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Abstract

Position information is critical for Vision Transformers
(VTs) due to the permutation-invariance of self-attention
operations. A typical way to introduce position information
is adding the absolute Position Embedding (PE) to patch
embedding before entering VTs. However, this approach
operates the same Layer Normalization (LN) to token em-
bedding and PE, and delivers the same PE to each layer.
This results in restricted and monotonic PE across layers,
as the shared LN affine parameters are not dedicated to
PE, and the PE cannot be adjusted on a per-layer basis.
To overcome these limitations, we propose using two inde-
pendent LNs for token embeddings and PE in each layer,
and progressively delivering PE across layers. By imple-
menting this approach, VTs will receive layer-adaptive and
hierarchical PE. We name our method as Layer-adaptive
Position Embedding, abbreviated as LaPE, which is sim-
ple, effective, and robust. Extensive experiments on image
classification, object detection, and semantic segmentation
demonstrate that LaPE significantly outperforms the default
PE method. For example, LaPE improves +1.06% for CCT
on CIFAR100, +1.57% for DeiT-Ti on ImageNet-1K, +0.7
box AP and +0.5 mask AP for ViT-Adapter-Ti on COCO,
and +1.37 mIoU for tiny Segmenter on ADE20K. This is
remarkable considering LaPE only increases negligible pa-
rameters, memory, and computational cost.

1. Introduction
Vision Transformer (VT) has become one of the most

popular research topics due to its superior performance on
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Figure 1. A brief illustration of the default PE joining method
and our proposed LaPE. We take T2T-ViT-7 with 1-D sinusoidal
PE as an example, and we visualize the position correlation of first
5 layers to explain the emphasis and advantages of our method.
(a) By default, token embedding and PE are coupled together and
treated with the same Layer Normalization (LN) in each layer.
This yields monotonic and limited position correlations. (b) We
argue that each layer’s token embedding and PE need independent
LNs (LNT, LNP). In this way, the expressiveness of PE is en-
hanced and the position correlations are adjusted into hierarchical
and layer-adaptive.

various computer vision tasks, such as image classifica-
tion, object detection, and semantic segmentation. ViT
[10] is the first pure transformer model for image classi-
fication, which outperforms CNNs when applied to large
training data. Since then, many works based on ViT [10]
have sprung up. Lots of work improves the tokenization
[14, 44], self-attention mechanism [23, 45, 35, 9], archite-
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cuture [33, 29, 43, 37, 24], and position embedding (PE)
[6, 38, 27, 12].

Due to the permutation-invariance of self-attention oper-
ation, it is critical to provide position information for VTs.
The solution can be roughly divided into two categories:
(1) PE-based methods, including absolute and relative PE;
(2) PE-free methods, typically designing modules with in-
ductive bias (e.g., convolution) to include implicit position
information. Most of the VTs use the absolute PE, and add
it directly to the patch embedding before entering Trans-
former Encoders. But seldom do they notice the defect of
joining PE in this way.

In this paper, we analyze the input and output of each
encoder layer in VTs using reparameterization and visu-
alization, and find that the default PE joining method has
inherent drawbacks, which limit the performance of VTs.
Most of the VTs deliver the same PE to each layer through
shortcuts, and operate the same Layer Normalization (LN)
[1] to PE and token embedding in each layer. However, PE
and token embedding represent different information and
have different distributions, so the affine parameters in LN
have to trade off between them, which limits the expressive-
ness of PE and hence constrains the performance of VTs.
Fig. 1 (a) provides an illustration.

To overcome this limitation with minimum cost, we pro-
pose to use two independent LN for token embeddings and
PE in each layer (see Fig. 1 (b)), and deliver the PE se-
rially across layers (see Fig. 2 (c)). By doing so, VTs
receive layer-adaptive and hierarchical PE. We name this
new PE joining method Layer-adaptive Position Embed-
ding (LaPE), which yields significant improvement versus
the default absolute PE joining method. Moreover, LaPE
achieves better performance than relative PE and can fur-
ther improve it (see Table 1 and Table 7), and LaPE can be
used in parallel with PE-free methods to further improve the
performance of VTs. Upon analysis, we find that LaPE can
significantly enhance the expressiveness of PE, e.g., trans-
forming a sinusoidal PE with 1-D correlation into 2-D cor-
relation (Fig. 1 and Fig. 3), or generating hierarchical PEs
that change from local to global as the layer goes deeper
(Fig. 1 and Fig. 4).

Extensive experiments on image classification and
downstream tasks demonstrate that LaPE can be a general
method for Vision Transformers. It is effective and robust
to various VTs on multiple tasks and datasets. On image
classification, LaPE improves 0.84% accuracy for ViT-Lite
[14] on Cifar10 [19], 1.06% for CCT [14] on Cifar100 [19],
and 1.57% for DeiT-Ti [29] on ImageNet-1K [8]. On ob-
ject detection, LaPE gains 0.7% APbox and 0.5% APmask

for ViT-Adapter-Ti[5]. On semantic segmentation, LaPE
improves 1.37% and 0.43% for tiny and small Segmenter
[28], respectively. Besides, LaPE can also make VTs robust
to PE types. Original DeiT-Ti [29] shows a performance gap

of 3.84% between sinusoidal PE and learnable PE, while
LaPE shrinks the gap to 0.59%. These results are remark-
able, as the overhead introduced by LaPE (parameters, time
and memory) is negligible compared to the improvement
brought by it (Table 5 and 6).

