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Figure 1: Visualization of the learned attention dependencies of the baseline pipeline (a) using vanilla Transformer (b) as

fusion modules.

(d)-(g) present the attention maps (heatmaps) of different queries (red points) computed by the vanilla

Transformer in different fusion stages: for the same input image, different queries have almost the same attention maps in
low-level stages (d) (e), while they only focus on image regions with the same semantics in high-level stages (f) (g).

Abstract

Recent leading zero-shot video object segmentation
(ZVOS) works devote to integrating appearance and mo-
tion information by elaborately designing feature fusion
modules and identically applying them in multiple fea-
ture stages. Our preliminary experiments show that with
the strong long-range dependency modeling capacity of
Transformer, simply concatenating the two modality fea-
tures and feeding them to vanilla Transformers for fea-
ture fusion can distinctly benefit the performance but at
a cost of heavy computation. Through further empirical
analysis, we find that attention dependencies learned in
Transformer in different stages exhibit completely dif-
ferent properties: global query-independent dependency
in the low-level stages and semantic-specific dependency
in the high-level stages. Motivated by the observations,
we propose two Transformer variants: i) Context-Sharing
Transformer (CST) that learns the global-shared contextual
information within image frames with a lightweight com-
putation. ii) Semantic Gathering-Scattering Transformer
(SGST) that models the semantic correlation separately for
the foreground and background and reduces the computa-
tion cost with a soft token merging mechanism. We ap-
ply CST and SGST for low-level and high-level feature fu-
sions, respectively, formulating a level-isomerous Trans-

* Corresponding author: wyfan@dlut.edu.cn.

Jormer framework for ZVOS task. Compared with the base-
line that uses vanilla Transformers for multi-stage fusion,
ours significantly increase the speed by 13 x and achieves
new state-of-the-art ZVOS performance. Code is available
at https://github.com/DLUT-yyc/Isomer.

1. Introduction

Zero-shot Video Object Segmentation (ZVOS) aims at
discovering the most visually attractive objects in a video
sequence and serves as a fundamental computer vision tech-
nique. Different from image segmentation that mainly relies
on static appearance features, ZVOS further explores tem-
poral motion information to achieve reliable and temporally
consistent results. One popular pipeline [39, 17, 60, 43] is
integrating appearance and motion information by identi-
cally applying feature fusion modules in multiple stages as
shown in Fig. 1 (a). While great efforts have been made, de-
signing effective multi-stage appearance-motion fusion ap-
proaches for ZVOS is still an open problem.

Transformers [49] have made remarkable breakthroughs
in many computer vision tasks [0, 3, 56, 28] due to its strong
capability in modeling long-range dependencies and unique
flexibility for cross-modal feature fusion. Nevertheless,
their merits have not been fully explored in the ZVOS field.
A straightforward way is adopting Transformer blocks as
the appearance-motion fusion modules. In our preliminary
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Figure 2: Performance v.s. inference speed on DAVIS-16.

experiments, for each feature level, we concatenate the ex-
tracted appearance and motion features and feed them to a
vanilla Transformer block (Fig. 1 (b)). It shows that such
a simple baseline achieves superior performance than all
prior elaborate-designed approaches but at a cost of heavy
computation. These motivate us to further investigate: 1)
what Transformers exactly learn for performance gain, and
2) how to further relieve the computational burden without
performance loss under this baseline framework.

To answer the above questions, we visualize the attention
dependencies computed by the Multi-Head Self Attention
(MHSA) step of Transformers in all feature fusion stages.
Surprisingly, it finds that vanilla Transformers in different
levels characterize the attention dependencies from differ-
ent perspectives to fit the ZVOS task, which motivates our
design of Transformer-based ZVOS framework as follows.

First, Transformers in early fusion stages only cap-
ture global query-independent dependency. As shown in
Fig. 1 (d)(e), the attention maps of different query positions
are almost the same for the low-level stages, which mainly
highlight the foreground object and some background con-
tours. It indicates that the network tends to understand the
scenes via global context modeling in shallow layers and
tries to distinguish the boundary between foreground and
background under the ZVOS setting. Inspired by [2], we
propose to simplify vanilla Transformer by computing one
query-independent dependence map for all query tokens,
thus modeling the global-shared contextual information and
largely reducing the computational cost. We term the sim-
plified Transformer as Context-Sharing Transformer (CST).

