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Figure 1: FreeDoM controls the generation process of diffusion models in a training-free way. Here, we demonstrate
some results of the applications FreeDoM supports. Part (a)-(c) show various face editing applications with training-free
guidance. (a) We use the segmentation map, sketch, landmarks, and face ID as conditions to guide the generation process of an
unconditional diffusion model; (b) We combine different conditions to control the generation process. (c) We use CLIP [34]
based text guidance to control image synthesis and editing. For editing, we use the segmentation masks to limit the editing
areas (see Fig. 4 for details); Part (d)-(f) show that training-free guidance can work with other training-required conditional
diffusion models, like Stable Diffusion [36] and ControlNet [52], to achieve a more sophisticated control mechanism. The
conditions of scribbles in (d), human poses in (e), and prompt texts in (f) are controlled by the training-required interfaces
provided by ControlNet and Stable Diffusion. Training-free energy functions control the conditions of face IDs from the
reference images in (e) and style images in (d) and (f). Zoom in for best view.
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Abstract

Recently, conditional diffusion models have gained pop-
ularity in numerous applications due to their exceptional
generation ability. However, many existing methods are
training-required. They need to train a time-dependent clas-
sifier or a condition-dependent score estimator, which in-
creases the cost of constructing conditional diffusion mod-
els and is inconvenient to transfer across different condi-
tions. Some current works aim to overcome this limita-
tion by proposing training-free solutions, but most can only
be applied to a specific category of tasks and not to more
general conditions. In this work, we propose a training-
Free conditional Diffusion Model (FreeDoM) used for var-
ious conditions. Specifically, we leverage off-the-shelf pre-
trained networks, such as a face detection model, to con-
struct time-independent energy functions, which guide the
generation process without requiring training. Further-
more, because the construction of the energy function is
very flexible and adaptable to various conditions, our pro-
posed FreeDoM has a broader range of applications than
existing training-free methods. FreeDoM is advantageous
in its simplicity, effectiveness, and low cost. Experiments
demonstrate that FreeDoM is effective for various condi-
tions and suitable for diffusion models of diverse data do-
mains, including image and latent code domains. Code is
available at https://github.com/vvictoryuki/
FreeDoM .

1. Introduction
Recently, diffusion models have been demonstrated

to outperform previous state-of-the-art generative mod-
els [10], such as GANs [12, 29, 3, 22, 24, 23]. The im-
pressive generative power of diffusion models [15, 43, 45]
has motivated researchers to apply diffusion models to var-
ious downstream tasks. Conditional generation is one of
the most popular focus areas. Conditional diffusion mod-
els (CDMs) with diverse conditions have been proposed,
such as text [20, 1, 13, 26, 36, 40, 35, 38, 25, 32], class la-
bels [10], degraded images [5, 6, 7, 8, 19, 27, 42, 44, 47, 37,
39, 48], segmentation maps [31, 52], landmarks [31, 52],
hand-drawn sketches [31, 52], style images [31, 52], etc.
These CDMs can be roughly divided into two categories:
training-required or training-free.

A typical type of training-required CDMs trains a time-
dependent classifier to guide the noisy image xt toward the
given condition c [10, 32, 53, 26]. Another branch of

†Corresponding authors. This work was supported by Shenzhen Gen-
eral Research Project under Grant JCYJ20220531093215035, KAUST Of-
fice of Sponsored Research through the Visual Computing Center funding,
and SDAIA-KAUST Center of Excellence in Data Science and Artificial
Intelligence.

training-required CDMs directly trains a new score estima-
tor s(xt, t, c) conditioned on c [31, 16, 36, 37, 39, 48, 52,
20, 1, 13, 35, 32]. These methods yield impressive perfor-
mance but are not flexible. Once a new target condition is
needed for generation, they have to retrain or finetune the
models, which is inconvenient and expensive.