To conclude, our contribution includes:

1 We provide theoretical analysis on the default use of
absolute PE in common VTs and reveal its limitations.

2 We propose the LaPE, a new PE joining method, which
is easy to implement and deploy. We reveal that LaPE
can improve the expressiveness of PE and elevate the
model performance.

3 Through extensive experiments, we verify that LaPE
is a general and effective method for VTs on multiple
tasks, including image classification, object detection,
and semantic segmentation.

2. Related Work
2.1. Vision Transformers

Transformer was originally introduced for natural lan-
guage processing [30], and recently extended to computer
vision tasks, including image classification [29, 44, 23,
10, 43], detection [5, 20, 49, 3], segmentation [5, 18, 28],
etc. Since we validate our method on classification, detec-
tion, and segmentation tasks, we summarize representative
Transformer-based works in these fields.

Image Classification. ViT [10] is the first pure trans-
former outperforming CNNs on classification tasks, after
which Vision Transformer (VT) becomes a research high-
light. T2T-ViT [44] improves the tokenization part. DeiT
[29] adds a distillation token. PVT [33] and PiT [17] adopt
hierarchical structure. CvT [37] and CeiT [43] use convolu-
tion to provide VT with inductive bias. Swin-Transformer
[23, 22] uses the window attention. These VTs all use ab-
solute or relative position embedding (PE). However, sel-
dom do they notice the limitations of the existing PE joining
method.

Object Detection. DETR [3] enables object detection
networks to be trained in an end-to-end module, and it
uses a CNN backbone and Transformer encoder-decoder.
Since then, many researchers work on optimizing DETR
[49, 46, 13]. There are also many works using vanilla ViT
as the backbone. ViTDeT [20] employs some upsampling
and downsampling modules to the vanilla ViT. ViT-Adapter
[5] uses additional architecture to introduce inductive bias,
which adapts the model to detection and segmentation tasks.

Semantic Segmentation. SETR [47] first adopts ViT
as the backbone and uses a standard CNN decoder. Seg-
menter [28] also extends ViT to semantic segmentation, and
the difference is that Segmenter adopts a Transformer de-
coder. SegFormer [41] modifies the Transformer encoders
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into hierarchical ones. ViT-Adapter [5] uses additional ar-
chitecture to inject inductive bias into ViT.

2.2. PE-Based Vision Transformer

Since the self-attention mechanism is permutation-
equivalent [30, 10], Vision Transformer (VT) needs PE to
identify tokens from different positions. The PE can either
be fixed or learnable, absolute or relative.

Absolute Position Embedding. The absolute PE en-
codes each position to distinguish tokens. It is usually
added to the patch embedding before entering the Trans-
former encoders. In the original Transformer [30] and ViT
[10], the PE is generated by the fixed sinusoidal functions
of different frequencies. The sinusoidal functions are de-
signed to provide PE with locally monotonous similarity so
that PE can make VTs pay more attention to tokens close
to each other [31]. The sinusoidal PE in Transformer [30]
and ViT [10] is 1-D, which can sense the sequence length.
Meanwhile, there are 2-D sinusoidal PE [36, 26], which has
image height and width sensing. Moreover, the absolute PE
can also be learnable, which is randomly initialized and up-
dated with the model’s parameters.

Relative Position Embedding. The relative PE encodes
the relative position between each pair of tokens. It first
assigns a unique code to each relative position and then in-
volves the relative position embedding (RPE) in the atten-
tion calculation. For natural language processing, the rel-
ative PE is first proposed in [27], then further improved in
XL-Net [42], T5 [25] and DeBERTa [16]. For vision tasks,
a 2-D RPE is firstly proposed in [2], which is also used in
Swin-Transformer [23]. iRPE [38] further improves the 2-D
RPE in its index function and relative position calculation.
It is worth mentioning that our method for absolute PE per-
forms better than relative PE, even with fewer parameters to
learn position information.

2.3. PE-Free Vision Transformer

There are some works [12, 6, 9] designing position fus-
ing modules to provide VTs with implicit position infor-
mation. ConViT [12] proposes a Gated Positional Self-
Attention module to balance learning content-based atten-
tion and position-based attention. CPVT [6] proposes a
convolution-based Positional Encoding Generator module.
CSwin [9] proposes Locally-Enhanced Positional Encod-
ing, which uses a per-channel learnable bias to fit the po-
sition information. CCT[14] uses convolutions to get the
position information, and sets the PE to be optional, as us-
ing PE or not yields similar results.

