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Abstract

Video frame interpolation (VFI) is a very active re-
search topic due to its broad applicability to many ap-
plications, including video enhancement, video encoding,
and slow-motion effects. VFI methods have been advanced
by improving the overall image quality for challenging se-
quences containing occlusions, large motion, and dynamic
texture. This mainstream research direction neglects that
foreground and background regions have different impor-
tance in perceptual image quality. Moreover, accurate syn-
thesis of moving objects can be of utmost importance in
computer vision applications. In this paper, we propose
a video object segmentation (VOS)-aware training frame-
work called VOS-VFI that allows VFI models to interpolate
frames with more precise object boundaries. Specifically,
we exploit VOS as an auxiliary task to help train VFI mod-
els by providing additional loss functions, including seg-
mentation loss and bi-directional consistency loss. From
extensive experiments, we demonstrate that VOS-VFI can
boost the performance of existing VFI models by render-
ing clear object boundaries. Moreover, VOS-VFI displays
its effectiveness on multiple benchmarks for different appli-
cations, including video object segmentation, object pose
estimation, and visual tracking. The code is available at
https://github.com/junsang7777/VOS-VFI

1. Introduction

Video frame interpolation (VFI) is a low-level video pro-
cessing task synthesizing intermediate frames between con-
secutive frames to increase the frame rate. VFI has been
widely used in many applications, including slow motion
generation [44, 46, 2, 27], video restoration [67, 31], video
compression [65], and novel view synthesis [17, 29]. Al-
though VFI has been extensively studied in past decades,
there is still room for improvement because moving objects,
occlusions, and cluttered backgrounds make it challenging.

Like other vision tasks, deep learning-based meth-
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Figure 1: Examples of video frame interpolation and video
object segmentation results on the AdaCoF baseline [35].
The proposed VOS-VFI is a training framework that can
improve the performance of the baseline model without in-
creasing the number of parameters and inference time.

ods dominate VFI, which can be classified into kernel-
based [35, 46, 15, 55] and flow-based [14, 27, 70, 32, 40]
approaches. The former learns interpolation kernels for two
consecutive frames as an output of a convolutional neu-
ral network (CNN) to synthesize an intermediate frame;
whereas the latter finds optical flow between two frames
in the pixel-space or feature-space and generates an inter-
mediate frame by motion compensated prediction. Both
approaches have been advanced by adopting novel archi-
tectures or algorithms, including coarse-to-fine architec-
tures [56, 72, 32], attention mechanisms [11, 30], de-
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formable convolutions [21, 35], and Transformers [55, 40].
Although we have witnessed significant performance im-

provements in several VFI benchmarks [11, 71, 57, 50], VFI
methods have been competing to improve their performance
in terms of the overall quality of interpolated images, e.g.,
PSNR and SSIM [24]. This bias in the benchmarks neglects
the fact that foreground and background regions have differ-
ent levels of importance in perceptual image quality [53]. In
addition, VFI can contribute to the performance improve-
ment of vision applications, such as video object tracking
and object pose estimation. However, it is undiscovered
whether VFI methods depicting high performance in global
image quality perform consistently well in vision applica-
tions.

In this paper, we propose to perform video object seg-
mentation (VOS) as an auxiliary task during the training
of the VFI model such that the interpolated frames have
clear object boundaries without artifacts. Specifically, the
proposed VOS-aware VFI, called VOS-VFI, performs VOS
using the existing and interpolated frames and uses the ac-
curacy of VOS as an auxiliary loss term. Moreover, the
VOS accuracy is measured in both forward and backward
directions, and the forward-backward consistency is further
enforced considering the temporal coherence of VFI.

Extensive experimental results demonstrate that the pro-
posed VOS-VFI can be applied to existing state-of-the-art
VFI models, including AdaCoF [35], CDFI [15], and IFR-
Net [32], making them produce interpolated frames with
sharper and clearer objects. These improved results lead
to the performance improvement of not only VOS but also
other related vision tasks.

The main contributions are summarized as follows:

• We propose a new training framework for VFI called
VOS-VFI. To the best of our knowledge, VOS-VFI is
the first work that exploits VOS to assist in training
VFI models.

• We design segmentation and bi-directional consistency
loss terms of VOS that allow VFI models to render
frames with precise object boundaries with temporal
consistency.

• Comprehensive experimental results demonstrate the
effectiveness of VOS-VFI on several vision applica-
tions, including video object segmentation, video ob-
ject tracking, and object pose estimation.

