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Figure 1 — Illustration and applications of our metric 3D reconstruction method. Top (metrology): we use two phones (iPhone 12 and an Android
phone) to capture the scene and measure the size of tables. With the photos’ metadata, we perform 3D metric reconstruction and then measure tables’
sizes (marked in red), which are very close to the ground truth (marked in blue). In contrast, the recent method LeReS [57] performs much worse and
is unable to predict metric 3D by design. Bottom (dense SLAM mapping): existing SOTA mono-SLAM methods usually face scale drift problems (see
the red arrows) in large-scale scenes and are unable to achieve the metric scale, while, naively inputting our metric depth, Droid-SLAM [44] can recover
much more accurate trajectory and perform the metric dense mapping (see the red measurements). Note that all testing data are unseen to our model.

Abstract

Reconstructing accurate 3D scenes from images is a
long-standing vision task. Due to the ill-posedness of the
single-image reconstruction problem, most well-established
methods are built upon multi-view geometry.  State-of-
the-art (SOTA) monocular metric depth estimation meth-

*Equal contributions.
fCorresponding author.

ods can only handle a single camera model and are un-
able to perform mixed-data training due to metric ambi-
guity. Meanwhile, SOTA monocular methods trained on
large mixed datasets achieve zero-shot generalization by
learning affine-invariant depths, which cannot recover real-
world metrics. In this work, we show that the key to a
zero-shot single-view metric depth model lies in the com-
bination of large-scale data training and resolving the met-
ric ambiguity from various camera models. We propose a
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canonical camera space transformation module, which ex-
plicitly addresses the ambiguity problems and can be effort-
lessly plugged into existing monocular models. Equipped
with our module, monocular models can be stably trained
over 8 millions of images with thousands of camera mod-
els, resulting in zero-shot generalization to in-the-wild im-
ages with unseen camera settings. Experiments demon-
strate SOTA performance of our method on 7 zero-shot
benchmarks. Notably, our method won the championship
in the 2nd Monocular Depth Estimation Challenge. Our
method enables the accurate recovery of metric 3D struc-
tures on randomly collected internet images, paving the way
Sor plausible single-image metrology. The potential benefits
extend to downstream tasks, which can be significantly im-
proved by simply plugging in our model. For example, our
model relieves the scale drift issues of monocular-SLAM
(Fig. 1), leading to high-quality metric scale dense map-
ping. The code is available at https://github.com/
YvanYin/Metric3D.

1. Introduction

3D reconstruction from images is the core of many com-
puter vision applications, such as autonomous driving and
robotics. Main-stream methods leverage multi-view geom-
etry [15] to confidently recover 3D structures. However,
these methods cannot be applied to a single image, mak-
ing 3D reconstruction hard without a prior. State-of-the-
art transferable methods, such as MiDaS [32], LeReS [57],
and HDN [60], learn such a prior from a large dataset, but
they can only output affine-invariant depths, i.e., which are
accurate only up to an unknown offset and scale. Though
monocular metric depth estimation methods [59, 2] work
on a single dataset with a single camera model, they cannot
generalize to unseen cameras or scenes. This work aims to
address the above problems by learning a zero-shot, single
view, metric depth model.

According to the predicted depth, existing methods are
categorized into learning metric depth [59, 53, 2, 52], learn-
ing relative depth [48, 49, 6, 5], and learning affine-invariant
depth [57, 56, 32, 31, 60]. Although the metric depth meth-
ods [59, 53, 55, 2, 52] have achieved impressive accuracy
on various benchmarks, they must train and test on the
dataset with the same camera intrinsics. Therefore, train-
ing datasets of metric depth methods are often small, as it
is hard to collect a large dataset covering diverse scenes us-
ing one identical camera. The consequence is that all these
models are not transferable — they generalize poorly to im-
ages in the wild, not to mention the camera parameters of
test images can vary too. A compromise is to learn the rela-
tive depth [6, 48], which only represents the depth ordering
information. Thus the application is very limited. Learning
affine-invariant depth finds a trade-off between the above

two categories of methods. With large-scale data, they de-
couple the metric information during training and achieve
impressive robustness and generalization ability. The re-
cent SOTA LeReS [57] can recover 3D scenes in the wild,
but only up to an unknown scale and shift.