Our method has obvious advantages over these PE-free
methods. Firstly, they all tend to modify the model and pro-
pose new pipelines, so the generalizability of their position
fusing modules has not been verified. Secondly, these newly
designed modules bring obvious extra computation and pa-

rameters. In contrast, our method is a universal PE-based
method with good performance, and its increased parame-
ters and computational cost are negligible. What’s more,
our method is also compatible with these PE-free VTs, e.g.,
simply adding LaPE to CCT [14] can further improve the
performance, as is shown in Table 2.

3. Layer-adaptive Position Embedding
3.1. Preliminary

Layer Normalization. Let us review the Layer Normal-
ization (LN) [1]. Given a target tensor x ∈ RN×D that con-
sists of N tokens x(i) ∈ R1×D, the operation of LN(x) nor-
malizes each token and applies channel-wise affine trans-
formations, which can be formulated as:

x̄(i) = γ ⊙ x(i) − E[x(i)]√
Var[x(i)] + ϵ

+ β,

LN(x) = [x̄(1), ..., x̄(N)],

(1)

where E[x(i)] and Var[x(i)] represent the mean and variance
of x(i). ϵ is a small constant for division stability. Operation
⊙ denotes element-wise multiplication. γ,β ∈ R1×D rep-
resent the trainable affine transformation coefficients. Note
that the affine transformation is designed to compensate for
the loss of expressiveness caused by normalization [1, 39].
Fig. 2 (a) illustrates the process of Eq. (1).

Use of Absolute Position Embedding. Let us review the
use of absolute position embedding in Vision Transformers
(VTs) with equations. The input of the first layer is:

x0 = α+ ω, (2)

where α and ω represent the token embedding and PE, re-
spectively. The following process of each layer can be for-
mulated as:

xl
′ = MSAl(LNl(xl)), (3)

xl′′ = MLPl(LNl′(xl + xl′)), (4)

xl+1 = xl + xl′ + xl′′, (5)

where l is the index of layer, MSA denotes the Multi-Head
Self-Attention module, and MLP denotes the Multi-Layer
Perceptron module. LNl and LNl′ represent different LN
before MSA and MLP. Fig. 2 (b) illustrates these processes.

3.2. Problem of Default PE Joining Method

We decouple the position information for each Trans-
former layer, and find the defect of the default PE join-
ing method. Intuitively, the PE ω added to the first layer
can propagate to deeper layers due to the skip connections.
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Figure 2. Illustrations. (a) Details of layer normalization (LN). (b) Typical ViT [10] structures (left), with detailed illustration of a encoder
layer(right). (c) Apply LaPE to ViT. Specifically, we add independent LNs for PE at each layer, and add it to the layer normalized token
embedding as the input of MSA module. Besides, the PE is passed progressively across layers.

By reparameterizing xl (see Appendix 1 for detailed deriva-
tion), we can rewrite Eq. (3) as:

xl′ = MSAl(LNl(α+ ω +

l−1∑
k=0

(x′k + x′′k)))

= MSAl(LNl(x̃l + ω))

= MSAl(λ1LNl(x̃l) + λ2LNl(ω) + λ3βl),

(6)

where we use x̃l to represent α +
l−1∑
k=0

(x′k + x′′k) then split

LNl(x̃l +ω) into three parts. βl is the bias in affine param-
eters of LNl. λ ∈ RN×1 represent token-wise coefficients,
with following values:

λ1 =
σx̃

σx̃+ω
,

λ2 =
σω

σx̃+ω
,

λ3 =
σx̃+ω − σx̃ − σω

σx̃+ω
,

(7)

where σ(·) ∈ RN×1 is the token-wise standard deviation.
From Eq. (6), we can see that the token embeddings x̃

share the same affine parameters with the position embed-
ding ω. As mentioned in Section 3.1, the affine transforma-
tion in LN is to compensate for the expressiveness loss and
further enhance the expressiveness of embedding. When
token and position embedding are coupled, the affine pa-
rameters have to trade off between these two embeddings
with different distributions, limiting the expressiveness of
PE. Such a trade-off can be seen in Fig. 1 (a), where the
PE is changed at the first layer while becomes almost un-
changed in subsequent layers.

3.3. LaPE for Vision Transformers

To overcome this limitation, we use two independent
LNs for token embeddings and PE for each layer and add
them together as the input of each layer’s MSA module.
This allows the model to independently and adaptively ad-
just the expressiveness of PE for different layers.

Specifically, we set the input of the first layer as

x0 = α, (8)

then modify Eq. (3) into:

xl
′ = MSAl(LNx|l(xl) + LNω|l(ωl)). (9)

Note that LNx|l and LNω|l own different affine transforma-
tion coefficients. Besides, ωl represents the PE transferred
to layer l, which is yielded progressively:

ω0 = ω, (10)

ωl = LNω|l−1(ωl−1). (11)

We also tried to set the PE of each layer to be the same,
i.e., ωl = ω. Setting ωl = ω achieves similar performance
to our method on tiny-sized VTs, but sometimes performs
even worse on small-sized or larger VTs. Through analysis
of the loss value, we find that the failure cases are usually
caused by overfitting. To further improve the robustness,
we propose to pass the PE serially across layers, as shown
in Eq. (11). Extensive experiments prove the effectiveness
of such modification, as shown in Tab. 7.

