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Abstract

Knowledge distillation is an effective model compression
method to improve the performance of a lightweight student
model by transferring the knowledge of a well-performed
teacher model, which has been widely adopted in many
computer vision tasks, including face recognition (FR).
The current FR distillation methods usually utilize the
Feature Consistency Distillation (FCD) (e.g., Lo distance)
on the learned embeddings extracted by the teacher and
student models. However, after using FCD, we observe that
the intra-class similarities of the student model are lower
than the intra-class similarities of the teacher model a lot.
Therefore, we propose an effective FR distillation method
called ICD-Face by introducing intra-class compactness
distillation into the existing distillation framework. Specif-
ically, in ICD-Face, we first propose to calculate the
similarity distributions of the teacher and student models,
where the feature banks are introduced to construct suffi-
cient and high-quality positive pairs. Then, we estimate the
probability distributions of the teacher and student models
and introduce the Similarity Distribution Consistency
(SDC) loss to improve the intra-class compactness of the
student model. Extensive experimental results on multiple
benchmark datasets demonstrate the effectiveness of our
proposed ICD-Face for face recognition.

1. Introduction

Face recognition (FR) has been well-investigated for
many years. Most of the progress is credited to large-
scale training datasets [64, 22], resource-intensive networks
with millions of parameters [15, 43] and effective loss
functions [7, 52]. Although larger FR models usually ex-
hibit better recognition performance, the requirements for
huge computational resources are usually prohibitive on
mobile and embedded devices. Therefore, how to de-
velop lightweight and effective FR models in resource-
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Figure 1: (a) The similarity distributions of positive pairs
based on different methods. “ArcFace (T)” and “ArcFace
(S)” mean teacher and student models are trained by Arc-
Face [7]. “FCD (S)” denotes the student model is trained
by FCD. (b) The similarity distributions of negative pairs
based on different methods. (c) True Accept Rate (TAR)
and threshold results of the teacher and student models us-
ing different methods.

limited scenarios has become an emergency problem in re-
cent years. Knowledge distillation [16] is a popular strategy
for compressing models, which transfers the “knowledge”
from the teacher model to the lightweight student model.
Most existing knowledge distillation methods usually
aim to guide the student to mimic the teacher’s behav-
ior by introducing probability constraints (e.g., KL diver-
gence [16]) between the teacher’s predictions and student
models. However, for FR, the performance is usually eval-
uated in an open-set setting, where the identities of the test-
ing set are disjoint from the training set. Meanwhile, at
the testing phase, the similarities of feature embedding are
employed for FR instead of the probabilities of the clas-
sifier used in classical close-set classification. Therefore,
it is more important to improve the discriminative ability
of the feature embedding of the student model for FR. A

21042



straightforward and effective FR distillation method is to di-
rectly minimize the Ly distance of the feature embeddings
extracted by the teacher and student models [54, 42, 26],
which is called Feature Consistency Distillation (FCD).
FCD enables the student model to share the same embed-
ding space with the teacher model for similarity compari-
son, and FCD has been widely used in practice to improve
the performance of the lightweight neural networks for FR.

However, we observe that it is unfeasible for student
models with low capacities to align the feature space with
the teacher model well. As shown in Fig. 1, we use the
ResNet-50 and MobileNetV2 as teacher and student mod-
els, respectively, and report the performance results of these
models using different losses on the IJB-C [56] dataset.
Specifically, after using FCD, as shown in Fig. 1(a), when
compared with the similarity distribution of the positive
pairs using the teacher model, we observe that the similari-
ties of positive pairs using the student model decrease a lot,
which means that FCD reduces the intra-class compactness
alot. Meanwhile, in Fig. 1(b), the similarity distributions of
the negative pairs between “FCD (S)” and “ArcFace (T)” are
very close, which indicates that the student model can main-
tain inter-class discrepancy well after using FCD. Besides,
in Fig. 1(c), we observe that the widely-used FR evaluation
metric True Accept Rate (TAR) of the student model will
be significantly improved after using FCD, and the similar-
ity threshold value under the False Accept Rate (FAR) of
the student model decreases a lot and is close to the thresh-
old calculated by the teacher model, which also represents
that the similarities of the negative pairs are effectively de-
creased to a similar degree with the teacher model and the
FCD method can effectively help students to learn the inter-
class distribution of the teacher model.