2. Related Works
2.1. Video Frame Interpolation

Deep learning-based VFI methods can be categorized
into kernel-based and flow-based approaches. The kernel-
based approach uses CNNs to estimate interpolation ker-

nels to be applied to the existing frames for the interme-
diate frame synthesis. Because the kernel-based approach
does not explicitly perform motion estimation and compen-
sation between frames, large-size and pixel-adaptive inter-
polation kernels are typically required, making kernel pre-
diction challenging [45]. To this end, Niklaus et al. [46]
proposed to estimate pairs of 1D separable kernels for each
pixel such that large kernels can be estimated without re-
quiring excessive memory. Furthermore, deformable con-
volutions [13] have been extensively used for VFI by si-
multaneously predicting the position and weights of the
kernels [10, 35, 54]. A recent Transformer-based network
called VFIT [55] shows state-of-the-art performance by
fully exploiting long-range dependencies with self-attention
operations.

The flow-based approach is inspired by traditional VFI
algorithms [12, 26] that perform motion compensated pre-
diction for image synthesis. Instead of performing motion
estimation and compensation by handcrafted algorithms,
deep learning-based methods employ flow estimation net-
works [44, 70] and differentiable warping layers [16, 64]
for VFI. These methods typically synthesize two frames
along the forward and backward directions and combine
them using image synthesis networks [49, 44, 15, 14]. To
deal with a wider range of motions, various VFI-tailored
motion estimation methods have been proposed, including
bidirectional flow estimation [27, 56, 14] and asymmetric
bilateral motion estimation [49]. A recent network called
VFIFormer [40] applies Transformer blocks to the warped
frames and features to model long-range dependencies and
demonstrates state-of-the-art performance. Several hybrid
methods [2, 3] that first warp images and then apply local
interpolation kernels have also been introduced to take ad-
vantage of kernel-based and flow-based approaches.

2.2. Video Object Segmentation

Existing VOS methods can be classified into semi-
supervised and unsupervised approaches, where the for-
mer segments objects using a given annotation in the first
frame, and the latter extracts objects using visual saliency
or motion patterns without requiring annotations. Earlier
deep learning-based VOS methods paid attention to on-
line learning [9, 61] that fine-tunes the VOS network us-
ing the predicted object masks of the given video sequence.
These methods typically require hyper-parameter settings
for each sequence and high computational costs for the in-
ference. To solve this problem, offline learning methods
using pixel or feature-level matching [8, 47], graph opti-
mization [41, 63], and optical flow warping [37, 68] have
been proposed and have shown superior performance over
online learning methods. The interested reader can refer to
recent articles [18, 50] for a structured literature review of
VOS.
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Figure 2: Overall framework of VOS-VFI. Given a triplet of images {I0, It, I1}, a triplet of object masks {M0,Mt,M1} is
first constructed. The result of the VFI model, i.e., Ît, is then fed to the VOS model that takes {I0, Ît,M0} or {I1, Ît,M1} as
input. The results of the VOS model, i.e., M̂F

t and M̂B
t , are compared with each other and with Mt to guide the VFI model

training.

In this paper, we do not propose a new VOS method
but use VOS as an auxiliary task to help VFI. In line with
our objective, several related studies that exploit the seg-
mentation task to assist other vision tasks have been intro-
duced in the literature. For example, Gidaris et al. [19]
used two adaptive network modules to improve object
detection performance by integrating regional object fea-
tures with semantic segmentation-aware features. Harley et
al. [22] extracted foreground-focused local features using
segmentation-aware CNNs, resulting in significant perfor-
mance improvements in optical flow estimation and seman-
tic segmentation tasks. For the image restoration tasks, in-
cluding deraining and denoising, segmentation loss terms
defined between the features extracted using a pre-trained
segmentation network [38] demonstrated effectiveness [62,
74].

3. Proposed Method

Given two frames I0 and I1 and a time t ∈ (0, 1), VFI
aims to synthesize the intermediate frame It. Most exist-
ing VFI models are trained on pixel-level loss, such as the
L1 loss, to improve the overall quality of the interpolated
images. In this paper, we claim that it is necessary to pay
special attention to moving objects for VFI. To realize our
objective of object-aware VFI, we present VOS-VFI that in-
tegrates a VOS model during the training of a VFI model.
Fig. 2 illustrates the overall framework of VOS-VFI.