Fig. 2 (c) illustrates our final method. As the critical
operation in Eq. (9) can adjust the PE per layer, we name
it as Layer-adaptive Position Embedding (LaPE), which is
an effective method for VTs on multiple tasks.
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Figure 3. Visualization of the position correlations. (a) The
original 1-D sinusoidal PE ω shows 1-D position correlations.
(b) λ2LNl(ω) in Eq. (6) exhibits limited 2-D correlations. (c)
LNω|l(ω) shows significant 2-D correlations.

3.4. Analysis

As is revealed by previous works [34, 32, 11], PE works
as a position inductive bias. The information contained in
PE is the position correlation, which depicts the similar-
ity between tokens’ position embeddings.This information
is utilized in the Query-Key calculation within Multi-Head
Self-Attention (MSA). Such information guides tokens to
attend more to the adjacent tokens. The detailed explana-
tion and derivations are presented in Appendix 3.

We decouple the PEs from each Transformer encoder
and visualize their position correlations. The visualization
results strongly support our analysis: (1) Using the same LN
for token and position embeddings receives limited position
correlations; (2) Using two independent LN for token and
position embeddings gets improved position correlations.
For example, transform a 1-D sinusoidal PE into 2-D one,
and transform monotonic PEs into hierarchical ones.

Implementation of Visualization. The PE describes
each token’s positional embedding, which has the hidden
information of the position correlation. Moreover, the po-
sition correlation can be measured by the cosine similarity
between each token’s PE:

si,j =
ω(i)ω(j)T

||ω(i)|| ||ω(j)||
, (12)

where ω(i) ∈ R1×D and ω(j) ∈ R1×D denote the ith and
jth token’s PE, respectively. si,j represents the position cor-
relation between the ith and jth token.

Changing 1-D correlated sinusoidal PE into 2-D one.
Since T2T-ViT-7 [44] uses a 1-D sinusoidal PE, we adopt
it for demonstration. Concretely, we visualize every si,j
by converting si,j into color pixels and combining all pix-
els into a heat map, the upper part of Fig. 3 (a), where the
horizontal and vertical axes denote the token index i and j.

(b) LaPE

(a) Default

l=2 l=3 l=4 l=5 l=6 l=7 l=8

Figure 4. Visualization of the position correlations at different lay-
ers. (a) The default position correlation seems monotonic among
different layers. (b) LaPE-based position correlation changes from
local to global as the layer goes deeper.

That is to say, row i represents the correlation between to-
ken i and all 196 tokens, while the column j represents the
correlation between all 196 tokens and token j.

Since the original tokens are taken from 2-D images, we
reshape the position correlations accordingly. Specifically,
we reshape the 96th row (the center token) of the upper part
of Fig. 3 (a) into a 2-D heat map (with shape 14×14), and
get the lower part of Fig. 3 (a), which shows obvious 1-D
position correlation, as it only has horizontal position per-
ception without vertical perception.

To compare the position correlation of T2T-ViT-7 with
default PE and LaPE, we choose the 2nd layer (l=2) and cal-
culate its cosine similarity si,j for λ2LNl(ω) in Eq. (6) (de-
fault PE joining method) and LNω|l(ωl) in Eq. (9) (LaPE).
Then we get Fig. 3 (b) and Fig. 3(c). We can clearly see
that Fig. 3 (b) still shows 1-D position correlations, while
Fig. 3 (c) shows evident 2-D position correlations. 2-D po-
sition correlations are obviously better than 1-D ones since
images are perceptually 2-D information. The visualization
results indicate that LaPE can adjust the position correlation
of PE and further improve its expressiveness.

From Monotonic to Hierarchical. Here we take DeiT-
Ti [29] as an example to illustrate. From the 2nd layer to
the 8th layer, we visualize the position correlations with
the method mentioned above. Fig. 4 (a) shows the visu-
alization of λ2LNl(ω) in Eq. (6) (default PE), and the vi-
sual results seem monotonic. Fig. 4 (b) shows the visual-
ization of LNω|l(ωl) in Eq. (9) (LaPE), and the visual re-
sults change obviously from local to global as the layer goes
deeper. This indicates that LaPE can process layer adaptive
(namely, hierarchical) PE for VTs, and this property better
fits the model’s requirement for position information.