Second, Transformers in late fusion stages capture
long-range semantic-specific dependency. As shown in
Fig. 1(f)(g), the query tokens mainly pay attention to the
image regions with the same semantic category, i.e. fore-
ground or background. Besides, the attention maps of the
query tokens with the same semantics share many simi-
larities, indicating existing much attention redundancy that
could be further pruned. Based on these observations,
we propose another Transformer variant named Seman-

tic Gathering-Scattering Transformer (SGST), which com-
putes foreground and background attentions separately for
the corresponding query tokens with some selected repre-
sentative key/value tokens. In addition, a soft token merg-
ing mechanism is adopted to enable the token selection pro-
cess differentiable. Compared to the vanilla Transformer,
the proposed SGST is able to model the semantic-specific
dependency more explicitly and more efficiently.

Upon the above findings and the two proposed Trans-
former blocks, a level-Isomerous Transformer (Isomer)
ZNOS framework is formulated by applying CST and
SGST blocks for early and late fusion stages, respectively.
Compared with the baseline network that applies vanilla
Transformer uniformly for all the feature fusion stages,
ours treats the different fusion levels distinctively based
on the observed Transformers properties, and achieves bet-
ter segmentation results with 13X inference speed. Com-
pared with the existing ZVOS works, our method equipped
with Swin-Tiny[28] backbone (a comparable model size to
ResNet50[14]) obtains significantly superior performance
with real-time inference (see Fig. 2).

The main contributions of this work are as follows:

1) We analyze the properties of vanilla Transformers
in terms of attention dependencies hierarchically learned
from the ZVOS task, and propose two Transformer vari-
ants, i.e. Context-Sharing Transformer (CST) and Seman-
tic Gathering-Scattering Transformer (SGST), to model the
contextual dependencies from different levels effectively
and efficiently.

2) We propose a level-isomerous Transformer paradigm
for the ZVOS task, which applies the developed CST and
SGST for low-level early fusion and high-level late fu-
sion, respectively. Different from the prior works that fuse
appearance-motion information for all stages in an identical
way, ours performs different fusion levels differentially and
better fits the properties of the ZVOS network.

3) Extensive experiments demonstrate the superiority of
our method compared to the existing works as well as the
strong vanilla Transformer-based baseline. To our best
knowledge, this is the first successful attempt at developing
a real-time Transformer-based work in the ZVOS field.

2. Related Work
2.1. Zero-shot Video Object Segmentation

Zero-shot video object segmentation (ZVOS) aims to au-
tomatically segment the salient objects from videos without
any manual prompt. It has witnessed rapid progress with
the development of deep learning techniques and the es-
tablishment of large-scale datasets [57, 41]. Early CNN-
based methods [48, 52, 10] usually use recurrent neural
networks to capture long-term dependencies. Inspired by
the attention mechanism, several works [31, 51, 62] ex-
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plore global context corrections between frames by de-
signing cross-attention operations. Recent leading works
[72, 17, 60, 39, 67] combine the appearance information
with the motion cues extracted by the off-the-shelf optical
flow methods [16, 46, 47] and have gained significant per-
formance improvement. Among them, [17] designs a rela-
tional cross-attention module to achieve bi-directional mes-
sage propagation in the appearance and motion subspaces.
HFAN [39] proposes a sequential feature alignment module
and a feature adaptation module for appearance and mo-
tion feature alignment. While promising performance has
been achieved, the spirit of Transformers has not been fully
explored in the existing ZVOS methods. In this work, we
study the properties of Transformers in ZVOS setting in-
depth, and propose two novel Transformer blocks and a
level-isomerous Transformer framework, hoping to provide
some new insights for this field.

2.2. Video Salient Object Detection

The task of Video Salient Object Detection (VSOD) is
similar to ZVOS. The difference is that the ZVOS model
predicts a binarized segmentation mask, while the VSOD
model predicts a continuous-valued probabilistic saliency
map[69, 70, 11, 37, 38]. Most works resort to capturing the
temporal information by using recurrent neural networks
[44, 21, 10] or the inter-frame motion cues [22, 65]. Similar
to ZVOS, the prior VSOD works are also mainly based on
convolutional neural networks and non-local networks, and
our main contributions have not been explored in this field.