In contrast, training-free CDMs try to solve the same
problems without extra training. [30, 11, 14] attempt to use
the cross-attention control to realize the conditional gener-
ation; [5, 6, 7, 8, 19, 27, 42, 44, 47, 46] directly modify the
intermediate results to achieve zero-shot image restoration;
[28] realizes image translation by adjusting the initial noisy
images. While these methods are effective in a single ap-
plication, they are difficult to generalize to a wider range of
conditions, e.g., style, face ID, and segmentation masks.

In order to make CDMs support a wide range of con-
ditions in a training-free manner, this paper proposes
a training-Free conditional Diffusion Model (FreeDoM)
with the following two key points. Firstly, to emphasize
generalization, we propose a sampling process guided by
the energy function [53, 21], which is very flexible to con-
struct and can be applied to various conditions. Secondly,
to make the proposed method training-free, we use off-the-
shelf pre-trained time-independent models, which are easily
accessible online, to construct the energy function.

Our FreeDoM has the following advantages: (1) Sim-
ple and effective. We only insert a derivative step of the
energy function gradient into the unconditional sampling
process of the original diffusion models. Extensive experi-
ments show its effective controlling capability. (2) Low cost
and efficient. The energy functions we construct are time-
independent and do not need to be retrained. The diffusion
models we choose do not need to be trained on the desired
conditions. Thanks to the efficient time-travel strategy we
use for large data domains, the number of sampling steps
we use is quite small, which speeds up the sampling process
while ensuring good generated results. (3) Amenable to a
wide range of applications. The conditions our method
supports include, but are not limited to, text, segmentation
maps, sketches, landmarks, face IDs, style images, etc. In
addition, various complex but interesting applications can
be realized by combining multiple conditions. (4) Supports
different types of diffusion models. Regardless of the con-
sidered data domain, such as human face images, images
in ImageNet, or latent codes extracted from an image en-
coder, extensive experiments demonstrate that our method
does well on all of them.

2. Related Work

2.1. Training-Required Methods

The training-required methods can obtain strong con-
trol generation ability thanks to supervised learning with
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data pairs. One of the most prominent applications of
these methods is the text-to-image task. The most widely
used text-to-image model, Stable Diffusion [36], generates
high-quality images that conform to the text description
by inputting a prompt text. Recent works, such as Con-
trolNet [52] and T2I-Adapter [31], have introduced more
training-required conditional interfaces to Stable Diffusion,
such as edge maps, segmentation maps, depth maps, etc.

Although these training-required methods can achieve
satisfactory control results under trained conditions, the cost
of training is still a factor to be considered, especially for the
scenario that requires more complex control with multiple
conditions. The training-required method is not the cheap-
est or most convenient solution in practical applications.

2.2. Training-Free Methods

The training-free methods develop various interesting
technologies to realize the training-free condition genera-
tion on some tasks exploiting the unique nature of the diffu-
sion model, namely, the iterative denoising process. [14]
proposes to inject the target cross attention maps to the
source cross attention maps to solve the prompt-to-prompt
task without training. The limitation of this method is that
a text prompt is needed to anchor the content of the im-
age to be edited in advance. DDNM [47] proposes to use
the Range-Null Space Decomposition to modify the inter-
mediate results to solve the image restoration in a training-
free way. It is based on the degradation operators of image
restoration tasks and is hard to be adopted in other applica-
tions. SDEdit [28] proposes to adjust the initial noisy im-
ages to control the generation process, which is useful in
stroke-based image synthesis and editing. Its limitation is
that the guidance of stroke is not precise and versatile.

According to the limitations mentioned above, the
training-free CDMs for a broad range of applications need
to be studied urgently. We have noticed some recent ef-
forts [33, 2] in this area. Our FreeDoM has a faster genera-
tion speed and applies to a broader range of applications.