This work focuses on learning a zero-shot transferable
model to recover metric 3D from a single image. First, we
analyze the metric ambiguity issues in monocular depth es-
timation and study different camera parameters in depth, in-
cluding the pixel size, focal length, and sensor size. We ob-
serve that the focal length is the critical factor for accurate
metric recovery. By design, LeReS [57] does not take the
focal length information into account during training. As
shown in Sec. 3.1, only from the image appearance, vari-
ous focal lengths may cause metric ambiguity, thus they de-
couple the depth scale in training. To solve the problem of
varying focal lengths, CamConv [!1] encodes the camera
model in the network, which enforces the network to im-
plicitly understand camera models from the image appear-
ance and then bridges the imaging size to the real-world
size. However, training data contains limited images and
types of cameras, which challenges data diversity and net-
work capacity. In contrast, we propose a canonical cam-
era transformation method in training. It is inspired by the
human body reconstruction methods. To improve recon-
structed shape quality on countless poses, they map all sam-
ples to a canonical pose space [29] to reduce pose variance.
Similarly, we transform all training data to a canonical cam-
era space where the processed images are coarsely regarded
as captured by the same camera. To achieve such transfor-
mation, we propose two different methods. The first one
tries to adjust the image appearance to simulate the canoni-
cal camera, while the other one transforms the ground-truth
labels for supervision. Camera models are not encoded in
the network, making our method easily applicable to exist-
ing architectures. During inference, a de-canonical trans-
formation is employed to recover metric information. To
further boost the depth accuracy, we propose a random pro-
posal normalization loss. It is inspired by the scale-shift
invariant loss [57, 32, 60], which decouples the depth scale
to emphasize the single image’s distribution. However, they
perform on the whole image, which inevitably squeezes the
fine-grained depth difference. We propose to randomly crop
several patches from images and enforce the scale-shift in-
variant loss [57, 32] on them. Our loss emphasizes the local
geometry and distribution of the single image.

With the proposed method, we can easily scale up model
training to 8 million images from 11 datasets of diverse
scene types (indoor and outdoor) and camera models (tens
of thousands of different cameras), leading to zero-shot
transferability and a significantly improved accuracy. Our
model can accurately reconstruct metric 3D from randomly
collected Internet images, enabling plausible single-image
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metrology. Different from affine-invariant depth models,
our model can also directly improve various downstream
tasks. As an example (Fig. 1), with the predicted met-
ric depths from our model, we can significantly reduce the
scale drift of monocular SLAM [44, 43] systems, achiev-
ing much better mapping quality with real-world metric re-
covery. Our model also enables large-scale 3D reconstruc-
tion [17]. The model achieves the championship in the
2nd Monocular Depth Estimation Challenge [42]. To
summarize, our main contributions are:

* We propose a canonical and de-canonical camera
transformation method to solve the metric depth am-
biguity problems from various cameras setting. It en-
ables the learning of strong zero-shot monocular met-
ric depth models from large-scale datasets.

* We propose a random proposal normalization loss to
boost the depth accuracy effectively;

e Our model achieves state-of-the-art performance on 7
zero-shot benchmarks. It can perform high-quality 3D
metric structure recovery in the wild and benefit sev-
eral downstream tasks, such as mono-SLAM [44, 27],
3D scene reconstruction [17], and metrology [62].

2. Related Work

3D reconstruction from a single image. Reconstructing
various objects from a single image has been well stud-
ied [1, 46, 47]. They can produce high-quality 3D models
of cars, planes, tables, and human body [33, 34]. The main
challenge is how to best recover objects’ details, how to rep-
resent them with limited memory, and how to generalize to
more diverse objects. However, all these methods rely on
learning priors specific to a certain object class or instance,
typically from 3D supervision, and can therefore not work
for full scene reconstruction. Apart from these reconstruct-
ing objects works, several works focus on scene reconstruc-
tion [51] from a single image. Saxena et al. [35] construct
the scene based on the assumption that the whole scene can
be segmented into several small planes. With planes’ orien-
tation and location, the 3D structure can be represented. Re-
cently, LeReS [57] propose to use a strong monocular depth
estimation model to do scene reconstruction. However, they
can only recover the shape up to a scale. Zhang et al. [61]
recently propose a zero-shot geometry-preserving depth es-
timation model that is capable of making depth predictions
up to an unknown scale, without requiring scale-invariant
depth annotations for training. In contrast to these works,
our method can recover the metric 3D structure.

Supervised monocular depth estimation. After several
benchmarks [39, 12] are established, neural network based
methods [59, 55, 2, 25] have dominated since then. Several
approaches regress the continuous depth from the aggrega-
tion of information in an image [10]. As depth distribution