3.1. Segmentation Label Generation

The training of VOS-VFI requires object annotations
for a sufficient amount of video frames. One can con-
sider using existing VOS datasets, such as DAVIS [50, 51]
and YouTubeVOS [69]; however, they are small in size
and limited in content diversity. On the contrary, existing
VFI datasets support a large number of video clips with
diverse content for both indoor and outdoor scenes, e.g.,
Vimeo90K [71] contains 73,171 frame triplets from 14,777
video clips. Therefore, we decide to obtain object annota-
tions from the VFI dataset [71] by applying a pre-trained
off-the-shelf segmentation model [7]. Specifically, for an
image triplet {I0, It, I1}, where t = 0.5, we construct a
triplet of object masks {M0,Mt,M1}. The object masks
for the existing frames, i.e., M0 and M1, are used as input
for the VOS model, and the object mask of the ground-truth
intermediate frame, i.e., Mt, is used to supervise the train-
ing of the VFI model.

3.2. VOS-aware Training

The L1 loss has been standard for training the VFI
model, which is prone to synthesizing blurry frames. Sev-
eral alternative loss terms, including adversarial loss [20]
and perceptual loss [28], have demonstrated effectiveness;
however, it is still challenging to harmonize the existing and
interpolated frames without flickering artifacts using these
loss functions for the scenes with large object motions.

Humans focus more on the foreground than the back-
ground [53]. In addition, moving objects draw more atten-
tion than static objects [5]. Many video applications also
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require high-quality rendering of moving objects. Consid-
ering these conditions, we propose to use VOS as a provider
for an auxiliary loss. Specifically, we adopt the VOS model
FΘV OS

that takes the previous frame and its predicted seg-
mentation mask as well as the current frame as input and
produces the segmentation map for the current frame as
output. Most existing semi-supervised VOS models sup-
port this input-output configuration, and we used the off-
the-shelf VOS model [8] in our experiment. Let the VFI
model FΘV FI

take two frames, i.e., I0 and I1, as input and
produce an interpolated frame Ît as output. Then, we feed
the interpolated frame to the VOS model and obtain the
segmentation map. By penalizing the difference between
the predicted and ground-truth segmentation maps, we can
make the VFI model synthesize images with accurate object
boundaries.

The proposed training framework is not dependent on
specific VFI model architectures. In Sec. 4, we will show
the effectiveness of VOS-VFI on the three baselines, includ-
ing AdaCoF [35], CDFI [15], and IFRNet [32]. In addition,
because the VOS model is detached during evaluation, the
test-time complexity of the adopted baselines is unchanged
by VOS-VFI.

3.3. Objective Function

Let LV OS−V FI denote the total loss function, defined as
follows:

  \label {eq:total_loss} L_{VOS-VFI} = L_{VFI} + \lambda _1\left (L_{segF}+L_{segB}\right ) + \lambda _2 L_{segBi},            
(1)

where λ1 and λ2 are weighting factors, and LV FI repre-
sents the loss of the baseline model, which is different for
the adopted baseline models [35, 15, 32]. VOS-VFI fur-
ther applies three novel loss functions, LsegF , LsegB , and
LsegBi, which will be detailed in the following subsections.

3.3.1 Segmentation Loss

To guide the VFI model to synthesize a foreground-
focused interpolated frame, we perform VOS on the in-
terpolated frames. The VOS model predicts the seg-
mentation map of the interpolated frame using the pre-
vious frame and its segmentation map. In our training
configurations with given image and mask triplets, i.e.,
{I0, It, I1} and {M0,Mt,M1}, we can apply the VOS
model along two directions. Specifically, the VOS is
performed in the forward direction, resulting in M̂F

t =

FΘV OS

(
I0, Ît,M0

)
, and the backward direction, resulting

in M̂B
t = FΘV OS

(
I1, Ît,M1

)
. Then, the VFI model is

trained to minimize the difference between the target mask
Mt and predicted masks M̂F

t and M̂B
t . To this end, the seg-

mentation loss functions along the forward and backward

directions, i.e., LsegF and LsegB , are defined as follows:

  \label {forward} L_{segF} = CE\left ( \hat {M}_t^F, M_t \right ),  





 (2)

  \label {backward} L_{segB} = CE\left ( \hat {M}_t^B, M_t \right ),  





 (3)

where CE measures the cross-entropy loss [73]. By pe-
nalizing the deviation of the prediction segmentation masks
from the (pseudo) ground-truth segmentation mask, we can
enforce the VFI model to synthesize frames with clear ob-
ject boundaries.