2.3. Lightweight Transformer in Vision Tasks

Transformer [49] is first proposed for sequence-to-
sequence machine translation [5, 61]. Recently, it is suc-
cessfully migrated into many computer vision tasks such as
image classification [0, 28, 53], object detection [3, 73], im-
age segmentation [71, 56, 45], etc. However, the enormous
computational load and memory usage make Transformer
difficult to be deployed, especially for video dense predic-
tion tasks (e.g., VOS and VSOD). To address this problem,
many research efforts are taken for lightweight Transform-
ers. [25, 33, 35, 28, 59, 12, 7, 23]. Among them, one di-
rection is to combine lightweight CNN and attention mech-
anism to form a hybird architecture [12, 4, 33, 66]. Another
track is to reduce the quadritic computation complexity of
the attention mechanism [36, 59, 53, 54, 63, 35]. Wang et
al. [53] design a spatial-reduction attention to reduce re-
source consumption. [23] reduces the computational com-
plexity of Transformer by query/key selection strategy and
local attention computation. [7] proposes a sparse Trans-
former formulation using grid attention and strided atten-
tion for video segmentation. As opposed to the above works
that rely on hand-designed rules for Transformer lightening
in a data-agnostic manner, we simplify vanilla Transformer

based on the observed properties of Transformers under the
ZNOS setting, which is able to learn task-aware attention in
a more flexible data-driven way, yielding both accuracy and
efficiency gain for ZVOS problem (see Sec. 4.3).

The most relevant work for ours is GCNet [2], which
proposes a global context block to simplify the non-local
network [55]. However, our work has significant differ-
ences compared to GCNet. First, GCNet only visualizes the
high-level non-local neural networks and proposes to learn
the query-independent attention map for all query positions.
On the contrary, we analyze both low-level and high-level
Transformers under the ZVOS task, and find that the atten-
tion dependencies modeled by Transformer are totally dif-
ferent along the network depth: global query-independent
dependency in the low-level stages and semantic-specific
dependency in the high-level stages. Second, it should be
recognized that our CST is inspired by GCNet. Neverthe-
less, the design of SGST and our main insight about the
level-isomerous framework are unique.

3. Methodology
3.1. Vanilla Transformer Baseline

The baseline method is designed following the com-
monly adopted framework [17, 39] as shown in Fig. 1 (a).
It consists of an appearance backbone, a motion backbone,
multiple fusion modules, and a decoder.

Given the current video frame and the optical flow map
that is computed between the current frame with its adja-
cent one, the appearance backbone and motion backbone
extract four-stage appearance features I; and motion fea-
tures M (I € {1,2,3,4}), respectively. For each stage,
one fusion module is applied to integrate appearance and
motion features. Specifically, the extracted two modality
features (I, and M) are first channel-wise combined to
obtain a mixing representation X; € RE*HXW where
C, H,W denote the channel number, height, and width of
X, respectively. It can also be regarded as a list of tokens
{xi|x; € RYi=1,2,...,N} with N = H x W. Then,
the mixing representation is fed into a vanilla Transformer
block (see Fig. 1(b)) for cross-modality feature fusion. Fol-
lowing previous works [39, 60, 17], we use a feature pyra-
mid decoder [56] to leverage the four-stage fused features
for the final segmentation prediction.

Without bells and whistles, the vanilla Transformor-
based baseline achieves outstanding performance but also
brings about a heavy computational burden, which moti-
vates us to further explore an effective solution to making
a trade-off between performance and computation.

3.2. Isomerous Transformer for ZVOS

Driven by the observations in Fig. 1, we reform the
vanilla Transformer fusion blocks in the baseline by devel-
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Figure 3: Overview of the proposed framework (Isomer). Given the current video frame and its corresponding optical flow
map, Isomer extracts hierarchical appearance and motion features by two backbones. Then the proposed CST (Context-
Sharing Transformer) and SGST (Semantic Gathing-Scattering Transformer) are adopted for cross-modality feature
fusion in the low-level (the first two) and high-level (the last two) stages, respectively. The multi-stage fused features are fed

into a segmentation head to obtain the final result.
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Figure 4: Tllustration of the proposed CST and SGST mod-
ules.

oping two new Transformer blocks, named Context-Sharing
Transformer (CST) and Semantic Gathering-Scattering
Transformer (SGST). We apply them for multi-level feature
fusion following the observed network properties and thus
form a new level-isomerous Transformer (Isomer) frame-
work. In the following, we will first illustrate the proposed
blocks, followed by an overview of the framework.