corresponding to different RGBs can vary to a large extent,
some methods [55, 2] discretize the depth and formulate this
problem to a classification [53], which often achieves bet-
ter performance. The generalization issue of deep models
for 3D metric recovery is related to two problems. The first
one is to generalize to diverse scenes, while the other one
is how to predict accurate metric information under vari-
ous camera settings. The first problem has been well ad-
dressed by recent methods. Some works [49, 48, 53] pro-
pose to construct a large-scale relative depth dataset, such
as DIW [5] and OASIS [6], and then they target learning
the relative relations. However, the relative depth loses ge-
ometric structure information. To improve the recovered
geometry quality, learning affine-invariant depth methods,
such as MiDaS [32], LeReS [57], and HDN [60] are pro-
posed. By mixing large-scale data, state-of-the-art perfor-
mance and the generalization over scenes are improved con-
tinuously. Note that by design, these methods are unable to
recover the metric information. How to achieve both strong
generalization and accurate metric information over diverse
scenes is the key problem that we attempt to tackle.
Large-scale data training. Recently, various natural lan-
guage problems and computer vision problems [54, 30, 22]
have achieved impressive progress with large-scale data
training. CLIP [30] is a promising classification model,
which is trained on billions of paired image and language
descriptions data. It achieved state-of-the-art performance
over several classification benchmarks by zero-shot test-
ing. For depth prediction, large-scale data training has been
widely applied. Ranft et al. [32] mixed over 2 million data
in training, LeReS [56] collected over 300 thousand data,
Eftekhar et al. [9] also merged millions of data to build a
strong depth prediction model.

3. Method

Preliminaries. We consider the pin-hole camera model
with intrinsic parameters: [[f/s,0, uo], [0, /5, vo], [0, 0, 111,
where f is the focal length (in micrometers), J is the pixel
size (in micrometers), and (ug,vg) is the principle center.
f = /s is the pixel-represented focal length used in vision
algorithms.

3.1. Metric Ambiguity Analysis

Fig. 3 presents an example of photos taken by different
cameras and at different distances. Only from the image’s
appearance, one may think the last two photos are taken at
a similar location by the same camera. In fact, due to differ-
ent focal lengths, these are captured at different locations.
Thus, camera intrinsic parameters are critically important
for the metric estimation from a single image, as otherwise,
the problem is ill posed. To avoid such metric ambigu-
ity, recent methods, such as MiDaS [32] and LeReS [57],
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Figure 2 — Pipeline. Given an input image I, we first transform it to the canonical space using CSTM. The transformed image /. is fed into a depth
estimation model to produce the metric depth D, in the canonical space. During training, D, is supervised by a GT depth D} which is also transformed
into the canonical space. In inference, after producing the metric depth D, in the canonical space, we perform a de-canonical transformation to convert
it back to the space of the original input I. The canonical and de-canonical transformations are executed using camera intrinsics.
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ocal=26 mm, depth=2m
Figure 3 — Photos of a chair captured at different distances with dif-
ferent cameras. The first two photos are captured at the same distance
but with different cameras, while the last one is taken at a closer distance
with the same camera as the first one.
decouple the metric from the supervision and compromise
learning the affine-invariant depth.
Fig. 4 (A) shows a simple pin-hole perspective projec-
tion. Object A locating at d,, is projected to A’. Based on
the principle of similarity, we have the equation:

dazé{i]:é-a 1)
. A S’
where S and S’ are the real and imaging size respectively.
“ denotes variables are in the physical metric (e.g., millime-
ter). To recover d, , focal length, imaging size of the object,
and real-world object size must be available. Estimating the
focal length from a single image is a challenging and ill-
posed problem. Although several methods [57, 16] have
been explored, the accuracy is still far from being satisfac-
tory. Here, we simplify the problem by assuming the focal
length of a training/test image is available. Understanding
the imaging size is much easier for a neural network. To
obtain the real-world object size, a neural network needs
to understand the semantic scene layout and the object, at
which a neural network excels. We define o = /, /S, s0 dg
is proportional to a.

We make the following observations regarding sensor
size, pixel size, and focal length.
O1: Sensor size and pixel size do not affect the met-
ric depth estimation. Based on the perspective projection
(Fig. 4 (A)), the sensor size only affects the field of view
(FOV) and is irrelevant to «, thus does not affect the metric
depth estimation. For the pixel size, we assume two cam-
eras with different pixel sizes (61 = 2d2) but the same focal

length f to capture the same object locating at d,. Fig. 4
(B) shows their captured photos. According to the prelimi-
naries, the pixel-represented focal length f; = % fo. As the
second camera has a smaller pixel size, although in the same
projected imaging size S, the pixel-represented image res-
olution is S} = %Sg According to Eq. (1), ﬁ = E%’
i.e. a1 = g, S0 di = dy. Therefore, different camera
sensors would not affect the metric depth estimation.

02: The focal length is vital for metric depth estimation.
Fig. 3 shows the metric ambiguity issue caused by the un-
known focal length. In Fig. 5, two cameras ( f1 =2 fg) are
at distances d; and do, the imaging sizes on cameras are
the same. Only from the appearance, the network will be
confused when supervised with different labels. Based on
this, we propose a canonical camera transformation method
to solve the supervision and image appearance conflicts.