3. Preliminaries

3.1. Score-based Diffusion Models

Score-based Diffusion Models (SBDMs) [43, 45] are a
kind of diffusion model based on score theory, which re-
veals that the essence of diffusion models is to estimate the
score function ∇xt

log p(xt), where xt is noisy data. Dur-
ing the sampling process, SBDMs predict xt−1 from xt us-
ing the estimated score step by step. In our work, we resort
to discrete SBDMs with the setting of DDPM [15] and its
sampling formula is:

xt−1 = (1 +
1

2
βt)xt + βt∇xt

log p(xt) +
√
βtϵ, (1)

where ϵ ∼ N (0, I) is randomly sampled Gaussian noise
and βt ∈ R is a pre-defined parameter. In actual implemen-
tation, the score function will be estimated using a score es-
timator s(xt, t), that is, s(xt, t) ≈ ∇xt

log p(xt). However,
the original diffusion models can only serve as an uncondi-
tional generator with randomly synthesized results.

3.2. Conditional Score Function

In order to adapt the generative power of the diffusion
models to different downstream tasks, conditional diffusion
models (CDMs) are needed. SDE [45] proposed to control
the generated results with a given condition c by modifying
the score function as ∇xt

log p(xt|c). Using the Bayesian
formula p(xt|c) = p(c|xt)p(xt)

p(c) , we can rewrite the condi-
tional score function as two terms:

∇xt
log p(xt|c) = ∇xt

log p(xt) +∇xt
log p(c|xt), (2)

where the first term ∇xt log p(xt) can be estimated using
the pre-trained unconditional score estimator s(·, t) and the
second term ∇xt

log p(c|xt) is the critical part of construct-
ing conditional diffusion models. We can interpret the sec-
ond term ∇xt

log p(c|xt) as a correction gradient, point-
ing xt to a hyperplane in the data space, where all data
are compatible with the given condition c. Classifier-based
methods [10, 32, 53, 26] train a time-dependent classifier to
compute this correction gradient for conditional guidance.

3.3. Energy Diffusion Guidance

Modeling the correction gradient ∇xt
log p(c|xt) re-

mains an open question. A flexible and straightforward way
is resorting to the energy function [53, 21] as follows:

p(c|xt) =
exp{−λE(c,xt)}

Z
, (3)

where λ denotes the positive temperature coefficient and
Z > 0 denotes a normalizing constant, computed as Z =∫
c∈C exp{−λE(c,xt)} where C denotes the domain of the

given conditions. E(c,xt) is an energy function that mea-
sures the compatibility between the condition c and the
noisy image xt — its value will be smaller when xt is more
compatible with c. If xt satisfies the constraint of c per-
fectly, the energy value should be zero. Any function sat-
isfying the above property can serve as a feasible energy
function, with which we just need to adjust the coefficient
λ to obtain p(c|xt).

Therefore, the correction gradient ∇xt
log p(c|xt) can

be implemented with the following:

∇xt
log p(c|xt) ∝ −∇xt

E(c,xt), (4)

which is referred to as energy guidance. With Eq. (1),
Eq. (2), and Eq. (4), we get the conditional sampling:

xt−1 = mt − ρt∇xt
E(c,xt), (5)
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where mt = (1 + 1
2βt)xt + βt∇xt log p(xt) +

√
βtϵ, and

ρt is a scale factor, which can be seen as the learning rate of
the correction term. Eq. (5) is a generic formulation of con-
ditional diffusion models, which enables the use of different
energy functions.

4. The Proposed FreeDoM Method
In Sec. 4.1, we approximate the time-dependent energy

function using time-independent distance measuring func-
tions, making our method training-free and flexible for var-
ious conditions. In Sec. 4.2, we first analyze the reason
why the energy guidance fails in a large data domain and
then propose an efficient version of the time-travel strat-
egy [27, 47]. In Sec. 4.3, we describe the details of how
to construct the energy functions. In Sec. 4.4, we provide
specific examples of supported conditions.

4.1. Approximate Time-Dependent Energy

We use the energy function to guide the generation
due to its flexibility to construct and suitability to vari-
ous conditions. Existing classifier-based methods [10, 32,
53, 26] choose time-dependent distance measuring func-
tions Dϕ(c,xt, t) to approximate the energy functions as
follows:

E(c,xt) ≈ Dϕ(c,xt, t), (6)

where ϕ defines the pre-trained parameters. Dϕ(c,xt, t)
computes the distance between the given condition c and
noisy intermediate results xt. The distance measuring func-
tions for noisy data xt cannot be directly constructed be-
cause it is difficult to find an existing pre-trained network
for noisy images. In this case, we have to train (or finetune)
a time-dependent network for each type of condition.