Therefore, FCD cannot preserve the intra-class compact-
ness of the student model well, and it is critical to align
the similarity distributions of the positive pairs between the
teacher and student models.

Motivated by the aforementioned analysis, we propose a
new FR distillation framework (ICD-Face), which includes
FCD and Intra-class Compactness Distillation (ICD). The
ICD aims to improve the similarity distribution consistency
between the teacher and student models. Specifically, we
first pre-train the teacher model on the large-scale train-
ing dataset. Then, in FCD, we calculate the Ly distance of
the embeddings extracted by the teacher and student mod-
els to calculate the FCD loss for aligning the embedding
spaces of the teacher and student models. In ICD, as it is
important to generate sufficient positive pairs to estimate
accurate similarity distribution for FR models, inspired by
MoCo [14], we propose to construct the teacher and student
feature banks and generate the positive pairs using the fea-
tures from the feature banks and the features from the cur-
rent batch in our Similarity Distribution Generation mod-

ule. After that, we estimate the probability distributions
of the teacher and student models, and introduce the Simi-
larity Distribution Consistency (SDC) loss to directly align
the similarity distributions of the positive pairs between the
teacher and student models in the training process.

The contributions of our ICD-Face are as follows:

* In our work, we first investigate the gap of the intra-
class similarity distributions between the teacher and
student models, and propose a new FR distillation
method called as ICD-Face, which additionally intro-
duces Intra-class Compactness Distillation (ICD) into
the existing FR distillation method.

* In ICD, we first propose to generate sufficient positive
pairs for estimating intra-class similarity distributions
of the teacher and student models, and then utilize
the similarity distribution consistency loss to align the
intra-class similarity distributions between FR models.

» Extensive experiments on multiple benchmark datasets
demonstrate the effectiveness and generalization abil-
ity of our proposed ICD-Face method.

2. Related work

Knowledge Distillation. Knowledge distillation is a rep-
resentative method of model compression and accelera-
tion [12, 25, 13], which aims to transfer knowledge from a
powerful teacher model trained on a task to a lightweight
student model [16]. It has been used in many computer
vision tasks [34, 39, 3, 59, 38, 48, 37, 17, 5, 9, 10, 21,
, 29, 11, 2]. Different kinds of representation have been
used as knowledge for better performance by various distil-
lation methods. For instance, FitNet [39] guides the stu-
dent model training with middle-level hints from hidden
layers of the teacher model. CRD [48] uses a contrastive-
based objective function for knowledge transfer between
deep networks. Some relation-based knowledge distillation
methods (e.g., CCKD [38], RKD [37]) improve the student
model with relation knowledge. Recently, knowledge distil-
lation has also been applied to enhance the performance of
lightweight network (e.g., MobileNetV2 [40]) for FR. For
example, EC-KD [54] proposes a position-aware exclusiv-
ity strategy to encourage diversity among different filters
of the same layer to alleviate the low capability of student
models. PACKD [60] first discuss the effect of positive pairs
in KD for classification tasks. In contrast to existing meth-
ods, our proposed ICD-Face method introduces the intra-
class compactness distillation to improve the performance
of the student model, which is well-designed for FR distil-
lation.
Face Recognition. Existing FR methods aim to maximize
the inter-class discriminability and the intra-class compact-
ness of feature representations. The success of FR depends
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Figure 2: The framework of our proposed ICD-Face for FR distillation. In FCD, we use the Feature Consistency Distillation
loss L f.q between f7 and f! to align the embedding spaces of the teacher and student models. In ICD, we first generate the
teacher and student intra-class similarity distributions using the feature banks for teacher and student models, respectively.
Then, we minimize the Similarity Distribution Consistency loss L4, loss to align the intra-class similarity distributions

between the teacher and student models.

on three factors: large-scale datasets [64, 1, 19, 58, 22], ef-
fective deep neural networks [47, 44, 43, 46, 31] and well-
designed loss functions [28, 52, 62, 32,45, 51, 7, 6, 36, 8,

, 27, 24, 30]. The loss function design is the main re-
search direction for FR, which investigates improving the
generalization and discriminability of the learned feature
representations. For example, Triplet loss [41] enlarges
the distances of negative pairs and reduces the distances
of positive pairs. Recently, many angular-based loss func-
tions [33, 32] introduce the angular constraint into the cross-
entropy loss function. Besides, CosFace [53] and Arc-
Face [7] further use a margin term for better discriminability
of feature representations. Moreover, some mining-based
loss functions (e.g., MV-Arc-Softmax [55] and Curricular-
Face [18]) consider the difficulty degree of samples and
achieve promising results. The recent work VPL [&] also
introduces sample-to-sample comparisons to reduce the gap
between training and evaluation processes for FR. When
compared to the aforementioned existing methods, we pro-
pose to design an effective distillation loss function to im-
prove the intra-class compactness of the lightweight neural
network for FR.