3.2. Canonical Camera Transformation

The core idea is to set up a canonical camera space
((f, £9)s [ = [y = f° in experiments) and transform
all training data to this space. Consequently, all data can
roughly be regarded as captured by the canonical camera.
We propose two transformation methods, i.e. either on the
input image (I € R *Wx3) or the GT label (D € RE*W),
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(A) (B)

Figure 4 — Pinhole camera model. (A) Object A at the distance d, is
projected to the image plane. (B) Using two cameras to capture the car.
The left one has a larger pixel size. Although the projected imaging sizes
are the same, the pixel-represented images (resolution) are different.

d

!

object A 4

2

Figure 5 — Illustration of two cameras with different focal length at
different distance. As f1 = 2f2 and d; = 2da, A is projected to two
image planes with the same imaging size (i.e. A; = A/Q).

object A
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The original intrinsics are { f, uo, vo }.
Methodl: transforming depth labels (CSTM_ label).
Fig. 3’s ambiguity is for depths. Thus our first method di-
rectly transforms the ground-truth depth labels to solve this
problem. Specifically, we scale the ground-truth depth (D*)
with the ratio wg = f in training, i.e., D* = wyD*. The
original camera model is transformed to { /¢, ug, v }. In in-
ference, the predicted depth (D.) is in the canonical space
and needs to perform a de-canonical transformation to re-
cover the metric information, i.e., D = deDc. Note the
input I does not perform any transformation, i.e., I, = L.
Method2: transforming input images (CSTM_image).
From another view, the ambiguity is caused by the similar
image appearance. Thus this method is to transform the in-
put image to simulate the canonical camera imaging effect.
Specifically, the image I is resized with the ratio w, = %,
ie., I. = T(I,w,), where T(-) denotes image resize. The
optical center is resized, thus the canonical camera model
is {f¢, wyug,w,vo}. The ground-truth labels are resized
without any scaling, i.e., D¥ = T(D* w,). In inference,
the de-canonical transformation is to resize the prediction
to the original size without scaling, i.e., D = T(Dy, w%)
Fig. 2 shows the pipeline. After performing either trans-
formation, we randomly crop a patch for training. The crop-
ping only adjusts the FOV and the optical center, thus not
causing any metric ambiguity issues. In the labels trans-
formation method w,, = 1 and wy = ff , while wg = 1 and
wy, = L= inthe images transformation method. The training
objective is as follows:

m@in |Nd(1(17 9) - Di‘ (2)

where 6 is the network’s (Ng(+)) parameters, D* and I, are
transformed ground-truth depth labels and images.

Supervision. To further boost the performance, we pro-
pose a random proposal normalization loss (RPNL). The
scale-shift invariant loss [32, 57] is widely applied for
the affine-invariant depth estimation, which decouples the
depth scale to emphasize the single image distribution.
However, such normalization based on the whole image in-
evitably squeezes the fine-grained depth difference, partic-
ularly in close regions. Inspired by this, we propose to ran-
domly crop several patches (p;(i—o,....rr) € RA:xwi) from
the ground truth D} and the predlcted depth D.. Then we
employ the median absolute deviation normalization [40]
for paired patches. By normalizing the local statistics, we
can enhance local contrast. The loss function is as follows:

SRS
N
CMN S W pldy, ;)

dpia,j B M(dpz;j)
E 5N dy, 5 — n(dy, ;)]

IE)

where d* € D} and d € D, are the ground truth and pre-
dicted depth respectively. p(-) and is the median of depth.
M is the number of proposal crops, which is set to 32. Dur-
ing training, proposals are randomly cropped from the im-
age by 0.125 to 0.5 of the original size. Furthermore, sev-
eral other losses are employed, including the scale-invariant
logarithmic loss [10] L4, pair-wise normal regression
loss [57]Lpwn, virtual normal loss [53] Lynr,. Note L4
is a variant of L1 loss. The overall losses are as follows.