3.3.2 Bi-directional Consistency Loss

Temporal consistency is of utmost importance in VFI be-
cause interpolated frames are inserted between existing
frames. Since we have two predictions, i.e., M̂F

t and M̂B
t ,

for the target mask Mt, we can also penalize the difference
between M̂F

t and M̂B
t to enforce the temporal coherence of

VOS, eventually leading to the temporal coherence of VFI.
To this end, the bi-directional segmentation consistency loss
LsegBi is defined as follows:

  \label {consis_loss} L_{segBi} = CE\left ( \hat {M}_t^F, \hat {M}_t^B \right ).  


 




 (4)

Although optical flow provides dense correspondences, it
is vulnerable to noise, occlusion, and brightness changes
across frames. We instead enforce foreground-focused tem-
poral consistency in the segmentation domain. As a result, it
allows the VFI model to interpolate salient moving objects
in the intermediate frames more precisely.

4. Experiments
We first provide the implementation details of VOS-

VFI. We then evaluate the VFI performance of VOS-VFI
on the three representative VFI models, i.e., AdaCoF [35],
CDFI [15], and IFRNet [32]. For notational simplicity, the
baseline models trained with the proposed VOF-VFI are de-
noted with the suffix “-VOS,” e.g., CDFI-VOS. Next, we
further show the effectiveness of VOS-VFI on other related
tasks, i.e., video object tracking and object pose estimation.
Last, we conduct ablation studies to verify the effectiveness
of different loss functions in VOS-VFI. More results and
code can be found in the supplementary material.

4.1. Implementation Details

The training settings of the VFI models, including learn-
ing rates, batch size, and patch size, were derived from
the public codes of the baseline models [35, 15, 32], and
the weighting parameters in (1) were empirically chosen as
λ1 = λ2 = 0.1. We used a pre-trained STCN model [8] as
the VOS model and fixed it during the training of the VFI
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Model DAVIS 2016 DAVIS 2017

PSNR↑ †PSNR↑ J&F↑ J↑ F↑ PSNR↑ †PSNR↑ J&F↑ J↑ F↑

AdaCoF [35] 25.11 25.62 85.9 84.9 86.8 26.23 26.13 80.9 77.9 83.9
AdaCoF-VOS 25.03 25.72 87.0 85.9 88.2 26.21 26.22 81.8 78.6 84.9

CDFI [15] 25.68 25.74 86.9 85.6 88.3 26.71 26.24 81.4 78.3 84.6
CDFI-VOS 25.75 25.80 87.7 86.4 88.9 26.79 26.30 82.0 78.9 85.3

IFRNet [32] 26.70 25.91 87.3 86.4 88.3 27.57 26.44 81.1 77.9 84.3
IFRNet-VOS 26.74 25.98 88.1 87.2 88.9 27.60 26.50 81.9 78.6 85.2

Table 1: Quantitative results of the three baseline models trained with and without VOS-VFI. The performance is evaluated
in terms of the PSNR and segmentation accuracy (J&F , J , and F ) on the DAVIS 2016 and 2017 datasets. † represents PSNR
scores on the foreground objects obtained by masking out the background using the ground-truth segmentation maps.

Model Vimeo90K (val) UCF101 (val) Xiph 2K Xiph 4K

NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑

AdaCoF [35] 5.180 4.104 4.765 7.272 5.695 4.018 4.043 4.637 4.470 5.217 5.817 4.349
AdaCoF-VOS 5.153 4.094 4.771 7.237 5.678 4.026 4.014 4.616 4.476 5.203 5.809 4.353

CDFI [15] 4.933 3.832 4.873 6.878 5.421 3.987 3.804 4.533 4.473 4.773 5.106 4.356
CDFI-VOS 4.910 3.822 4.879 6.875 5.408 3.991 3.751 4.520 4.477 4.694 5.089 4.374

IFRNet [32] 5.062 3.969 4.820 7.191 5.665 4.023 4.008 4.528 4.461 5.470 5.971 4.315
IFRNet-VOS 5.021 3.935 4.824 7.115 5.617 4.020 3.974 4.503 4.480 5.448 5.959 4.331

Table 2: Quantitative results of the three baseline models trained with and without VOS-VFI. The performance is evaluated
in terms of the three representative image quality metrics on the Vimeo90K, UCF101, and Xiph datasets.

models. Since VOS is performed during VOS-VFI train-
ing, the complexity of the training inevitably increases. For
example, when STCN [8] was used within the VOS-VFI
training framework, the total training time of AdaCoF in-
creased from 40h to 51h on an NVIDIA 3090 GPU, and the
maximum memory consumption increased from 9.6GB to
10.1GB after applying the proposed training framework.