Compared with time-dependent networks, time-
independent distance measuring functions for clean data
x0 are widely available. Many off-the-shelf pre-trained
networks such as classification networks, segmentation
networks, and face ID encoding networks are open-source
and work well on clean images. We denote these distance
measuring networks for clean data as Dθ(c,x0), where θ
denotes their pre-trained parameters. To use these networks
for the energy functions, a straightforward way is to
approximate Dϕ(c,xt, t) using Dθ(c,x0), formulated as:

Dϕ(c,xt, t) ≈ Ep(x0|xt)[Dθ(c,x0)]. (7)

Eq. (7) is reasonable because if the distance between the
noise image xt and the condition c is small, the clean image
x0 corresponding to the noise image xt should also have a
small distance with the condition c, especially during the
late stage of the sampling process when the noise level of xt

is relatively small. However, during the sampling process,
it is infeasible to get the clean image x0 corresponding to

Algorithm 1 Sampling Process of our proposed FreeDoM
Require: condition c, unconditional score estimator s(·, t), time-independent dis-

tance measuring function Dθ(c, ·), pre-defined parameters βt, ᾱt and learning
rate ρt.

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
4: xt−1 = (1 + 1

2βt)xt + βts(xt, t) +
√
βtϵ

5: x0|t = 1√
ᾱt

(xt + (1 − ᾱt)s(xt, t))

6: gt = ∇xtDθ(c,x0|t(xt)))
7: xt−1 = xt−1 − ρtgt

8: return x0

(a) Badly Generated Results  

Time-Travel Strategy

(b) Generated Results 
with the Time-Travel Strategy  

Figure 2: Comparison of results generated before and
after using the time-travel strategy. The prompt is “or-
ange”. We can see that the results in (a) do not match the
given conditions. After using the time-travel strategy, we
get better results in (b).

an intermediate noisy result xt, so we need to approximate
x0. Considering the expectation of p(x0|xt) [6]:

x0|t := E[x0|xt] =
1√
ᾱt

(xt + (1− ᾱt)s(xt, t)), (8)

where ᾱt =
∏t

i=1(1 − βi) and s(·, t) is the pre-trained
score estimator. According to Eq. (8), from xt, we can es-
timate the clean image denoted as x0|t. Then with Eq. (6)
and Eq. (7), we can approximate the time-dependent energy
function of noisy data xt:

E(c,xt) ≈ Dθ(c,x0|t). (9)

According to Eq. (5) and Eq. (9), the approximated sam-
pling process can be written as:

xt−1 = mt − ρt∇xtDθ(c,x0|t(xt)), (10)

and the detailed algorithm is shown in Algo. 1.

4.2. Efficient Time-Travel Strategy

In the process of applying Algo. 1, we find that the per-
formance varies significantly on different data domains. For
small data domains such as human faces, Algo. 1 can ef-
fectively produce results that satisfy the given conditions
within 100 DDIM [41] sampling steps. However, for large
data domains such as ImageNet, we often get results that
are not closely related to the given conditions or even ran-
domly generated results (shown in Fig. 2(a)). We attribute
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 Phase#1: Chaotic Stage
(#1000~#800 Timestep)
Almost Out of Control

 Phase#2: Semantic Stage
(#800~#500 Timestep)

Critcal for Conditional Generation

 Phase#3: Refinement Stage
(#500~#1 Timestep)

Too Late for Full Control

Figure 3: Demonstration of the importance of different sampling stages. Most of the semantic content is generated during
the semantic stage, so we only employ the time-travel strategy in this stage to achieve an efficient version of FreeDoM. The
shown images are x0|t generated by diffusion models pre-trained on the ImageNet data domain.

the failure of Algo. 1 on large data domains to poor guid-
ance. The reason for poor guidance is that the direction of
unconditional score generated by diffusion models in large
data domains has more freedom, making it easier to deviate
from the direction of conditional control. To solve this prob-
lem, we adopt the time-travel strategy [27, 47], which has
been empirically shown to inhibit the generation of dishar-
monious results when solving hard generation tasks.