3. Method

In this section, we introduce the details of our ICD-Face
in Fig. 2, which contains Feature Consistency Distillation
(FCD) and Intra-class Compactness Distillation (ICD) for
FR distillation. The overall pipeline is as follows. First, we

train the teacher model on a large-scale dataset. Then, in
the distillation process of the student model, we extract the
feature embeddings based on the teacher and student mod-
els for each face image. After that, in FCD, we compute the
Feature Consistency Distillation (FCD) loss L ¢.q based on
L, distance of the feature embeddings. Meanwhile, in ICD,
we first generate the positive pairs based on the features ex-
tracted from the current batch and the stored features of the
feature banks. Then, we propose to calculate the similarity
distribution consistency loss to improve the intra-class com-
pactness of the similarity distribution for the student model.

3.1. Preliminaries

We define some notations in ICD-Face, and discuss the
necessity of FR distillation.
Notations. The teacher model and student model are de-
noted as 7 and S, respectively. For each sample x;, the
corresponding identity label is y;, and the features extracted
by 7 and S are denoted as f! and f7, respectively.
Discussion on Face Recognition Distillation. Most ex-
isting knowledge distillation methods are usually proposed
for image classification, which utilizing the probability con-
sistency [16] (e.g., KL divergence) to align the prediction
probabilities from S with the prediction probabilities from
T. However, these techniques are usually incompatible
with FR. In practice, for FR, we can only obtain a pre-
trained 7 but have no idea about how it was trained (e.g.,
the training datasets, loss functions). Therefore, the proba-
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bility consistency loss is not available when the number of
identities of the training dataset for 7 is different from the
current dataset for S or T is trained by other metric learning
based loss functions (e.g., triplet loss [41]). Moreover, FR
models are trained to generate discriminative feature em-
beddings for similarity comparisons in the open-set setting
rather than an effective classifier for the close-set classifica-
tion. Thus, aligning the embedding spaces between S and
T is more important for FR distillation.

3.2. Feature Consistency Distillation

In Feature Consistency Distillation (FCD), to boost the
performance of S for FR, a simple and effective Feature
Consistency Distillation (FCD) loss L4 is widely adopted
in practice, which is defined as follows:

1 N

where [V is the number of face images for each mini-batch.
In ICD-Face, FCD is also used to improve the performance
of the student model S for FR distillation.
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3.3. Intra-class Compactness Distillation

In this section, we describe the Intra-class Compactness
Distillation (ICD) of ICD-Face in detail. First, we describe
how to generate sufficient positive pairs based on the feature
banks in Similarity Distribution Generation. Then, we in-
troduce the Similarity Distribution Consistency (SDC) loss
to transfer the knowledge from positive pairs to the student
model.

3.3.1 Similarity Distribution Generation

As it is challenging to construct sufficient positive pairs in
each mini-batch for both teacher and student models, we
first propose to construct feature banks for teacher and stu-
dent models and then produce positive pairs using the fea-
ture bank and the features of the current mini-batch.

Inspired by MoCo [14] for unsupervised learning, which
stores the features from the previous mini-batches to gen-
erate sufficient negative samples, we propose to maintain a
teacher feature bank M* € R@*%*d and a student feature
bank M* € R@*KX*d jn Fig, 2, where  is the number of
identities of the training dataset, K is the maximum num-
ber of features for each identity, and d represents the feature
dimension of each face image.

As shown in Fig. 3, the procedure of generating similar-
ity distribution for the teacher or student model is similar.
Thus, we take the student feature bank M? as an example
to show the details of constructing a feature bank. Specif-
ically, in each iteration, we first update the student feature
bank M? by pushing the features extracted by the student
model of the current batch into M?, and then utilize the

Feature Bank

Feature Bank

Similarity
Distribution
FR model

Figure 3: The procedure of generating similarity distribu-
tion using feature bank. “ID” means “Identity”. () is the
number of identities. “FR model” can represent the teacher
model T or the student model S, and “Feature Bank” can
denote the teacher feature bank M? or the student feature
bank M.

stored features of IM® to construct the positive pairs with
the features of the current batch.