L = LpwN + LyNL + Lsitog + LrPNL-

4. Experiments

Dataset details. We collect 11 public RGB-D datasets,
and over 8 million data for training. It spreads over diverse
indoor and outdoor scenes. Note that all datasets have pro-
vided camera intrinsic parameters. Over 10K different cam-
eras are included. Furthermore, we collect 7 unseen datasets
for robustness and generalization evaluation. Details of em-
ployed data are reported in the supplementary materials.
Implementation details. We use an UNet architecture with
the ConvNext-large [26] backbone. ImageNet-22K pre-
trained weights are used for initialization. We use AdamW
with a batch size of 192, an initial learning rate 0.0001 for
all layers, and the polynomial decaying method with the
power of 0.9. We use 48 A100 GPUs and train for 500K
iterations. Following [53], we balance all datasets in a
mini-batch to ensure each dataset accounts for an almost
equal ratio. In training, images are processed by the CSTM,
flipped horizontally with a 50% chance, and then randomly
cropped into 512 x 960. In ablation studies, training settings
are different as we sample 5000 images from each dataset
for training and train on 8 GPUs for 150K iterations.
Evaluation details. a) To show the robustness of our met-
ric depth estimation method, we test on 8 zero-shot bench-
marks, including NYUv2 [39], KITTI [12], NuScenes [4],
7-scenes [38], iBIMS-1 [19], DIODE [45], ETH3D [37].
Absolute relative error (AbsRel), the accuracy under thresh-
old (§; < 1.25%,4 = 1,2,3), root mean squared error
(RMS), root mean squared error in log space (RMS_log),
and log10 error (log10) metrics are employed. b) Further-
more, we also follow current affine-invariant depth bench-
marks [57, 60] (Tab. 4) to evaluate the generalization abil-
ity on 5 zero-shot datasets, i.e., NYUv2, DIODE, ETH3D,
ScanNet [7], and KITTI. We mainly compare with large-
scale data trained models. Note that in this benchmark we
follow existing methods to apply the scale shift alignment
before evaluation. c¢) To evaluate our metric 3D reconstruc-
tion quality, we randomly sample 9 unseen scenes from
NYUvV2 and use colmap [36] to obtain the camera poses for
multi-frame reconstruction. Chamfer /; distance and the F-
score [ 18] are used to evaluate the reconstruction accuracy.
d) In dense-SLAM experiments, following Li ez al. [24], we
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Table 1 — Quantitative comparison on NYUv2 and KITTI benchmarks.
Both datasets are unseen to our model, but we can achieve comparable
performance with state-of-the-art methods.

NYUv2 Benchmark

Method | 4;1 21 J31 AbsRel|  logl0] RMS|

Lietal [23] | 0.788  0.958  0.991 0.143 0.063 0.635
Lainaeral. [21] | 0.811  0.953  0.988 0.127 0.055 0.573

VNL [55] | 0.875  0.976  0.994 0.108 0.048 0.416

TrDepth [52] | 0.900  0.983  0.996 0.106 0.045 0.365

Adabins [2] | 0.903  0.984  0.997 0.103 0.044 0.364

NeWCRFs [59] | 0.922  0.992 0.998 0.095 0.041 0.334

Ours CSTM_image | 0.925 0.983  0.994 0.092 0.040 0.341

Ours CSTM_label | 0.944  0.986  0.995 0.083 0.035 0.310
KITTI Benchmark

Method | 6;1 o1 037 AbsRel | RMS | RMS.og |

Guoeral [14] | 0.902  0.969  0.986 0.090 3.258 0.168
VNL [55] | 0.938  0.990  0.998 0.072 3.2568 0.117
TrDepth [52] | 0.956  0.994  0.999 0.064 2.755 0.098
Adabins [2] | 0.964  0.995 0.999 0.058 2.360 0.088
NeWCRFs [59] | 0.974 0.997  0.999 0.052 2.129 0.079

Ours CSTM_image | 0.967 0.995 0.999 0.060 2.843 0.087
Ours CSTM_label | 0.964  0.993  0.998 0.058 2.770 0.092

test on the KITTI odometry benchmark [12] and evaluate
the average translational RMS drift (%, ¢,.;) and rotational
RMS drift (°/100m, y.¢;) errors [12].

4.1. Zero-shot Generalization Test

Evaluation on metric depth benchmarks. To evaluate the
accuracy of predicted metric depth, firstly, we compare with
state-of-the-art (SOTA) metric depth prediction methods on
NYUv2 [39], KITTI [13]. We use the same model to do
all evaluations. Results are reported in Tab. 1. Without any
fine-tuning or metric adjustment, we can achieve compara-
ble performance with SOTA methods, which are trained on
benchmarks for hundreds of epochs.

Furthermore, we collect 6 unseen datasets to do more
metric accuracy evaluation. These datasets contain a wide
range of indoor and outdoor scenes. The camera models are
also various, e.g. 7scenes has a short focal length (around
500), while ETH3D is 2000. We compare with the SOTA
metric depth estimation methods and take their NYUv2 and
KITTI models for indoor and outdoor scenes evaluation re-
spectively. In Tab. 3, although 7Scenes is similar to NYUv2
and NuScenes is similar to KITTI, existing methods face a
noticeable performance decrease. In contrast, our model is
more robust.