4. Experiments

4.1. Image Classification

Settings. We conduct experiments on CIFAR-10 and
CIFAR-100 [19] with 50K training samples and 10K testing
samples for 10 classes and 100 classes, respectively, and on
ILSVRC-2012 ImageNet [8] with 1.28M training samples
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Model
Transformer
Architecture

PE type PE method
ImageNet Top1

100 epoch 300 epoch

DeiT-Ti [29]

Pure
Learnable

Default 58.13 71.54
LaPE 60.36 73.11

DeiT-S [29]
Default 68.41 80.00
LaPE 69.49 80.54

DeiT-B [29]
Default 74.16 81.64
LaPE 75.43 81.97

T2T-ViT-7 [44] Sinusoidal
Default 65.62 71.69
LaPE 66.43 71.92

DeiT-Ti-distill [29]

Distillation Learnable

Default 61.89 74.16
LaPE 63.43 74.97

DeiT-S-distll [29]
Default 70.65 80.98
LaPE 71.84 81.48

DeiT-B-distll [29]
Default 76.41 83.05
LaPE 77.39 83.41

Swin-Ti [23]

Window Attention

RPE - 73.79 81.12

Learnable
Default 72.76 80.92
LaPE 73.39 81.25

Learnable + RPE LaPE 74.02 81.49

Swin-S [23]

RPE - 76.03 83.17

Learnable
Default 75.37 82.81
LaPE 76.50 83.26

Learnable + RPE LaPE 76.93 83.39

CeiT-Ti [43]
Convolution Learnable

Default 66.91 76.52
LaPE 67.21 76.87

CeiT-S [43]
Default 73.60 81.88
LaPE 73.87 82.12

Table 1. Image classification results on ImageNet-1K. As shown here, applying LaPE to VTs improves their performance and accelerates
the convergence on ImageNet-1K. LaPE is effective and robust to VTs with different architectures and different PE types.

Model Transformer
Architecture PE method Top1 Acc.

C-10 Top1 C-100 Top1

ViT-Lite [14] Pure Default 93.448 74.984
LaPE 94.290 75.534

CVT [14] Sequence
Pooling

Default 94.302 77.452
LaPE 94.690 78.052

CCT [14] Convolution Default 96.034 80.928
LaPE 96.530 81.986

Table 2. Image classification results on CIFAR-10 and CIFAR-
100. As shown here, LaPE can further improve the performance
of VTs which are specially designed for tiny datasets. Noted that
the performance on CIFAR-10 is saturated (reaching around 95%),
while LaPE can still bring obvious improvement to all these VTs.

and 50K testing samples for 1K classes.
On ImageNet-1K, we conduct experiments with DeiT

[29] and T2T-ViT [44] (pure Transformer), DeiT-distill
(Transformer with distillation), Swin-Transformer[23]
(Transformer with window attention), and CeiT [43]
(Transformer with convolution). We select tiny and small
variants for Swin and CeiT, and an additional base variant
for DeiT and DeiT-distill. For T2T-ViT, we choose T2T-

ViT-7 with the depth of 7. We conduct four sets of exper-
iments for each Swin-Transformer variants, including (1)
using RPE, (2) using default learnable PE, (3) usig LaPE-
based learnable PE, (4) using LaPE-based learnable PE and
RPE together. Experiments (2) & (3) are for fair compari-
son, while (1) & (3) & (4) are set to verify the superiority of
LaPE.

On CIFAR, we conduct experiments with ViT-Lite [14]
(pure Transformer), CVT [14] (Transformer with sequence
pooling) and CCT [14] (Transformer with convolution).
These three models all use the learnable absolute PE. The
ViT-Lite and CVT have a depth of 7 and kernel size of 4,
while CCT has a depth of 7, kernel size of 3, and convolu-
tion layer of 1.

Implementation Details. For fair comparison, we use
the same settings as introduced in the original papers.
Specifically, all VTs are trained for 300 epochs (except 310
epochs for T2T-ViT) with 224×224 resolution images on
ImageNet-1K [8], and with 32×32 resolution images on
CIFAR-10 and CIFAR-100 [19]. We run 5 rounds with dif-
ferent random seeds (121, 122, 123, 124, 125) on CIFAR-
10 and CIFAR-100, and take the average for evaluation. All
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Model
Pre-trained

Model
PE

Method
#param. APbox / APmask

ViT-Adapter-Ti
DeiT-Ti Default 28M 45.6 / 40.7

DeiT-Ti∗ LaPE 28M 46.3 / 41.2

ViT-Adapter-S
DeiT-S Default 48M 48.3 / 42.8

DeiT-S∗ LaPE 48M 48.7 / 43.0

Table 3. Object detection results on COCO. ∗ means models
pre-trained with LaPE. The results further indicate that LaPE is a
general and effective method, as it can improve models obviously
and stably on object detection.

VTs are trained on a single node with 1 V100 GPU on CI-
FAR, and 4 V100 GPUs on ImageNet (except for 8 GPUs
used by DeiT-B, DeiT-B-distill and Swin). We retrain all
the baseline models, thus the results may be slightly differ-
ent from those introduced in the original papers due to the
device difference.