Meanwhile, as discussed in VPL [8], features drift
slowly for FR models, which indicates that features ex-
tracted previously can be considered as an approximation of
the output of the current network within a certain number of
training steps. Therefore, we also create a validness indica-
tor V. € RP*X to represent the validness of each feature
in the student feature bank M?*. Each item in V is a scalar
value, which denotes the remaining valid steps for the cor-
responding feature in the feature bank. The maximum valid
step for each feature is U, and we initialize all items of V as
0 at the beginning of the training process. In each iteration,
in ICD-Face, we first extract the features {f} | of the cur-
rent batch, where N is the batch size, and y; is the corre-
sponding label of f7. Then, we update the student feature
bank M* based on {f}¥ ;. Specifically, for the i-th fea-
ture £, when the number of the stored features for the cor-
responding identity y; is smaller than K, we insert £ into
M based on the identity ;. When the number of the stored
features is equal to K for identity y;, we first find out the in-
dex idx; of the most oldest feature in M *[y;], which is also
the index of the smallest value in V[y;]. Then, we replace
the oldest feature with the newly extracted feature f; based
on the index idx;, which means we set M*[y;][idx;] = £7.
After that, we set the number of valid steps for {7 as U,
which means we set V[y;|[idz;] = U. After each training
step, V isupdated by V = V —1, which decreases the valid
steps of all stored features in M°.

After the updating process for the student feature bank

M, the number of valid features in the student feature bank
M is 322 2 1(VIi][j] > 0), where 1(x) is the in-
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dicator function. Then, for each feature f in the current
batch, the positive pairs are constructed by using £ and the
stored valid features of the corresponding identity ¥; in the
student feature bank M®. Then, we compute the cosine sim-
ilarity of the positive pairs to generate the student similarity
distribution Sp = {s;}%.,, where G is the number of posi-
tive pairs and s; is the similarity of the ¢-th positive pair.

Similarly, in Fig. 3, we can also generate teacher similar-
ity distribution 7p = {t;}%_, based on the aforementioned
scheme by replacing the student model and student feature
bank with the teacher model and teacher feature bank. Note
that ¢; is the similarity of the ¢-th positive pair.

3.3.2 Similarity Distribution Consistency

After obtaining the similarity distributions for teacher and
student models, we define the following similarity distribu-
tion consistency loss.

Let P and P? denote the two probability distributions of
teacher model 7 and student model S, respectively. 7p and
Sp can be regarded as as similarities of all positive pairs,
which denotes the sample set of P! and P*. Given finite
data samples, we can use existing statistical methods to es-
timate P and P*. It is critical to accurately estimate P*
and P?, and the estimated distribution needs to be differen-
tiable.

For cosine distance-based methods [7], these distribution
of similarity score are one-dimensional and bounded to is
bounded to [-1, 1], which is shown to simplify the task [50].
Thus, we first estimate this type of one-dimensional distri-
bution by fitting simple histograms with uniformly spaced
bins, and we adopt R-dimensional histograms H” and H*
with the nodes ny = —1,n9,- - -,nr = 1 uniformly filling
[—1,1] with the step A = 2. Then, for the student model
S, we estimate the value h{ of the histogram H S at the r-th
node as:

1 G
hizi 51'7‘7 2
‘SD|ZZ_: : 6)

where € {1,2, ..., R}, and the weights ¢; , are based on
an exponential function as follows:

8ir = exp(—(si —nr)?), 3)

where v denotes the spread parameter of the Gaussian ker-
nel function [17], and n, denotes the r-th node of his-
tograms. We adopt the Gaussian kernel function as it is
the most commonly used kernel function for density esti-
mation. Compared to other non-continuous or discrete sur-
rogate functions, the continuous kernel function can prevent
probabilities from being 0 even if the samples do not appear
in r-th bin. Then the estimated P?® can be calculated by a

. o . s .
simple normalization function P°® = % The estima-

tion of P* proceeds analogously.