3.2.1 Context Sharing Transformer

The Context-Sharing Transformer (CST) is developed to
simplify the MHSA step in vanilla Transformer with a
global context modeling as shown in Fig. 4 (a), which com-
putes global query-independent attention for all queries.
The global context modeling step first performs a query-
shared spatial-wise attention followed by a channel-wise at-
tention. Specifically, given a mixing representation X; €
REXHXW from one low-level stage (I € {1,2}), it first

generates a one-channel attention weight map G; € R¥*W
by a 1 x 1 convolution with a Softmax function, which is
used to weight X; to obtain a query-shared weighted rep-
resentation Wi € RC. Then two 1 x 1 convolution lay-
ers interleaved by BN and ReLU are adopted to refine the
global context features, which can be seen as a type of chan-
nel attention. A skip connection is adopted at the end of the
global context modeling step to aggregate the global con-
text information with X;. The aggregated result is sent to
the remaining components of vanilla Transformer and pro-
duces the final fused feature E; € REXH*W

While being embarrassingly simple, CST significantly
speeds up the baseline inference (36 FPS v.s. 3 FPS) with
negligible performance drop when replacing vanilla Trans-
formers with CST for the first two fusion stages.

3.2.2 Semantic Gathering-Scattering Transformer

Semantic Gathering-Scattering Transformer (SGST) is to
explicitly model the foreground/background semantic de-
pendencies while reducing the attention redundancy. As
shown in Fig. 4 (b), SGST consists of two parallel branches
to separately process foreground and background, mainly
including semantic query gathering, key/value soft merging,
dependencies calculation with a standard Transformer step,
and semantic token scattering. As the two branches share a
similar process, we simplify the description by illustrating
only the foreground branch.

Semantic Query Gathering. Given a mixing represen-
tation X; € RE*HXW from one high-level stage I(I €
{3,4}), a one-channel token gathering heatmap Hj €
R7*W s firstly generated using a 1 x 1 convolution layer
followed by a Sigmoid function. Upon the heatmap, the
foreground tokens are identified via X;[h; >= 0.5], and
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gathered to form a list of foreground queries Qlf . h; denotes
the heatmap value at position 4, and 0.5 is the threshold to
distinguish foreground from background'.

Key/Value Soft Merging. We begin by calculating the dot
product between X; and H?, producing a heatmap en-
hanced foreground token sequence Xj < RE*N  where
N = H x W. To adaptively mine the representative infor-
mation and remove redundancy, we merge the N tokens of
X¢ into K tokens X§ € RO (K << N) in a soft way,
which is achieved using a learnable transformation matrix
W e RVXK applied on X¢. Then the compact fore-
ground key and value sequences Klf , Vlf € RE*K are gen-
erated with linear transformations of Xf.

Dependencies Calculation. With the compressed fore-
ground query Qlf , key K/, and value Klf , a standard Trans-
former block is adopted to model the semantic dependen-
cies and update the corresponding foreground representa-
tion tokens, where the attention computation can be largely
reduced at the same time.

Semantic Token Scattering. With the original mixing rep-
resentation X, the updated foreground and background to-
kens are scattered back according to the indexes in the query
gathering step and obtain the final fused feature S;.

In our experiments, K is set to %N in the key/value soft
merging step, reducing 87% of computation of MHSA in
total compared to vanilla Transformer. SGST’s unique abil-
ity of explicitly modeling semantic dependencies through
foreground-background query separation, along with its ef-
ficient token merging mechanism, allows it to dramatically
reduce computational complexity while maintaining top-
notch performance.

3.2.3 Isomerous Framework

With the two proposed Transformer variants, we take the
vanilla Transformer baseline one step further. As shown
in Fig. 3, we replace vanilla Transformers in the first
two stages with our Context Sharing Transformer (CST) to
model the global-shared contextual information within im-
age frames, while in the last two stages with our Seman-
tic Gathering-Scattering Transformer (SGST) to models the
semantic correlation explicitly. Consequently, it formulates
a level-isomerous Transformer (Isomer), which treats the
different fusion levels distinctively based on the observed
properties of Transformers to better fit the ZVOS task.