We obtained binary masks for the segmentation la-
bel generation, as described in Sec. 3.1, by apply-
ing a DeepLabV3 model [7] pre-trained on the COCO
dataset [39] to the training images from Vimeo90K [71] and
extracting the pixels belonging to foreground object classes.
Consequently, the training dataset for VOS-VFI includes
51,312 frame triplets from Vimeo90K and their correspond-
ing mask triplets.

4.2. Performance Evaluation on Multiple Tasks

4.2.1 VOS-VFI

We first evaluated the VFI performance on the DAVIS
benchmarks [50, 51] that support performance evaluation
in terms of both image quality and segmentation accuracy.
DAVIS, one of the most widely-used VOS benchmarks,
consists of two sets: (1) DAVIS 2016, which is an object-

Model HD 544p

NIQE↓ PI↓ NIMA↑

AdaCoF [35] 5.611 5.037 4.708
AdaCoF-VOS 5.581 4.992 4.740

CDFI [15] 5.903 4.680 5.227
CDFI-VOS 5.868 4.665 5.237

IFRNet [32] 5.792 5.117 4.552
IFRNet-VOS 5.648 5.086 4.552

Table 3: Quantitative evaluation for 4× interpolation on the
HD [3] benchmark.

level annotated dataset (single object); and (2) DAVIS 2017,
which is an instance-level annotated dataset (multiple ob-
jects). In addition to image-level PSNRs, PSNRs on fore-
ground objects were measured by masking out the back-
ground using the ground-truth segmentation maps. The seg-
mentation accuracy metrics, i.e., region similarity J and
contour accuracy F [52], were also measured for perfor-
mance comparisons.

As shown in Table 1, the proposed VOS-VFI improved
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Figure 3: Qualitative performance comparisons of VOS-VFI. The images are from the validation dataset of DAVIS 2017.
Due to the space limit, we provide the VFI results and their corresponding segmentation results inside the red boxes marked
on the ground-truth frames. See the supplementary material for frame-by-frame comparison.

the segmentation accuracy of the baseline models by 1.1%,
0.8%, and 0.8% for AdaCoF, CDFI, and IFRNet for DAVIS
2016, respectively, and 0.9%, 0.6%, and 0.8% for Ada-
CoF, CDFI, and IFRNet for DAVIS 2017, respectively, in
terms of J&F . Although the PSNR is not correlated with
the human perceptual quality of interpolated frames [42],
the proposed VOS-VFI shows consistent improvements in
the PSNRs of the foreground objects, indicating its effec-
tiveness on foreground synthesis. As shown in Fig. 3,
foreground moving objects are more precisely interpolated
when VOS-VFI is applied to the baseline models.

Table 2 further shows the results on the widely used
VFI datasets, including Vimeo90K [71], UCF101 [57]], and
Xiph [43]. Note that the segmentation accuracy cannot be
measured on these datasets due to the lack of segmenta-

tion annotations. Instead of the PSNR, we report other
image quality metrics that are known to be highly corre-
lated with human judgments of visual quality, including
NIQE [1], PI [59], and NIMA [58]. On these advanced
quality metrics, the proposed VOS-VFI provides consistent
performance improvements to the baseline models.

We also used Amazon Mechanical Turk (MTurk) to col-
lect human judgments on the visual quality of the VFI re-
sults. Specifically, each video sequence of the DAIVS 2016
validation set was frame-interpolated with a factor of 2. The
MTurk users were presented with two videos obtained w/wo
applying the proposed VOS-VFI training framework and
conducted pairwise comparison. The left/right positions of
the videos were randomized to avoid bias, and the users
were asked to select one video with better visual quality.
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Model VOT2018 OTB2015

AUC↑ Robustness↓ AUC↑ Precision↑

AdaCoF [35] 59.2 0.440 66.8 0.876
AdaCoF-VOS 59.8 0.426 67.4 0.883
CDFI [15] 58.7 0.403 66.4 0.867
CDFI-VOS 60.1 0.379 67.0 0.877
IFRNet [32] 59.5 0.435 65.8 0.860
IFRNet-VOS 60.3 0.421 66.5 0.875
All frames 60.4 0.243 68.9 0.895

Table 4: Quantitative results of the three baseline models
trained with and without VOS-VFI. The tracking perfor-
mance is evaluated in terms of AUC, robustness, and pre-
cision on the VOT2018 and OTB2015 datasets.