ImageNet-1K Results. Tab. 1 presents comparisons be-
tween models with and without LaPE on ImageNet-1K [8].
According to the results, we find that LaPE can greatly im-
prove the vanilla VTs, like 1.57% performance gains for
DeiT-Ti, and 0.81% for DeiT-Ti-distill. The results for
Swin-Transformer shows that VTs with learnable PE by
LaPE performs better than by default and RPE. Moreover,
using RPE together with LaPE-based learnable PE performs
best on both Swin-Ti and Swin-S. These results further ver-
ify our point of view: (1) Independent LNs are important
for absolute PE, which can be proved by the comparison be-
tween default and LaPE-based learnable PE; (2) Passing PE
progressively across layers performs better. Both RPE and
LaPE-based learnable PE are adaptive on a per-layer basis,
but RPE has no connection across layers, while LaPE trans-
mits the PE progressively across layers. In this way, despite
RPE has a significantly larger number of parameters, LaPE
still performs better than it.

What’s more, LaPE can still bring obvious and stable
improvement for models with locality information or in-
ductive bias, like 0.23% performance gains for T2T-ViT-7
and 0.35% for CeiT-Ti. Moreover, LaPE significantly ac-
celerates the convergence, as can be observed from the ac-
curacy at 100 epochs. Fig. 5 shows the convergence curves
of DeiT-Ti.

CIFAR Results. As shown in Tab. 2, although the
performance on CIFAR-10 is almost saturated, LaPE still
brings 0.8%, 0.4%, and 0.5% for for ViT Lite, CVT, and
CCT. Besides, LaPE also improves 0.4%, 0.6%, and 1.0%
for ViT Lite, CVT, and CCT on CIFAR-100, respectively.
Note that the PE is optional for default CCT, as using default
PE yields comparable results. However, CCT with LaPE
performs 0.5% and 1.0% better than CCT with default PE
on CIFAR-10 and CIFAR-100, which further indicates the
superiority of LaPE.

Model
Pre-trained

Model
PE

Method
#param.

val
mIoU

Seg-T-Mask/16
DeiT-Ti Default 7M 36.534

DeiT-Ti∗ LaPE 7M 37.908

Seg-S-Mask/16
DeiT-S Default 27M 42.374

DeiT-S∗ LaPE 27M 42.808

ViT-Adapter-Ti
DeiT-Ti Default 36M 40.660

DeiT-Ti∗ LaPE 36M 41.520

ViT-Adapter-S
DeiT-S Default 58M 45.073

DeiT-S∗ LaPE 58M 45.550

Table 4. Semantic segmentation results on ADE20K, where
LaPE consistently brings stable and obvious improvements. ∗

means models pre-trained with LaPE. Note that Segmenter with
DeiT (pre-trained on ImageNet-1K) is different from ViT (pre-
trained on ImageNet-21K) as officially reported.

4.2. Object Detection

Settings. COCO 2017 [21] is the most commonly used
dataset for object detection and instance segmentation tasks,
and it has 118K training samples and 5K validation samples.
To further evaluate the effectiveness of object detection, we
conduct experiments with Transformer-based ViT-Adapter
[5] based on Mask R-CNN [15]. We choose two variants
denoted as ViT-Adapter-Ti/S.

Implementation Details. We evaluate LaPE on ViT-
Adapter [5] based on mmdet [4] codebase with the same
official settings for basic models and LaPE-based models
(cf. Appendix 4). We run 5 rounds with different random
seeds (121, 122, 123, 124, 125) for each experiment, and
use the averages as the final results. All VTs on object de-
tection are trained on a single node with 4 V100 GPUs.

Results. Table 3 justifies the effectiveness of our LaPE
on object detection. The improvement is +0.7 box AP and
+0.5 mask AP for the tiny variant, and +0.4 box AP and
+0.2 mask AP for the small variant.

4.3. Semantic Segmentation

Settings. ADE20K [48] is a widely-used semantic seg-
mentation dataset with 150 semantic categories. It has
25K images in total, which includes 20K training images,
2K validation images, and 3K testing images. In order
to evaluate our proposed LaPE on semantic segmentation
tasks, we choose some Transformer-based models, includ-
ing Segmenter [28] and ViT-Adapter [5]. For Segmenter,
we choose tiny, and small-sized variants, which are Seg-Ti-
Mask/16 (denoting the tiny variant using mask transformer
as the decoder with 16×16 input patch size) and Seg-S-
Mask/16. For ViT-Adapter, we also choose two kinds of
variants using UperNet [40] framework, denoted as ViT-
Adapter-Ti/S.

Implementation Details. We use the MMseg [7] code-
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Model Default / LaPE
#parameter (M) Accuracy

DeiT-Ti 5.717 / 5.722 (+0.08%) 71.54 / 73.11 (+2.19%)
DeiT-S 22.051 / 22.060 (+0.04%) 80.00 / 80.54 (+0.68%)
DeiT-B 86.568 / 86.586 (+0.02%) 81.64 / 81.97 (+0.40%)

Table 5. Comparison between LaPE and the default method
on parameter and accuracy increment on DeiT. The significant
disparity in accuracy improvement and parameter increase further
confirms the effectiveness of LaPE.