The time-travel strategy is a technique that takes the cur-
rent intermediate result xt back by j steps to xt+j and re-
samples it to the t-th timestep again. This strategy inserts
more sampling steps into the sampling process and refines
the generated results. In our experiments specifically, we go
back by j = 1 step each time and resample. We repeat this
resampling process rt times at the t-th timestep. Our exper-
iments demonstrate that the time travel strategy is effective
in solving the poor guidance problem (shown in Fig. 2(b)).
However, the time cost is also expensive because the num-
ber of sampling steps is larger, especially considering that
each timestep will include the cost of calculating the gradi-
ent of the energy function.

Fortunately, we find that the time-travel strategy does not
have the same effect in each time step. In fact, using this
technique in most time steps will not significantly modify
the final result, which means we can use this strategy only
in a small portion of the timesteps, thus significantly reduc-
ing the number of additional iteration steps. In Fig. 3, we
try to analyze this phenomenon by dividing the sampling
process into three stages. In the early stage, i.e., the chaotic
stage, the generated result x0|t is extremely blurred, and the
energy guidance is hard to make anything reasonable, so we
do not need to employ the time-travel strategy. During the
late stage, i.e., the refinement stage, the change in the gen-
erated results is minor, so the time-travel strategy is useless.
During the intermediate stage, i.e., the semantic stage, the
change in the generated result is significant, so this stage is
critical for conditional generation. Based on this observa-
tion, we only apply the time-travel strategy in the seman-
tic stage to implement efficient sampling while solving the
problem of poor guidance. The range of the semantic stage
is an experimental choice depending on the specific dif-

Algorithm 2 FreeDoM + Efficient Time-Travel Strategy
Require: condition c, unconditional score estimator s(·, t), time-independent dis-

tance measuring function Dθ(c, ·), pre-defined parameters βt, ᾱt, learning rate
ρt, and the repeat times of time travel of each step {r1, · · · , rT }.

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: for i = rt, ..., 1 do
4: ϵ1 ∼ N (0, I) if t > 1, else ϵ1 = 0.
5: xt−1 = (1 + 1

2βt)xt + βts(xt, t) +
√
βtϵ1

6: x0|t = 1√
ᾱt

(xt + (1 − ᾱt)s(xt, t))

7: gt = ∇xtDθ(c,x0|t(xt)))

8: xt−1 = xt−1 − ρtgt
9: if i > 1 then

10: ϵ2 ∼ N (0, I)
11: xt =

√
1 − βtxt−1 +

√
βtϵ2

12: return x0

fusion models we choose. The detailed algorithm of our
proposed FreeDoM with the efficient time-travel strategy is
shown in Algo. 2, where rt = 1 means we do not apply the
time-travel strategy in the t-th timestep.

4.3. Construction of the Energy Function

❑ Single Condition Guidance. To incorporate in specific
applications, we use the distance measuring function con-
forming to the following structure to construct the energy
function:

E(c,xt) ≈ Dθ(c,x0|t) = Dist(Pθ1
(c),Pθ2

(x0|t)), (11)

where Dist(·) denotes the distance measuring methods like
Euclidean distance, and θ = {θ1,θ2}. Pθ1

(·) and Pθ2
(·)

project the condition and image to the same space for dis-
tance measurement. These projection networks can be off-
the-shelf pre-trained classification networks, segmentation
networks, etc. In most cases, we only need one network
to project the clean image x0|t to the condition space. In
the cases with reference images xref , we also only need
one feature encoder to project the reference image xref and
x0|t to the same feature space.
❑ Multi Condition Guidance. In some more involved ap-
plications, multiple conditions can be available to provide
control over the generated results. Take the image style
transfer task as an example. Here, we have two condi-
tions: the structure information from the source image and