Generalization over diverse scenes. Affine-invariant
depth benchmarks decouple the scale’s effect, which aims to
evaluate the model’s generalization ability to diverse scenes.
Recent impact works, such as MiDaS, LeReS, and DPT,
achieved promising performance on them. Following them,
we test on 5 datasets and manually align the scale and shift
to the ground-truth depth before evaluation. Results are re-
ported in Tab. 4. Although our method enforces the network
to recover more challenging metric information, our method
outperforms them by a large margin on most datasets.

4.2. Applications Based on Our Method

3D scene reconstruction . To demonstrate our work can re-
cover the 3D metric shape in the wild, we first do the quan-
titative comparison on 9 NYUvV2 scenes, which are unseen
during training. We predict the per-frame metric depth and
then fuse them together with provided camera poses. Re-
sults are reported in Tab. 2. We compare with the video
consistent depth prediction method (RCVD [20]), the unsu-
pervised video depth estimation method (SC-DepthV2 [3]),
the 3D scene shape recovery method (LeReS [57]), affine-
invariant depth estimation method (DPT [31]), and the
multi-view stereo reconstruction method (DPSNet [17]).
Apart from DPSNet and our method, other methods have
to align the scale with the ground truth depth for each
frame. Although our method does not aim for the video
or multi-view reconstruction problem, our method can
achieve promising consistency between frames and recon-
struct much more accurate 3D scenes than others on these
zero-shot scenes. From the qualitative comparison in Fig. 6.
our reconstructions have much less noise and outliers.
Dense-SLAM mapping. Monocular SLAM is an impor-
tant robotics application. It takes a monocular video in-
put to create the trajectory and dense 3D mapping. Owing
to limited photometric and geometric constraints, existing
methods face serious scale drift problems in large scenes
and cannot recover the metric information. Our robust met-
ric depth estimation method is a strong depth prior to the
SLAM system. To demonstrate this benefit, we naively in-
put our metric depth to the SOTA SLAM system, Droid-
SLAM [44], and evaluate the trajectory on KITTI. We do
not do any tuning on the original system. Trajectory com-
parisons are reported in Tab. 5. As Droid-SLAM can access
accurate per-frame metric depth, like an RGB-D SLAM, the
translation drift (¢,.;) decreases significantly. Furthermore,
with our depths, Droid-SLAM can perform denser and more
accurate 3D mapping. An example is shown in Fig. | and
more cases are shown in the supplementary materials.
Metrology in the wild. To show the robustness and accu-
racy of our recovered metric 3D, we download Flickr pho-
tos captured by various cameras and collect coarse cam-
era intrinsic parameters from their metadata. We use our
CSTM_image model to reconstruct their metric shape and
measure structures’ sizes (marked in red in Fig. 7), while
the ground-truth sizes are in blue. It shows that our mea-
sured sizes are very close to the ground-truth sizes.

4.3. Ablation Study

Ablation on canonical transformation. We study the ef-
fect of our proposed canonical transformation for the input
images (‘CSTM._input’) and the canonical transformation
for the ground-truth labels (‘CSTM_output’). Results are
reported in Tab. 6. We train the model on sampled mixed
data (55K images) and test it on 6 datasets. A naive base-
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Table 2 — Quantitative comparison of 3D scene reconstruction with LeReS [57], DPT [31], RCVD [20], SC-DepthV2 [3], and a learning-based MVS
method (DPSNet [17]) on 9 unseen NYUV2 scenes. Apart from DPSNet and ours, other methods have to align the scale with ground truth depth for each
frame. As a result, our reconstructed 3D scenes achieve the best performance.

Basement_0001a| Bedroom_0015 |Dining_room_0004| Kitchen_0008 |Classroom_0004|Playroom_0002| Office_0024 Office_0004 |Dining_room_0033
C-l1 F-score 1 |C-l1] F-score 1|C-l1] F-score 1 |C-l;] F-score 1|C-/;} F-score 1 |C-l;] F-score 1|C-l;] F-score 1|C-l;] F-score 1|C-l1] F-score

RCVD [20]|0.364 0.276 |0.074 0.582 |0.462  0.251 |0.053 0.620 |0.187 0.327 |0.791 0.187 |0.324 0.241 [0.646 0.217 [0.445  0.253
SC-DepthV2 [3]]0.254  0.275 ]0.064 0.547 ]0.749  0.229  [0.049 0.624 [0.167 0.267 [0.426 0.263 |0.482 0.138 |0.516 0.244 [0.356  0.247
DPSNet [17]{0.243  0.299 |0.195 0.276 [0.995  0.186 [0.269 0.203 [0.296 0.195 |0.141 0.485 [0.199 0.362 |0.210 0.462 |0.222  0.493
DPT [57]/0.698  0.251 ]0.289 0.226 |0.396  0.364 |0.126 0.388 |0.780 0.193 [0.605 0.269 |0.454 0.245 |0.364 0.279 |0.751  0.185
LeReS [57]{0.081  0.555 [0.064 0.616 (0278 0427 ]0.147 0.289 [0.143 0.480 |0.145 0.503 |0.408 0.176 |0.096 0.497 |0.241 0.325
Ours|0.042  0.736 |0.059 0.610 [0.159  0.485 [0.050 0.645 |0.145 0.445 |0.036 0.814 [0.069 0.638 |0.045 0.700 |0.060  0.663

