
data augmentation are conducted in both training and test-
ing. Our method is implemented on PyTorch [24], and we
run all the experiments on an NVIDIA GTX 1080Ti GPU
with a batch size of 4.

4.3. Comparison with State-of-the-arts

In Tab. 2, we present a comprehensive comparison of
our proposed method with existing arts with single model
on the VOC 2007 dataset. Our method achieves state-of-
art performances of 57.4% mAP and 71.8% CorLoc, sur-
passing previous methods by at least 0.6% and 0.8%. Our
method outperforms recent works [44, 25] that directly use
original MIDN module to train cascaded refinement mod-
ules, since the proposed CRD algorithm improves the scor-
ing assignment on the valuable neighboring positive pro-
posals in MIDN, which benefits the subsequent pseudo la-
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Methods mAP (%) CorLoc (%)
OICR [32] 41.2 60.6
PCL [31] 43.5 62.7
C-MIL [36] 50.5 65.0
Yang et al. [44] 51.5 68.0
C-MIDN [43] 52.6 68.7
SLV [4] 53.5 71.0
WSOD2 [48] 53.6 69.5
IM-CFB [46] 54.3 70.7
MIST [25] 54.9 68.8
CASD [15] 56.8 70.4
Ours 57.4 71.8

Table 2. Performance comparison among the state-of-the-art meth-
ods with single model on PASCAL VOC 2007.

beling, thus raising the upper limit of the whole WSOD per-
formance. Some methods [43, 46] also aim to deal with the
inaccurate scoring assignment issues of MIDN, but their fo-
cus is primarily on the part domination problem that high-
scoring proposals surround only the discriminative parts.
Different from them, our method distills MIDN with rank
information from a reliable WET model, which guides
MIDN to assign higher scores to accurate proposals among
their neighboring ones. Hence, our work can also han-
dle other cases with inaccurate high-scoring proposals (e.g.,
containing background noises). Furthermore, our method
makes the whole framework as a cyclic-bootstrap proce-
dure through the model ensemble (W-EMA strategy) and
the rank-information distillation (CRD algorithm). There-
fore, our method also performs better than them.

For the MSCOCO dataset, as shown in Tab. 1, our
method produces the state-of-art performances of 27.6%
mAP@0.5 and 13.6% mAP@[.5, .95], outperforming the
best competitor CASD [15] by clear margins of 1.2% and
0.8%, which also validates the effectiveness of our work.

Fig. 4 shows the detection results on VOC 2007. The
first two rows indicate that our method can detect multiple
instances accurately (e.g., “dog”, “car”), even if they are in
some complex scenes. Some failure cases are shown in the
last row, which contains localizing only the discriminative
parts (e.g., human faces), grouping several objects (espe-
cially for “bottle” class), and containing background parts.

4.4. Ablation Study

4.4.1 Effect of Each Component

We conduct ablation studies on the main components of
CBL framework in Tab. 3 under the mAP metric, where
“inf.” represents using WET model during inference. We
start from the basic WSOD module (Line 1), with an mAP
of 53.3%. Next, we extend the basic model by adding WET
model and use it to distill the MIDN module with CRD al-
gorithm (Line 3), which improves the basic model to 55.8%
mAP, bringing a clear 2.5% gain. This outcome highlights
the effectiveness of the CRD algorithm in enhancing the

Basic WET CRD MSR Inf. mAP (%)
✓ 53.3
✓ ✓ 54.2
✓ ✓ ✓ 55.8
✓ ✓ ✓ ✓ 56.0
✓ ✓ ✓ ✓ ✓ 57.4

Table 3. Ablative experiments on the effects of different compo-
nents in our CBL. The models are evaluated on PASCAL VOC
2007 in terms of mAP (%).

Updating Strategy mAP (%)
EMA with the last OIC branch 55.3
EMA with the CLS branch 54.5
A-EMA with all OICs and CLS branch 56.1
W-EMA with all OICs and CLS branch 57.4

Table 4. Ablative experiments on the effect of the WET updating
strategy. The models are evaluated on PASCAL VOC 2007.