To narrow the distribution gap between the teacher and
student models, we constrain the student distribution P? to
approximate the teacher distribution P?. Motivated by the
previous KD methods [63, 16], we adopt the KL divergence
D1 to constrain the similarity distributions between the
student and teacher models, which is defined as the follow-
ing Similarity Distribution Consistency (SDC) loss:

Lsae = Dgr(P'||P?). 4)
3.4. Loss Function of ICD-Face

The overall loss function of ICD-Face is as follows:
L= Efcd+a'£sd07 (5)

where « is the loss weight for the ICD loss Ls4.. Mean-
while, we can also add the classification loss L5 (e.g., Ar-
cFace [7]) as follows:

‘C:‘Cfcd‘ka'ﬁsdc‘Fﬂ'Lcls’ (6)

where we call ICD-Face with L.;, as ICD-Face+.
For better clarification, we also provide an algorithm of
our proposed ICD-Face in Alg. 1.

3.5. Discussion

Differences between PACKD and ICD-Face. Both
PACKD and ICD-Face discuss the effectiveness of positive
pairs in knowledge distillation. The differences between
PACKD and ICD-Face are as follows: (1). Motivation is
different. PACKD is used for close-set classification and
aims to transfer inter-class and intra-class relation knowl-
edge, where the quality of the classifier is important. In
contrast, ICD-Face is well-designed for open-set FR. For
the student model, increasing the discrepancy of similar-
ity distributions between positive and negative pairs is more
important for FR distillation. (2). Method is also different
a lot. PACKD uses a mixup augmentation policy to obtain
extra positive samples. In contrast, we construct sufficient
positive pairs by using a feature bank and mixup is not used.
Meanwhile, PACKD uses an optimal transport strategy to
adjust weights of the pair-wise losses for different positive
pairs, while we use SDC loss to directly align the positive
score distributions of teacher and student.

4. Experiments

Datasets. In our ICD-Face, we evaluate our proposed ICD-
Face method on the following benchmark datasets.

* JTARPA Janus Benchmark (IJB) [56, 35] is designed to
evaluate the performance of unconstrained face recog-
nition, which is a challenging template-based bench-
mark. IJB-B [56] has 67K face images, 7K face videos
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Algorithm 1 ICD-Face

Input: Pre-trained teacher model 7; Randomly initialized
student model S; Current batch with /N images; The
feature dimension d; The maximum number of features
for each identity K'; The number of identities @); The
student feature bank M?® € RQ*Kxd and teacher fea-
ture bank M! € R@*KXd. The validness indicator
V € R*X for the validness of the stored features in
M? and M?; The maximum valid steps U;

1: Zero initialize V;

2: for each iteration in the training process do

3. Get features {f/}2 | and {f?}, by T and S;

4. Calculate Lfqq of {£7}Y and {£/}}¥, by Eq. (1);

5. for features f! and 7 in {f!}}V, and {f?}Y, do

6: Select the index idz; to insert f} and £ into M*
and M?, respectively;

7. M [y;][ide;] = £, M?[y;][ida;] = £}

8: Vl{yillidz;) = U;

9: end for

10: V=V-1

11: Construct the positive pairs using {f/})¥; and the
valid features M*[V > 0];

12: Construct the positive pairs using {f#}2Y; and the
valid features M*[V > 0];

13: Calculate the similarity scores of the positive pairs

for teacher and student, respectively.
14: Calculate SDC loss L4 based on Eq. (4);
15: Calculate £ based on {7} ;
16: Update parameters of S by £ in Eq. (5) or Eq. (6);
17: end for
Qutput: The optimized student model S;

and 10K non-face images. When compared with 1JB-
B, IJB-C [35] contains new individuals with increased
occlusion and diversity of geographic origin and is
composed of 138K face images, 11K face videos and
10K non-face images. For IJB-B and IJB-C, we report
the TAR results under the FAR of 1e-4 and le-5.

e MegaFace [22] contains more than 1M images from
690K identities to evaluate the face recognition per-
formance. For MegaFace, we report the identification
accuracy results under different distractors.

For training, the mini version of Glint360K [I] named as
Glint-Mini [19] is used. Glint-Mini [19] contains 5.2M im-
ages of 91K identities. For testing, we use four benchmark
datasets (i.e., [JB-B [56], IIB-C [35], and MegaFace [22]).