3.3. Implement Details

We use Swin-Tiny [28] as our backbone when reporting
the final results for fair comparison, which has a compa-
rable model size with ResNet50[14]. Other backbones are
also compared in our experiments. Following [39, 60], the

I The background queries Q? are obtained using X;[h; < 0.5].
2The background branch adoptes 1 — Hf’ .

well-trained RAFT [47] is adopted to generate the optical
flow maps for the video data. All the input images are re-
sized to a spatial resolution of 512 x 512. Data augmen-
tation including horizontal flipping and photometric distor-
tion is adopted during training. We utilize a subset of the
Youtube-VOS [57] training set (1 frame per every 30 frames
sampled) to pre-train the network based on [72, 50, 32],
followed by network fine-tuning with DAVIS-16 [41] and
FBMS [34] training sets. The AdamW [29] optimizer is
adopted with a fixed learning rate of 6e-5 throughout the
training process. Our network is end-to-end trained on one
NVIDIA 3090 GPU with a mini-batch size of 8§, using bi-
nary cross-entropy loss for supervision.

4. EXPERIMENT
4.1. Datasets and Evaluation Metrics

Datasets. We perform evaluation on four widely adopted
ZNVOS datasets: DAVIS-16 [41], FBMS [34], Long-Videos
[26] and Youtube Objects[42]. In addition, we also conduct
experiments for the video salient object detection (VSOD)
task to comprehensively evaluate our method using three
datasets, including DAVIS-16, FBMS, and MCL [18].
Evaluation metrics. We report the standard evaluation
metrics for ZVOS task, including mean of region similar-
ity (J Mean), mean of contour accuracy (F Mean) [41],
and J&F that is computed by averaging J Mean and F
Mean. For VSOD task, we adopt four widely used metrics:
MAE [40] (M), maximum E-measure (5%”‘”) [9], maxi-
mum F-measure (]-73””, B2 = 0.3)[1], and S-measure (S,
a = 0.5) [8]. Please note that the predicted maps are bina-
rized with a threshold of 0.5 for ZVOS evaluation, but not
for VSOD evaluation following [17, 65, 22].

4.2. Comparison with State-of-the-art

Evaluation on ZVOS. Tab. 1, 2, and 3 show the over-
all ZVOS performance on DAVIS-16, FBMS, Long-Videos
dataset, respectively. We also report the inference speed of
all the compared methods tested using a 3090 GPU. The
proposed method Isomer consistently outperforms the com-
pared methods on all datasets with nearly real-time infer-
ence (24.6 FPS). Specifically, on DAVIS-16 dataset, com-
pared with the current leading method HFAN [39], Iso-
mer achieves a significant improvement of 2.9% in terms
of J&F with a comparable inference speed. Besides, Iso-
mer reaches an improvement of 9.7% in terms of 7 com-
pared with TransportNet [64] on FBMS dataset. We also
conduct evaluation on the Youtube-Objects dataset[42] and
our method with a 7 score of 74.6 surpasses the previous
leading method HFAN (73.4 7).

Evaluation on VSOD. Tab. 4 provides the quantitative
comparison for VSOD task, showing that Isomer achieves
the best results across all evaluation metrics on the three
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Table 1: ZVOS performance on DAVIS-16 validation set. “CRF” means that conditional random field [

] is applied as

post-processing. The inference speed is tested on one 3090 GPU. The best and second-best scores are indicated in red and

blue, respectively.

Method Publication | Backbone | CRF | J Mean1 | F Mean1 | J&F 1 | FPS 1
PDB[44] ECCV2018 | ResNet-50 v 77.2 74.5 75.9 20.0
AGS[52] CVPR2019 | ResNet-101 v 79.7 77.4 78.6 1.7
AGNNI[51] ICCV2019 | ResNet-101 v 80.7 79.1 79.9 1.9
COSNet[31] CVPR2019 | ResNet-101 v 80.5 79.5 80.0 2.2
AnDIiff[62] CVPR2019 | ResNet-101 81.7 80.5 81.1 2.8
MATNEet[72] AAAI2020 | ResNet-101 v 82.4 80.7 81.5 1.3
GraphMem[30] | ECCV2020 | ResNet-50 v 82.5 81.2 81.9 5.0
FSNet[17] ICCV2021 | ResNet-50 v 83.4 83.1 83.3 12.5
AMCNet[60] ICCV2021 | ResNet-101 v 84.5 84.6 84.6 17.5
RTNet[43] CVPR2021 | ResNet-101 v 85.6 84.7 85.2 -
HFAN[39] ECCV2022 | Swin-Tiny 86.0 87.3 86.7 26.7
Ours - Swin-Tiny 88.8 91.1 90.0 24.6
Table 2: ZVOS performance on FBMS validation set.
OBN PDB COSNet MATNet AMCNet APS F2Net EFS TransportNet
Method | "Dy ) 1) [72] (0] (651 71 (0] ] Ours
J Mean? | 739 74 75.6 76.1 76.5 76.7 1775 715 78.7 87.6
Table 3: ZVOS performance on Long Videos dataset. surpass leading CNN-based fusion modules [22, s ]