From 33 participated subjects, the proposed VOS-VFI ac-
quired 63%, 57%, and 59% of the choice over the AdaCoF,
CDFI, and IFRNet baselines, respectively.

To evaluate the performance of VOS-VFI on a large scale
factor, we performed 2× VFI twice to obtain 4× VFI re-
sults, which is a common strategy [48, 25]. We used the
HD 544p dataset [3] for the performance evaluation of 4×
VFI, which contains many dynamic scenes. Specifically, we
extracted every fourth frame of the video sequences from
the HD dataset and interpolated every intermediate three
frames. As shown in Table 3, the proposed VOS-VFI im-
proved all measured metrics. More results on other datasets
can be found in the supplementary material.

4.2.2 Video Object Tracking

To show the effectiveness of VOS-VFI on the video object
tracking task, we skipped every even-numbered frame in
the datasets, including VOT2018 [33] and OTB2015 [66],
and conducted VFI. VOT2018 contains 60 video sequences
with several challenging scenarios, including fast motion
and occlusion, and OTB2015 contains 100 commonly used
video sequences for the performance evaluation of visual
trackers. According to the benchmarks, the performance on
VOT2018 was evaluated using the accuracy (average over-
lap over successful frames) and robustness (failure rate),
and the performance on OTB2015 was evaluated using the
accuracy and precision. The SiamRPN [36] was used to
perform video object tracking. Table 4 shows that the video
object tracking performance can be improved by applying
VOS-VFI to the baseline models. In addition, the AUC per-
formance of IFRNet-VOS is even comparable to the results
obtained using all frames without VFI on VOT2018, indi-
cating its significant effectiveness. Fig. 4 shows some video
object tracking results. As can be seen, precise rendering of
moving objects by VOS-VFI leads to the successful track-
ing of fast moving objects in the scene.

Model Linemod

REP-20px↑ ADD-0.1d↑

AdaCoF [35] 62.33 50.90
AdaCoF-VOS 63.43 51.06
CDFI [15] 63.24 50.99
CDFI-VOS 64.09 51.36
IFRNet [32] 64.16 51.60
IFRNet-VOS 64.28 51.67
All frames 99.96 96.18

Table 5: Quantitative results of the three baseline models
trained with and without VOS-VFI. The 6D object pose es-
timation performance is evaluated in terms of RED-20px
and ADD-0.1d on the Linemod dataset.

4.2.3 6D Object Pose Estimation

Last, we tested VOS-VFI on object pose estimation by
skipping every even-numbered frame in the Linemod
dataset [23] and interpolating the skipped frames. Linemod
provides RGB-D frames containing 13 objects captured in
cluttered scenes, where only one object is annotated for
each sequence. The EPro-PnP model [6] was tested on
the interpolated frames for 6D object pose estimation from
RGB frames. The performance was evaluated in terms of
REP-20px [4] and ADD-0.1d [23].

Table 5 shows that the pose estimation performance of
the baseline models can be slightly improved by VOS-VFI.
However, a significant performance gap exists from the re-
sult obtained using full frames. Due to a large displacement
of the camera between frames and a very close distance be-
tween the camera and objects, VFI performed unsatisfacto-
rily on Linemod. This limitation is expected to be resolved
through developing VFI models robust to large camera and
object motions, which is left for our future study.

4.3. Ablation Study

Objective function. To demonstrate the effectiveness of
VOS-VFI, we first conducted ablation studies on the objec-
tive function by analyzing the effect of the loss terms in (1).
For this experiment, CDFI was used as a baseline model.
The first row of Table 6 lists the performance of the base-
line model. By including the segmentation loss terms, i.e.,
LsegF and LsegB , the segmentation accuracy was improved
by 0.3% in J&F . The model trained with the bi-directional
consistency loss LsegF led to 0.6% improvement in J&F .
Last, the model trained with full loss terms resulted in the
greatest improvement of 0.8% in J&F . Consistent results
can be found from the video object tracking task. Specif-
ically, the tracking performance was improved by 1.1%
(VOT2018) and 0.4% (OTB2015) in AUC when LsegF and
LsegB were included. The model trained with LsegBi led
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Figure 4: Examples of the visual object tracking results on the VOT2018 dataset. The odd-numbered columns and even-
numbered columns (in dotted boarder lines) represent the existing and interpolated frames, respectively. The green and
yellow boxes represent the ground-truth and predicted bounding boxes of objects, respectively.