23178



Original Image “Lipstick”

Original Image “Red hair”

Original Image “Pale lips”

Original Image “Straight hair”

Mask Mask

Mask Mask

Figure 4: Practical usage of face parsing maps. We can
limit the gradient of the energy function to update the image
only in the target semantic region indicated by the mask so
that other regions remain unchanged while editing.

the style information from the style image. In these multi-
condition cases, assume that the given conditions are de-
noted as {c1, · · · , cn}, we can approximately construct the
energy function as :

E({c1, · · · , cn},xt)

≈ η1Dθ1
(c1,x0|t) + · · ·+ ηnDθn

(cn,x0|t), (12)

where ηi is the weighting factor. We use different distance
measuring functions {Dθ1(·, ·), · · · ,Dθn(·, ·)} for specific
conditions and sum the whole for gradient computation.

❑ Guidance for Latent Diffusion. Our method applies not
only to image diffusions but also to latent diffusions, such as
Stable Diffusion [36]. In this case, the intermediate results
xt are latent codes rather than images. We can use the latent
decoder to project the generated latent codes to images and
then use the same algorithm in the image domain.

4.4. Specific Examples of Supported Conditions

❑ Text. For given text prompts, we construct the distance
measuring function based on CLIP [34]. Specifically, we
take the CLIP image encoder (as Pθ2

(·)) and the CLIP text
encoder (as Pθ1

(·)) to project the image x0|t and given text
in the same CLIP feature space. Compared with the com-
monly used cosine distance measurement and for simplicity,
we choose the ℓ2 Euclidean distance measurement, since the
sampling quality in our experiments is not significantly dif-
ferent.

❑ Segmentation Maps. For segmentation maps, we choose
a face parsing network based on the real-time semantic seg-
mentation network BiSeNet [51] to generate the parsing
map of an input human face and directly compute the ℓ2
Euclidean distance between the given parsing map and the
parsing results of x0|t. An interesting usage of the face pars-
ing network is to constrain the gradient update region so
that we can edit the target semantic region without chang-
ing other regions (shown in Fig. 4).

❑ Sketches. We choose an open-source pre-trained net-
work [50] that transfers a given anime image to the style

of hand-drawn sketches. Experiments prove that the net-
work is still effective for real-world images. We use the
ℓ2 Euclidean distance to compare the given sketches with
transferred sketch-style results of x0|t.

❑ Landmarks. We use an open-source pre-trained human
face landmark detection network [4] for this application.
The detection network has two stages: the first stage finds
the position of the center of a face and the second stage
marks the landmarks of this detected face. We compute the
ℓ2 Euclidean distance between predicted face landmarks of
x0|t and the given landmarks condition, and only use the
gradient in the face area detected in the first stage to update
the intermediate results.

❑ Face IDs. We use ArcFace [9], an open-source pre-
trained human face recognition network, to extract the tar-
get features of reference faces to represent face IDs and
compute the ℓ2 Euclidean distance between the extracted
ID features of x0|t and those of the reference image.

❑ Style Images. The style image is denoted as xstyle. We
use the following equation to compute the distance of the
style information between xstyle and x0|t:

Dist(xstyle,x0|t) = ||G(xstyle)j −G(x0|t)j ||2F , (13)

where G(·)j denotes the Gram matrix [17] of the j-th layer
feature map of an image encoder. In our experiments, we
choose the features from the third layer of the CLIP image
encoder to generate satisfactory results.