Method

reconstruction comparison. As our
method can predict accurate metric depth, thus all predictions are fused together for scene reconstruction. By contrast, LeReS [57]’s depth is up to an
unknown scale and shift, which causes noticeable distortions. DPSNet [17] is a multi-view stereo method, which cannot work well on low-texture regions.

C aagal -y line (‘Ours w/o CSTM’) is to remove CSTM modules and
enforce the same supervision as ours. Without CSTM, the
model is unable to converge when training on mixed metric
datasets and lost the metric prediction ability on zero-shot
datasets. This is why mixed-data training methods compro-
mise learning the affine-invariant depth to avoid metric is-
sues. In contrast, our CSTM methods can enable the model
to achieve the metric prediction ability, and they can achieve
comparable performance. Tab. 1 also shows comparable
performance. Therefore, both adjusting the supervision and
the input image appearance during training can solve the
metric ambiguity issues. Furthermore, we compare with
CamConvs [11], which encodes the camera model in the
decoder with a 4-channel feature. It employs the same train-

Figure 7 — Reconstruction of in-the-wild scenes. We collect several

Flickr photos, which are captured by various cameras. With photos’ ing schedule, model, and training data as ours. This method
metadata, we reconstruct the 3D metric shape and measure structures’ enforces the network to implicitly understand various cam-
sizes. Red and blue marks are ours and ground-truth sizes respectively. era models from the image appearance and then bridges the

imaging size to the real-world size. We believe that this
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Table 3 — Quantitative comparison with SOTA metric depth methods on 6 unseen benchmarks. For SOTA methods, we use their NYUv2 and KITTI
models for indoor and outdoor scenes evaluation respectively, while we use the same model for all zero-shot testing.

Method DIODE(Indoor) iBIMS-1 7Scenes DIODE(Outdoor) ETH3D NuScenes
Indoor scenes (AbsRel|/RMS ) Outdoor scenes (AbsRel|[/RMS)
Adabins [2] 0.443 /1.963 0.212/0.901 0.218/0.428 | 0.865/10.35 1.271/76.178 0.445/10.658
NewCRFs [59] 0.404 / 1.867 0.206/0.861 0.240/0.451 | 0.854/9.228 0.890/5.011 0.400/12.139
Ours CSTM label | 02527 1.440  0.160/0.521 0.183/0.363 | 0.414/6.934 0.416/3.017 0.154/7.097
Ours_.CSTM_image | 0.268 / 1.429 0.144/0.646 0.189/0.388 | 0.535/6.507 0.342/2.965 0.147 / 5.889

Table 4 — Comparison with SOTA affine-invariant depth methods on 5 zero-shot transfer benchmarks. Our model significantly outperforms previous
methods and sets new state-of-the-art. Following the benchmark setting, all methods have manually aligned the scale and shift.

Method | Backbone #Params NYUv2 KITT% DIODE Scaan:t ETH3D Rank
AbsRel] ;17 |AbsRell §;T |AbsRel] 0,1 |AbsRel| ;17 |AbsRel] §;71

DiverseDepth [53][ResNeXt50 [50] 25M 0.117  0.875(0.190  0.704|0.376  0.631]|0.108  0.882(0.228  0.694|7.7
MiDasS [32]|ResNeXt101 88M 0.111  0.885(0.236  0.630{0.332  0.715/0.111  0.886(0.184  0.752|7.2
Leres [57]|ResNeXt101 0.090  0.916/0.149  0.784]0.271  0.766]0.095  0.912]|0.171  0.777|5.4
Omnidata [9]|ViT-base 0.074  0.945/0.149  0.835]0.339  0.742]0.077  0.935]|0.166  0.778|4.9
HDN [60]|ViT-Large [8] 306M 0.069  0.948]|0.115  0.867/0.246  0.780|0.080  0.939]0.121  0.833|3.7
DPT-large [31]| ViT-Large 0.098  0.903(0.10 0.901]0.182  0.758/0.078  0.938(0.078  0.946(3.8
Ours CSTM_image |ConvNeXt-large [26] 198M  |0.058  0.963/0.053  0.965(0.211  0.825/0.074  0.942{0.064 0.965[1.3
Ours CSTM_label | ConvNeXt-large 0.050 0.966(0.058  0.970(0.224  0.805/0.074  0.941]0.066  0.964|1.8

Table 5 — Comparison with SOTA SLAM methods on KITTI. We input
predicted metric depth to the Droid-SLAM [44] (‘Droid+Ours’), which
outperforms others by a large margin on trajectory accuracy.