Objective function DAVIS2016 VOT2018 OTB2015

LV FI LsegF,segB LsegBi NIQE↓ PI↓ NIMA↑ J&F↑ AUC↑ Robustness↓ AUC↑ Precision↑

✓ 3.076 2.795 3.743 86.9 58.7 0.403 66.4 0.867
✓ ✓ 3.082 2.793 3.736 87.2 59.8 0.397 66.8 0.868
✓ ✓ 3.067 2.780 3.724 87.5 59.1 0.382 66.7 0.872
✓ ✓ ✓ 3.054 2.752 3.783 87.7 60.1 0.379 67.0 0.877

Table 6: Ablation studies on the loss functions of VOS-VFI.

to 0.4% (VOT2018) and 0.3% (OTB2015) improvements in
AUC. Last, the model trained with full loss terms resulted
in the greatest improvements of 1.4% (VOT2018) and 0.6%
(OTB2015) in AUC.

VOS-aware module Next, to demonstrate the generaliza-
tion ability of VOS-VFI, we applied the training frame-
work using only a frame-by-frame segmentation module,
as shown in Fig. 5, and the other two self-supervised VOS
models [34, 60]. Specifically, in the frame-by-frame seg-
mentation module, the object segmentation network de-

scribed in Sec. 3.1 was applied to the interpolated frame
and its corresponding ground-truth frame individually, re-
sulting in M̂t and Mt. As shown in Table 7, the VOS mod-
ule is essential to help the VFI model synthesize moving ob-
jects. Furthermore, VOS-VFI showed consistent improve-
ments for the three VOS models [8, 34, 60], indicating its
robustness to the choice of VOS models.

Evaluation on temporal coherence To demonstrate the
effectiveness of the proposed bi-directional consistency loss
LsegBi, we evaluated the temporal coherence of VFI by
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Figure 5: A training framework for the ablation study. The
object segmentation model is applied to the ground-truth
and interpolated frames, respectively, and the cross-entropy
loss between the segmentation maps is used as an auxiliary
loss term.

Model J&F↑ J↑ F↑

AdaCoF 85.9 84.9 86.8
AdaCoF-VOS† w/ [7] 86.0 85.0 86.9
AdaCoF-VOS w/ [8] 87.0 85.9 88.2
AdaCoF-VOS w/ [34] 86.9 85.8 88.0
AdaCoF-VOS w/ [60] 86.8 85.8 87.8

CDFI 86.9 85.6 88.3
CDFI-VOS† w/ [7] 86.8 85.7 88.0
CDFI-VOS w/ [8] 87.7 86.4 88.9
CDFI-VOS w/ [34] 87.4 86.2 88.5
CDFI-VOS w/ [60] 87.7 86.4 88.9

Table 7: Performance evaluation of the AdaCoF and CDFI
models trained with the proposed VOS-VFI using the differ-
ent pretrained VOS models for DAVIS 2016. † represents
a model trained using only a frame-by-frame segmentation
module.

measuring the per-frame PSNR for the interpolated frames
obtained w/wo applying the bi-directional consistency loss
for 4× VFI. Figure 6 shows that the bi-directional consis-
tency loss led to temporal coherent interpolation results.