Overlap Threshold mAP (%)
Static Value (τ = 0.75) 55.8
Linear Growth (τ ∈ [0.5, 1.0]) 57.4
Linear Decline (τ ∈ [0.5, 1.0]) 56.2

Table 5. Ablative experiments on the effect of overlap threshold in
CRD. The models are evaluated on PASCAL VOC 2007.

overall WSOD performance by distilling rank information
on MIDN. After that, we utilize the WET model during in-
ference with the proposed weighted ensemble strategy (Line
4), boosting the performance to 56.0 % mAP.

To validate the importance of the proposed WET model,
we conduct an additional experiment where we replace the
WET model with the branch in the basic model (i.e. the
last OIC branch OICK or the classification branch in R-
CNN head) for distillation (Line 2), and we find OICK per-
forms better with an mAP of 54.2%. However, this opera-
tion resulted in a 1.8% mAP drop, indicating that the WET
model is a more dependable teacher in the distillation pro-
cess. Nonetheless, the performance still remains 0.9% upe-
rior to the basic model, thus further validating the efficacy
of the CRD algorithm. Moreover, when applying the MSR
algorithm (Line 5), we can achieve the best performance
57.4%, which shows that WET can also function as a profi-
cient teacher during the training of the R-CNN head.

4.4.2 Effect of WET Updating Strategy

We conduct experiments to analyze the influence of dif-
ferent updating strategies on WET. The results are shown
in Tab. 4, where OIC and CLS represent the online in-
stance classification branch and the classification branch in
R-CNN head, respectively. When directly using the single
classification branch to update the WET model via EMA
(Line 1-2), the proposed WET model can achieve at most
55.3% mAP, which demonstrates the effectiveness of the
whole CBL framework. In addition, utilizing CLS branch
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Figure 4. Visualization results on VOC 2007 test set. Boxes in red, yellow, and green represent ground-truth boxes, successful predictions,
and failure cases, respectively.
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Figure 5. Influences of score factor µs and number factor µn in
MSR. The models are evaluated on PASCAL VOC 2007.

does not perform well since it is cascaded after too many
refinement modules, hence converging slowly at the begin-
ning of the training procedure. Directly employing it to up-
date WET will influence the critical initial update phase of
WET. When A-EMA is applied (Line 3), the performance
shows an improvement of 0.8% mAP, indicating that other
candidates, apart from the best ones, can also have a positive
impact on updating the WET model. Additionally, when
using the W-EMA strategy (Line 4), the whole framework
achieve the best performance 57.4% mAP. This result shows
that assigning a higher weight to the superior candidate dur-
ing the update process is a more effective strategy.

4.4.3 Overlap Threshold in CRD

We compare the different settings on the overlap threshold
τ in CRD, and the results are presented in Tab. 5. We find
that changing τ during training brings more benefits than
directly setting a static value, since the former setting will
help MIDN to pay attention to the rank distribution under
different views. Moreover, a linear growth strategy per-
forms best, because the pseudo labels for the subsequent
refinement module need to be more precise with its increas-
ing detection capability. Therefore, CRD algorithm needs to

gradually narrow the view to focus on fine-tuning the rank
distribution of more accurate proposals.

4.4.4 Effect of MSR Selection Range
Fig. 5 shows the influences of score factor µs and num-
ber factor µn used to narrow the selection range of posi-
tive seeds. Among all the settings, µs = 0.7, µn = 0.05
performs best. If the range is too small (large µs or small
µn), few seeds will be found, which limits the benefits from
MSR algorithm. Conversely, if the range is too large, some
noisy samples will be selected incorrectly, thus degrading
the MSR performance. Our MSR algorithm is insensitive
to both µs and µn and all the settings outperform the base-
line by at least 3.0% mAP.

5. Conclusion
In this paper, we propose an effective cyclic-bootstrap

labeling (CBL) framework for WSOD. We first construct
a reliable WET model and update it via W-EMA strategy.
After that, the WET results are utilized to distill the MIDN
module with rank distribution with the proposed CRD al-
gorithm. Additionally, we propose an MSR algorithm to
mine accurate positive seeds to train the R-CNN head better.
The whole framework acts as a cyclic-bootstrap procedure
where the subsequent modules of MIDN are finally utilized
to supervise itself. Extensive experiments on the PASCAL
VOC 2007 & 2012, and MSCOCO datasets demonstrate the
superior performance of our CBL framework.
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