Method Seq00 | Seq02 | Seq05 | Seq06 | Seq08 | Seq09 | Seq10
Translational RMS drift (¢, |) / Rotational RMS drift (r;.c;, |)
GeoNet [58] | 27.6/5.72 [42.24/6.14]20.12/7.67] 9.28/4.34 [18.59/7.85[23.94/9.81[ 20.73/9.1
VISO2-M [41]]12.66/2.73| 9.47/1.19 | 15.1/3.65 | 6.8/1.93 |14.82/2.52| 3.69/1.25 |21.01/3.26
ORB-V2 [28] |11.43/0.58|10.34/0.26| 9.04/0.26 |14.56/0.26|11.46/0.28| 9.3/0.26 |2.57/0.32
Droid [44] | 33.9/0.29 |34.88/0.27| 23.4/0.27 | 17.2/0.26 | 39.6/0.31 | 21.7/0.23 | 7/0.25
Droid+Ours | 1.44/0.37 | 2.64/0.29 | 1.44/0.25 | 0.6/0.2 | 2.2/0.3 |1.63/0.22 | 2.73/0.23

Table 6 — Effectiveness of our CSTM. CamConvs [ 1] directly encodes
various camera models in the network, while we perform a simple yet
effective transformation to solve the metric ambiguity. Without CSTM,
the model cannot achieve transferable metric prediction ability.

Method DDAD Lyft DS NS KITTI NYU
Test set of train. data (AbsRel|) | Zero-shot test set (AbsRell)
w/o CSTM 0.530  0.582  0.394 1.00  0.568  0.581
CamConvs [11] 0.295  0.315 0.213 0.423  0.178  0.333
Ours CSTM.image | 0.190  0.235 0.182 0.197 0.097  0.210
Ours CSTM_label | 0.183  0.221  0.201 0.213  0.081  0.212

method challenges the data diversity and network capacity,
thus our performance is better than theirs.

Ablation on canonical space. We study the effect of the
canonical camera here, i.e., the canonical focal length. We
train the model on the small sampled dataset and test it
on the validation set and testing data. The average Ab-
sRel error is calculated. We experiment on 3 different fo-
cal lengths, i.e., 500, 1000, 1500. Experiments show that
focal = 1000 has slightly better performance than others,
see Fig. 8. Thus we set the canonical focal length to 1000
in our experiments.

Effectiveness of the random proposal normalization
loss. To show the effectiveness of our proposed random
proposal normalization loss (RPNL), we experiment on the
sampled small dataset. Results are shown in Tab. 7. We test
on the DDAD, Lyft, DrivingStereo (DS), NuScenes (NS),
KITTI, and NYUv2. The ‘baseline’ employs all losses ex-
cept our RPNL. We compare it with ‘baseline + RPNL’ and
‘baseline + SSIL [32]°. We can observe that our proposed

Effect of Canonical Focal Length
22,07

21.19
19.82

500 1000

Focal Length

1500

Figure 8 — Effect of different canonical focal lengths. We experiment
on different canonical focal lengths and find that too large or small focal
lengths will impact the performance.

Table 7 — Effectiveness of random proposal normalization loss. Baseline

is supervised by ‘LpwnN + LvNL + Lsitog - SSIL is the scale-shift
invariant loss proposed in [32].

Method DDAD Lyft DS NS KITTI NYUv2
Test set of train. data (AbsRel]) | Zero-shot test set (AbsRel])
baseline 0.204 0.251  0.184 0.207 0.104  0.230
baseline + SSIL [32] | 0.197  0.263  0.259 0.206 0.105  0.216
baseline + RPNL 0.190  0.235 0.182 0.197 0.097 0.210

random proposal normalization loss can further improve the
performance. In contrast, the scale-shift invariant loss [32],
which does the normalization on the whole image, can only
slightly improve the performance.

5. Conclusion

In this paper, we tackle the problem of reconstructing the
3D metric scene from a single monocular image. To solve
the depth ambiguity in image appearance caused by various
focal lengths, we propose a canonical camera space trans-
formation method. With our method, we can easily merge
millions of data captured by 10k cameras to train one metric
depth model. To improve the robustness, we collected over
8M data for training. Several zero-shot evaluations show the
effectiveness and robustness of our work. We further show
the ability to do metrology on randomly collected internet
images and dense mapping on large-scale scenes.
Acknowledgements This work was in part sup-
ported by National Key R&D Program of China (No.
2022ZD0118700).
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