Model Default / LaPE
Memory (MB) Time (s/epoch)

DeiT-Ti 10799 / 10822 (+0.21%) 410 / 412 (+0.48%)
DeiT-S 18051 / 18073 (+0.12%) 511 / 516 (+0.98%)
DeiT-B 19489 / 19537 (+0.25%) 588 / 590 (+0.51%)

Table 6. Memory and time consumption of DeiT’s training
stage. Note that DeiT/S are trained with 4 GPUs (256 batchsize
for each), while DeiT-B is trained with 8 GPUs (128 batchsize for
each). The results shows that the consumptions of memory and
time brought by LaPE is negligible.

base to implement and evaluate LaPE. We follow the same
settings introduced in the original papers (see Appendix 4).
We also run 5 rounds for each result, and each experiment
is trained on a single node with 4 V100 GPUs.

Results. Table 4 presents comparisons between
Transformer-based models with default PE and LaPE on
ADE20K [48]. We can see that LaPE brings obvious im-
provement for both Segmenter and ViT-Adapter. The im-
provement for tiny variants is +1.37 and +0.86 mIoU for
Segmenter and ViT-Adapter, while the improvement for
small variants is about +0.5 mIoU for both of them.

4.4. Consumption

In Tab. 5, we record and compare the parameter and ac-
curacy increment on default and LaPE-based DeiT variants,
and the results verify that LaPE is an effective and efficient
PE method. Tab. 6 records and compares the memory and
time consumption of the default PE method and LaPE in the
training stage. As shown in Tab. 6, we can see that LaPE
increases negligible memory and time consumption during
training, which further proves the efficiency of our method.

4.5. Ablation Study

PE Joining Methods. To prove the superiority and com-
pleteness of our proposed LaPE, we conduct experiments on
DeiT-Ti [29] with different PE joining methods. We choose
4 kinds of PE types (RPE, 1-D/2-D sinusoidal, learnable
PE), and 5 joining methods, which are default, shared PE,
unshared PE, LaPE (sharing PE), and LaPE. We evaluate 4
joining methods (except for the unshared PE) on 1-D and

Model PE Type
PE Joining

Method
PE

#param.
IN-1K
Top1

DeiT-Ti

RPE default 3049K 72.82

1-D Sin.

default 38K 67.70
shared PE 38K 70.66

LaPE (sharing PE) 42K 72.22
LaPE 42K 72.52

2-D Sin.

basic PE 38M 71.46
shared PE 38K 71.47

LaPE (sharing PE) 42K 72.49
LaPE 42K 72.68

learnable

basic PE 38K 71.54
shared PE 38K 72.00

unshared PE 454K 71.90
LaPE (sharing PE) 42K 72.86

LaPE 42K 73.11

Table 7. Comparison between LaPE and other PE joining
methods with DeiT-Ti on ImageNet-1K. PE #params means pa-
rameters used to represent and adjust the PE. LaPE shows its supe-
riority in the way of PE joining, as it achieves the best performance
on all three kinds of PE types. Moreover, LaPE can shrink the per-
formance gaps caused by using different PE types.
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Figure 5. Convergence curves, default DeiT-Ti vs. LaPE-based
DeiT-Ti. Curves on the left represent models using learnable PE,
and curves on the right represent using 1-D sinusoidal one.

2-D sinusoidal PE, as they are fixed and designed in ad-
vance, and evaluate all 5 joining methods on learnable PE.
To clearly and directly comprehend these joining methods,
we analyze the input of each Multi-Head Self-Attention
(MSA) in VTs using different PE joining methods. The
default method has the input of MSA LNl(xl) (Eq. (3)).
The shared PE means adding the same PE to the token em-
bedding before entering each encoder, which has the input
LNl(xl + ω). Similarly, the unshared PE means adding the
layer-independently learned PE to token embedding, and
its input of MSA is LNl(xl + ωl). LaPE (sharing PE) is
slightly different from LaPE, as it has the input LNx|l(xl)+
LNω|l(ω), which means each position LN receives the same
PE. Meanwhile, LaPE has the input LNx|l(xl) + LNω|l(ωl)
(Eq. (9)), and ωl = LNω|l−1(ωl − 1).

In Tab. 7, LaPE outperforms other PE joining methods
and RPE. Unshared PE and RPE set layer-independent pa-
rameters to learn each layer’s position information, which
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Model Configuration ImageNet-1K Top1

DeiT-Ti [29]

default 71.54
ωl 70.67
γωl 71.22

γ ⊙ ωl 71.13
γ ⊙ ωl + β 70.85
Norm(ωl) 72.56
γNorm(ωl) 72.49

γ⊙ Norm(ωl) 71.80
γ⊙ Norm(ωl)+β 73.11

Table 8. Decompose LNω|l in DeiT-Ti. ω denotes the PE; γ
denotes the weight constant; γ accompanied by ⊙ denotes per-
channel weight vector; β denotes the per-channel bias; Norm(·)
denotes the token-wise normalization. The results show that the
standard LNω|l (last configuration) is the best choice.

results in more parameters and less PE connection. In con-
trast, LaPE sets only one PE and uses serial LNs to learn
each layer’s position information, which has fewer parame-
ters and more PE connection and even achieves better per-
formance. This demonstrates the importance of the PE con-
nection and proves the superiority of LaPE. What’s more,
we find that LaPE can alleviate the performance gap caused
by different PE types. DeiT-Ti with default PE joining
method [29] shows a performance gap of 3.84% between
sinusoidal PE (67.70%) and learnable PE (71.54%). In con-
trast, LaPE improves these performances (+4.82% for sinu-
soidal PE, +1.57% for learnable PE), and shrinks the gap to
0.59%. The convergence curve is shown in Fig. 5. In all,
LaPE shows its superiority among PE joining methods.