Experimental setting. For the pre-processing of the train-
ing data, we follow the recent works [7, 23, 6] to generate
the normalized face crops (112 x 112). For teacher models,
we use the widely used large neural networks (e.g., ResNet-
34, ResNet-50 and ResNet-100 [15]). For student models,

we use MobileNetV?2 [40] and MobileFaceNet [4]. For all
models, the feature dimension is 512. For the training pro-
cess of all models based on ArcFace loss, the initial learn-
ing rate is 0.1 and divided by 10 at the 100k, 160k, and
180k iterations. The batch size and the total iteration are
set as 512 and 200k, respectively. For the distillation pro-
cess, the initial learning rate is 0.1 and divided by 10 at
the 90k, 140k, 180k iterations. Note that we first pretrain
the student model only using FCD loss L¢.q for 50k iter-
ations, and then add the external SDC loss L,4.. The loss
weights « and 3 are set as 0.5 and 0.1, respectively. For
the feature bank, the maximum number of features for each
identity K and the maximum number of valid steps U are
set as 5 and 200, respectively. For the similarity distribution
consistency, following [17], the A and + in Eq. (3) are set
as 0.001 and 50, respectively. The batch size and the total
iteration are set as 512 and 200k, respectively. In the follow-
ing experiments, by default, we use the ResNet-50 (R-50),
MobileNetV2 (MBNet) as 7 and S, respectively, and use
Glint-Mini [19] as the training dataset to achieve competi-
tive results and reduce the GPU resource consumption.

4.1. Results on the IJB-B and 1JB-C datasets

As shown in Table 1, the first two rows represent the per-
formance of models trained by using the ArcFace loss func-
tion [7]. We compare our method with classical KD [16],
FCD, AT [61], CCKD [38], SP [49], RKD [37], EC-
KD [54], and CoupleFace [26]. For FCD, we only use the
FCD loss of Eq. (1) to align the embedding space of the
student and teacher models, which is a very strong baseline
to improve the performance of the student model for FR.
For these methods (i.e., AT [61], CCKD [38], SP [49] and
RKD [37]), we follow CoupleFace [26] to combine these
methods with FCD loss instead of the classical KD loss
for better performance. In Table 1, FCD is much better
than classical KD, which indicates the importance of align-
ing embedding space for FR when compared with classical
KD. Moreover, we observe that ICD-Face achieves signif-
icant performance improvements when compared with ex-
isting methods. Besides, our ICD-Face+ with ArcFace loss
can further improve the results of ICD-Face, which demon-
strates the effectiveness of our proposed method.

4.2. Results on the MegaFace dataset

In Table 2, we provide the results on MegaFace [57], and
we observe that ICD-Face is better than other methods. For
example, when compared with the state-of-the-art Couple-
Face, our method improves the rank-1 accuracy by 0.28%
on MegaFace under the distractor size as 106.

4.3. Ablation study

The effect of the hyper-parameters in the feature banks.
To investigate the performance variation of our method with
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Table 1: Results on IJB-B and IJB-C of different methods.

1JB-B(TAR@FAR) | IIB-C(TAR@FAR)
Models Method Tod o5 Tod o5
R-50[15] ArcFace [7] 93.89 89.61 95.75 93.44
MBNet [40] ArcFace [7] 85.97 75.81 88.95 82.64
KD [16] 86.12 75.99 89.03 82.69
FCD 90.34 81.92 92.68 87.74
AT [61] 90.35 82.22 92.65 87.54
MBNet [40] CCKD [38] 90.72 83.34 93.17 89.11
RKD [37] 90.32 82.45 92.33 88.12
SP [49] 90.52 82.88 92.71 88.52
EC-KD [54] 90.59 83.54 92.85 88.32
CoupleFace [26] | 91.18 84.63 93.18 89.57
ICD-Face 91.46 85.32 93.57 89.90
ICD-Face+ 91.66 85.42 93.81 90.10

Table 2: Rank-1 accuracy with different distractors.

Distractors
Models Method 105 10°
R-50[15] ArcFace [7] 98.98 98.33
MBNet [40] ArcFace [7] 90.25 84.64
KD [16] 90.25 84.65
FCD 96.39 93.65
AT [61] 96.50 93.68
MBNet [40] CCKD [38] 96.43 93.90
RKD [37] 96.41 93.84
SP [49] 96.58 93.95
EC-KD [54] 96.41 93.85
CoupleFace [26] | 96.74 94.27
ICD-Face 96.87 94.55
ICD-Face+ 96.90 94.58