❑ Low-pass Filters. For the image transferring task, we
need an energy function to constrain the generated results
conforming to the structure information of the source image
xsource. Similar to EGSDE [53] and ILVR [5], we choose a
low-pass filter K(·) in this setup. The distance between the
source image xsource and x0|t is computed as:

Dist(xsource,x0|t) = ||K(xsource)−K(x0|t)||22. (14)

5. Experiments

5.1. Implementation Details

Our proposed method applies to many open-source pre-
trained diffusion models (DMs). In our experiment, we
have tried the following models and conditions:
➢ Unconditional Human Face Diffusion Model [28].
The supported image resolution of this model is 256× 256,
and the pre-trained dataset is aligned human faces from
CelebA-HQ [18]. We experiment with conditions that in-
clude text, parsing maps, sketches, landmarks, and face IDs.
➢ Unconditional ImageNet Diffusion Model [10]. The
supported image resolution of this model is 256 × 256 and
the pre-trained dataset is ImageNet. We experiment with
conditions that include text and style images.
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Figure 5: Qualitative results of using a single condition for human face images. The included conditions are: (a) text; (b)
face parsing maps; (c) sketches; (d) face landmarks; (e) IDs of reference images. Zoom in for best view.
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Figure 6: Qualitative results of using a single condition
for ImageNet images. Pre-trained diffusion models are:
(a) unconditional ImageNet diffusion model; (b) classifier-
based ImageNet diffusion model. Zoom in for best view.

➢ Classifier-based ImageNet Diffusion Model [10]. The
supported image resolution of this model is 256× 256, and
the pre-trained dataset is ImageNet. This model also has
a time-dependent classifier to guide its generation process.
We experiment with the condition of style images.
➢ Stable Diffusion [36]. Stable Diffusion is a widely used
Latent Diffusion Model. The standard resolution of its out-
put images is 512× 512, but it supports higher resolutions.
In our work, we use its pre-trained text-to-image model. We
experiment with the condition of style images.
➢ ControlNet [52]. ControlNet is a Stable Diffusion based
model supporting extra conditions input with the original
text input. In our work, we use the pre-trained pose-to-
image and scribble-to-image models. We experiment with
conditions that include face IDs and style images.

We choose DDIM [41] with 100 steps as the sampling
strategy of all experiments, and other more detailed config-
urations will be provided in the supplementary material.

5.2. Qualitative Results

❑ Single Condition. We present the single-condition-
guided results of human face images in Fig. 5. We can
see that the generated results meet the requirements of the
given conditions and have rich diversity and good quality.
In Fig. 6, we show the single-condition-guided results of the
ImageNet domain. The diversity of the generated results is
still high. In order to ensure that the generated results can
better meet the control of the given conditions, we use the

(a)

“young
man”

Face ID Landmarks Conditional Generated Samples

Parsing Map Prompt Conditional Generated Samples

Style Source Images Generated Results

(b)

(d)

“dog”

Style Prompt Conditional Generated Samples

(c)

Figure 7: Qualitative results of using multiple conditions.
Pre-trained models are: (a) and (b): unconditional human
face diffusion model; (c) and (d): unconditional ImageNet
diffusion model. Zoom in for best view.

proposed efficient time-travel strategy.
❑ Multiple Conditions. Fig. 7 shows the synthesized re-
sults guided by multiple conditions in the domain of human
faces and ImageNet. In the human face domain (a small
data domain), we produce good results with rich diversity
and high consistency with the conditions. We use the effi-
cient time-travel strategy in the ImageNet domain (a large
data domain) to produce acceptable results.
❑ Training-free Guidance for Latent Domain. It should
be pointed out that FreeDoM supports diffusion models in
both image and latent domains. In our work, we experiment
with two latent diffusion models: Stable Diffusion [36] and
ControlNet [52]. We try to add the training-free conditional
interfaces based on their energy functions to work with the
existing training-required conditional interfaces, leading to
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Figure 8: Comparison between FreeDoM and TediGAN [49] in three conditional image synthesis tasks: (a) segmenta-
tion maps to human faces; (b) sketches to human faces; (c) text prompts to human faces. Zoom in for best view.