Decompose LNω|l. We conduct experiments on differ-
ent components of LNωl|l, based on DeiT-Ti [29] in Tab. 8.
The Default configuration means the original DeiT-Ti. The
rest configurations all take similar network structures as
LaPE-based DeiT-Ti, which is shown in Fig. 2 (c), except
for LNω|l(ωl). In Tab. 8, the configuration ω means replac-
ing LNω|l(ωl) in Eq. (9) with ωl; γωl means replacing it
with γωl, where γ is a scalar; γ ⊙ ωl means replacing it
with γ ⊙ ωl, where γ denotes a per-channel scale factor;
γ ⊙ ωl + β means replacing it with γ ⊙ ωl + β, where β
denotes a per-channel bias. Norm(ωl) means replacing it
with Norm(ωl), where Norm(ωl) means operate per-token
normalization to ωl. So on and so forth. The final configu-
ration γ⊙Norm(ωl) + β is exactly LNω|l(ωl).

Tab. 8 shows that the former four configurations, i.e., ωl,
γωl, γ ⊙ ωl, and γ ⊙ ωl + β perform slightly lower than
the default configuration. This is understandable since the
un-normalized PE may deviate a lot from a normalized to-
ken embedding. The latter four configurations, i.e., Norm
(ωl), γNorm(ωl), γ⊙Norm(ωl), and γ⊙Norm(ωl) + β
all perform better than the the default. Therefore, an inde-

pendent normalization for PE is critical. However, we can
see that γNorm(ωl) and γ⊙Norm(ωl) yield worse results
than Norm(ωl), which means an intact affine transforma-
tion is crucial for normalized PE. In all, LaPE shows the
best performance by comparison.

5. Conclusion
We study position embedding (PE) in Vision Transform-

ers (VTs) and propose a simple but effective method, LaPE.
Specifically, LaPE uses two independent LNs for token em-
beddings and PE on each layer, and delivers the PE progres-
sively across layers. In this way, LaPE can provide layer-
adaptive and hierarchical position information for VTs. Ex-
tensive experiments and ablation studies demonstrate the
superiority of our method. LaPE has the potential to be
an alternative PE joining method for general transformer-
based models, and its effectiveness on Transformers for
other modalities and tasks deserves further study, e.g., NLP,
multimodal, and point cloud.
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data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

5895



[31] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang,
Hao Yang, Qun Liu, and Jakob Grue Simonsen. On position
embeddings in bert. In International Conference on Learn-
ing Representations, 2020.

[32] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang,
Hao Yang, Qun Liu, and Jakob Grue Simonsen. On posi-
tion embeddings in {bert}. In International Conference on
Learning Representations, 2021.

[33] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021.

[34] Yu-An Wang and Yun-Nung Chen. What do position
embeddings learn? an empirical study of pre-trained
language model positional encoding. arXiv preprint
arXiv:2010.04903, 2020.

[35] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang
Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general
u-shaped transformer for image restoration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17683–17693, 2022.

[36] Zelun Wang and Jyh-Charn Liu. Translating math formula
images to latex sequences using deep neural networks with
sequence-level training. International Journal on Document
Analysis and Recognition, 24(1):63–75, 2021.

[37] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 22–31, 2021.

[38] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative posi-
tion encoding for vision transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10033–10041, 2021.

[39] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European Conference on Computer Vision,
pages 3–19, 2018.

[40] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. Lecture Notes in Computer Science, 2018.

[41] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M. Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 12077–12090,
2021.

[42] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized
autoregressive pretraining for language understanding. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[43] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Feng-
wei Yu, and Wei Wu. Incorporating convolution designs into
visual transformers. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 579–588,
2021.

[44] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 558–567,
2021.

[45] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and
Shuicheng Yan. Volo: Vision outlooker for visual recog-
nition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(5):6575–6586, 2022.

[46] Minghang Zheng, Peng Gao, Renrui Zhang, Kunchang Li,
Xiaogang Wang, Hongsheng Li, and Hao Dong. End-to-end
object detection with adaptive clustering transformer. arXiv
preprint arXiv:2011.09315, 2020.

[47] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic seg-
mentation from a sequence-to-sequence perspective with
transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6881–
6890, 2021.

[48] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127:302–321, 2019.

[49] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

5896