5. Conclusion

In this paper, we proposed a VOS-aware VFI training
framework called VOS-VFI for interpolating intermediate
frames with clear object boundaries. Using the pseudo-
labels for segmentation generated from the existing VFI
dataset, VOS-VFI performs VOS as an auxiliary task dur-
ing training a VFI model to support additional loss func-
tions. The additional VOS-aware loss functions contribute
to interpolating objects with accurate boundaries for many
challenging scenes. In particular, VOS-VFI can be ap-
plied to any VFI model during the training stage; thus, it
does not require additional parameters or increase inference

Figure 6: Example of the per-frame PSNR of the test se-
quence ’parkour’ from DAVIS 2016 for 4× VFI.

time. Extensive experiments with state-of-the-art VFI mod-
els on multiple benchmark datasets demonstrate that VOS-
VFI can boost the performance of many vision tasks, in-
cluding video object tracking and object pose estimation.
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[24] Alain Horé and Djemel Ziou. Image quality metrics: PSNR
vs. SSIM. In Proceedings of the International Conference on
Pattern Recognition, pages 2366–2369, 2010. 2

[25] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and
Shuchang Zhou. Real-time intermediate flow estimation for
video frame interpolation. In Proceedings of the European
Conference on Computer Vision, pages 624–642, 2022. 7

[26] Seong-Gyun Jeong, Chul Lee, and Chang-Su Kim. Motion-
compensated frame interpolation based on multihypothesis
motion estimation and texture optimization. IEEE Transac-
tions on Image Processing, 22(11):4497–4509, 2013. 2

[27] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super SloMo:
High quality estimation of multiple intermediate frames for
video interpolation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9000–9008, 2018. 1, 2

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Proceedings of the European Conference on Computer Vi-
sion, pages 694–711. Springer, 2016. 3

[29] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-
mamoorthi. Learning-based view synthesis for light field
cameras. ACM Transactions on Graphics, 35(6), 2016. 1

[30] Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and
Du Tran. FLAVR: Flow-agnostic video representations for
fast frame interpolation. arXiv preprint arXiv:2012.08512,
2020. 1

[31] Soo Ye Kim, Jihyong Oh, and Munchurl Kim. FISR: Deep
joint frame interpolation and super-resolution with a multi-
scale temporal loss. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11278–11286,
2020. 1

[32] Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu,
Xiaoming Huang, Ying Tai, Chengjie Wang, and Jie Yang.

12331



IFRNet: Intermediate feature refine network for efficient
frame interpolation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1969–1978, 2022. 1, 2, 4, 5, 7

[33] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-
berg, Roman Pflugfelder, Luka ˇCehovin Zajc, Tomas Vojir,
Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.
The sixth visual object tracking vot2018 challenge results.
In Proceedings of the European Conference on Computer Vi-
sion Workshops, pages 0–0, 2018. 7

[34] Zihang Lai, Erika Lu, and Weidi Xie. MAST: A memory-
augmented self-supervised tracker. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020. 8, 9

[35] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. AdaCoF: Adaptive
collaboration of flows for video frame interpolation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5316–5325, 2020. 1, 2, 4, 5,
7

[36] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. SiamRPN++: Evolution of siamese vi-
sual tracking with very deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4282–4291, 2019. 7

[37] Siyang Li, Bryan Seybold, Alexey Vorobyov, Xuejing Lei,
and C-C Jay Kuo. Unsupervised video object segmentation
with motion-based bilateral networks. In Proceedings of the
European Conference on Computer Vision, pages 207–223,
2018. 2

[38] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2117–2125, 2017. 3

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proceedings of the European Conference on Computer Vi-
sion, pages 740–755. Springer, 2014. 5

[40] Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya
Jia. Video frame interpolation with transformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3532–3542, 2022. 1, 2

[41] Jonathon Luiten, Idil Esen Zulfikar, and Bastian Leibe. Un-
OVOST: Unsupervised offline video object segmentation and
tracking. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 2000–2009,
2020. 2

[42] Hui Men, Hanhe Lin, Vlad Hosu, Daniel Maurer, Andres
Bruhn, and Dietmar Saupe. Technical report on visual
quality assessment for frame interpolation. arXiv preprint
arXiv:1901.05362, 2019. 6

[43] Christopher Montgomery. Xiph.org video test media (derf’s
collection). In Online, https://media.xiph.org/video/derf/,
1994. 6

[44] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 1701–1710, 2018. 1, 2

[45] Simon Niklaus, Long Mai, and Feng Liu. Video frame
interpolation via adaptive convolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 670–679, 2017. 2

[46] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive separable convolution. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 261–270, 2017. 1, 2

[47] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9226–9235, 2019. 2

[48] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
BMBC: Bilateral motion estimation with bilateral cost vol-
ume for video interpolation. In Proceedings of the European
Conference on Computer Vision, pages 109–125, 2020. 7

[49] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric
bilateral motion estimation for video frame interpolation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14539–14548, 2021. 2

[50] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
724–732, 2016. 2, 3, 5

[51] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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