respect to the hyper-parameters of the feature banks (i.e.,
the maximum number of features for each identity K and
the maximum number of valid steps U), we perform ICD-
Face using different values of K and U, and reporting the
results of MBNet on IJB-C dataset. In Table 3, we set U as
200, and use different values of K. When K increases from
1to 5, our method achieves better performance. We suppose
that when K is larger, more positive pairs are generated,
which leads to more accurate similarity distribution estima-
tion. However, when we continue to increase the value of
K, the improvement of performance becomes relatively sta-
ble and the GPU memory usage also increases. Thus, we set
K as 5 to achieve better performance with acceptable mem-
ory usage. When U increases from 50 to 200, our method
achieves better performance, which indicates that it is ef-
fective to generate more pairs for our ICD-Face. However,

Table 3: TAR(@FAR=1e-4) on IIB-C of ICD-Face.

K | 1 3 5 7
TAR (%) | 9273 9339 93.57 93.59

Table 4: TAR(@FAR=1e-4) on IIB-C of ICD-Face.

U | 50 100 200 500
TAR (%) | 93.23 9345 9357 93.54

when U continues to increase, the performance begins to
gradually degrade. It is reasonable that the quality of fea-
ture representations begins to decrease when U is larger,
which causes inaccurate similarity distribution estimation.
Therefore, by default, we set K as 5 and U as 200, respec-
tively.

4.4. Further analysis

Necessity on Intra-class Compactness Distillation. In
Section 1, we have discussed that L¢.q can maintain the
inter-class discrepancy but degrade the intra-class compact-
ness. Here, we further investigate the role of L;.q4 in face
recognition, as shown in Fig. 4(a), we visualize the changes
of the prototype similarities and the FCD loss in the train-
ing process, respectively. Note that we adopt the mean
feature of all samples belonging to the same identity as
the prototype of this identity, and the prototype similarity
is computed based on the student prototype and the cor-
responding teacher prototype with the same identity. In
Fig. 4(a), we observe that the prototype similarities between
the teacher and student models increase a lot in the train-
ing process, which indicates that the class centers of the
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Figure 5: The intra-class similarity distributions of different
iterations for FCD and ICD-Face on the training dataset.

student are very close to the corresponding centers of the
teacher. In other words, FCD can align the prototypes of
the teacher and student well in the feature space. How-
ever, in Fig. 4(b), we randomly sample 100 identities to vi-
sualize the intra-class compactness bias degree for teacher
and student models. We take the student model trained by
FCD (i.e., “FCD (S)” in Fig 4(b)) as an example to com-
pute the intra-class compactness bias degree. Specifically,
the number of images for the k-th identity is Ny, where
k € [1,100]. For the k-th identity, we compute the an-
gles between {f#} 5, with the corresponding prototype 2,
and obtain the mean anﬁle as the intra-class compactness
bias degree (i.e., Nik i arccos(cos(f7, f;)). Similarly,
we can also compute the intra-class compactness bias de-
gree for the teacher model (i.e., “ArcFace (T)” in Fig 4(b))
Therefore, larger mean angle represents lower intra-class

compactness. As shown in Fig. 4(b), we observe that “FCD
(S)” is higher than “ArcFace (T)” a lot, which means that
the intra-class compactness after using FCD degrades a lot
for the student model. Therefore, intra-class compactness
distillation is necessary for FR distillation.

Visualization on the intra-class similarity distributions.
To further analyze the effect of ICD-Face, we visualize the
intra-class similarity distributions for FCD and ICD-Face
in Fig. 5 on the training dataset. Specifically, we use the
models of MBNet in the 60,000th, 120,000th, 190,000th
iterations for both FCD and ICD-Face. The first and the
second rows show the results of FCD and ICD-Face, re-
spectively. In Fig. 5, during training, when compared with
the FCD baseline method, we observe that the intra-class
similarity distribution is more compact and higher, which
further demonstrates the effectiveness of our ICD-Face.

5. Conclusion

In our work, we first investigate the problems of exist-
ing FR distillation methods. Then, we propose a new FR
distillation method called ICD-Face, which additionally in-
troduces Intra-class Compactness Distillation (ICD) into the
existing methods. Specifically, we first estimate the similar-
ity distributions of the teacher and student models, and then
utilize the similarity distribution consistency loss to align
the intra-class similarity distributions between the teacher
and student models. Extensive experiments on multiple
FR benchmark datasets demonstrate the effectiveness of our
ICD-Face.
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