Methods Segmentation maps Sketches Texts
Distance↓ FID↓ Distance↓ FID↓ Distance↓ FID↓

TediGAN [49] 2037.2 52.77 48.61 91.11 12.31 71.71

FreeDoM (ours) 1696.1 53.08 33.29 70.97 10.83 55.91

Table 1: We compare FreeDoM with the training-required
method TediGAN [49] in three image conditional synthesis
tasks. We compute the distance with given conditions and
FID to judge the performance. The comparison shows that
FreeDoM generates images matching given conditions bet-
ter and having a comparable or better image quality.

satisfactory results shown in Fig. 1(d)-(f). As such, we can
see great application potential for mixing training-free and
training-required conditional interfaces in various practical
applications.

5.3. Further Studies

❑ Comparison between FreeDoM and TediGAN [49].
We compare FreeDoM with the training-required condi-
tional human face generation method TediGAN under three
conditions: segmentation maps, sketches, and text. A qual-
itative comparison is shown in Fig. 8, and quantitative com-
parison results are reported in Tab. 1. For the comparison,
we choose 1000 segmentation maps, 1000 sketches, and
1000 text prompts to generate 1000 results, respectively.
Then we compute FID and the average distance with given
conditions using the methods introduced in Sec. 4.4 to judge
the performance. The comparison shows that the images
generated by FreeDoM match the given conditions better
and have a comparable or better image quality.
❑ Comparison between FreeDoM and UGD [2]. We
compare FreeDoM with Universal Guidance Diffusion
(UGD) [2] in style-guided generations. From Fig. 9, we
find that FreeDoM has significant advantages over UGD in
the degree of alignment with the conditioned style image.

“A fantasy photo of a lonely road”
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551.0 692.5

“A colorful photo of an Eiffel Towel”“A fantasy photo of volcanoes”

540.0 604.5 518.0

402.7 420.5 392.5

Figure 9: Comparison between FreeDoM and UGD [2]
in style-guided generation. The UGD results are taken
from the original paper. The number in the lower right cor-
ner of each image represents its distance with the provided
style image (smaller is better), which is calculated using the
method described in Sec. 4.4. FreeDoM offers obvious ad-
vantages in image quality and in the degree of statisfaction
of the conditions. Zoom in for best view.
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Figure 10: Demonstration of the effect of different learn-
ing rates from small scale to large scale. (a): uncondi-
tional ImageNet diffusion models with prompt “orange”;
(b): unconditional human face diffusion models with a face
ID from the reference image. Zoom in for best view.

Regarding the inference speed, UGD runs in about 40 min-
utes (using the open-source code) on a GeForce RTX 3090
GPU to synthesize one image with a resolution of 512×512,
while we only need about 84 seconds (nearly 30× faster).
❑ Effect of different learning rates. We studied the effect
of different learning rates on the results. Fig. 10 shows the
results while increasing the energy function’s learning rate
(ρt in Eq. (10)) from 0. We can see that FreeDoM is scalable
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in terms of its control ability, which means that users can
adjust the intensity of control as needed.

6. Conclusions & Limitations

We propose a training-free energy-guided conditional
diffusion model, FreeDoM, to address a wide range of con-
ditional generation tasks without training. Our method uses
off-the-shelf pre-trained time-independent networks to ap-
proximate the time-dependent energy functions. Then, we
use the gradient of the approximated energy to guide the
generation process. Our method supports different diffu-
sion models, including image and latent diffusion models.
It is worth emphasizing that the applications presented in
this paper are only a subset of the applications FreeDoM
supports and should not be limited to these. In future work,
we aim to explore even more energy functions for a broader
range of tasks.

Despite its merits, our FreeDoM method has some limi-
tations: (1) The time cost of the sampling is still higher than
the training-required methods because each iteration adds a
derivative operation for the energy function, and the time-
travel strategy introduces more sampling steps. (2) It is dif-
ficult to use the energy function to control the fine-grained
structure features in the large data domain. For example,
using the Canny edge maps as the conditions may result in
poor guidance, even if we use the time-travel strategy. In
this case, the training-required methods will provide a bet-
ter alternative. (3) Eq. 12 deals with multi-condition control
and assumes that the provided conditions are independent,
which is not necessarily true in practice. When conditions
conflict with each other, FreeDoM may produce subpar gen-
eration results.
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