Method J Mean? F Mean? | J&F T
3DCSeg[32] 342 33.1 33.7
MATNet[72] 66.4 69.3 67.9

AGNNJ[51] 68.3 68.6 68.5
HFAN[39] 80.2 83.2 81.7
Ours 81.4 84.9 83.2

datasets. Compared with the second best methods, Iso-
mer outperforms FSNet [17] by 5.3% and 3.2% in terms of
F 5" and S, on DAVIS-16 dataset, and exceeds MGA [22]
by 2.9% and 3.7% on FBMS dataset. While MCL dataset
has blurry boundaries in the low-resolution frames, Iso-
mer surpasses FSNet [17] by 4.7% and 7.4% for £7"** and
F'**, respectively. These results indicate that our method
generalizes well across both ZVOS and VSOD tasks.

4.3. Ablation Study

To analyze the impact of our key components, we con-
duct several ablation studies on the DAVIS-16 validation set
with ZVOS evaluation metrics. To conserve computing re-
sources, we use a lightweight backbone MiT-b0 [56] for the
following experiments unless otherwise stated.
Effectiveness of CST, SGST, and Level-Isomerous
Scheme. We begin by studying the importance of leverag-
ing Transformers for effective feature fusion. Tab. 5 shows
that a basic vanilla Transformer (VT) implementation can

with the same backbone (MiT-b0) and experimental setup.
However, the VT baseline incurs substantial computation
and can only achieve a speed of 3 FPS with 4.5 x FLOPs of
HFAN. Then, we replace the VT blocks with our CST in the
low-level (i.e. the first two) feature fusion stages, and ob-
serve a significant speed improvement (36 FPS) with almost
no performance drop. Based on this, we then replace VT
with our SGST in the high-level (i.e. the last two) feature fu-
sion stages and obtain further improvements in both speed
and performance. For the amount of calculation, our Iso-
mer greatly reduces the compute of VT-baseline from 18.2G
to 4.1 GFLOPs. Compared to the current leading method
HFAN (81.2 J&F, 4.0 GFLOPs), ours delivers significant
performance gain (85.2 J &JF) with comparable total com-
pute (4.1 GFLOPs). To further investigate the superiority
of the proposed level-isomerous framework, we also apply
CST or SGST identically for all the stages. It shows that
the proposed level-isomerous Transformer framework can
achieve the best trade-off between speed and accuracy.

Comparison with Existing Lightweight Transform-
ers. We also conduct experiments using current general
lightweight Transformers as the fusion modules to further
verify the superiority of our CST and SGST blocks for
ZVOS task. Results are reported in Tab. 6. Compared
with the VT block (fourth row in Tab. 5), these lightweight
Transformers all achieve notable acceleration while sacri-
ficing accuracy. In contrast, Our method is designed based
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Table 4: Overall VSOD performance on three benchmark datasets. The best and second-best scores are indicated in red and

blue.
DAVIS-16[1] FBMS[34] MCL[1%]

Methods ML EPTT FRYTT Sat ML EMTT FET Sat ML EMTT FET Sat
RCR[58] 0.027 0.947 0.848 0.886 0.053 0.905 0.859 0.872 0.028 0.895 0.742 0.864
SSAV[10] 0.028 0.948 0.861 0.893 0.040 0.926 0.865 0.879 0.026 0.889 0.773 0.819
MGA[22] 0.022 0.961 0.902 0913 | 0.027 0.949 0.910 0.907 0.031 0.901 0.798 0.845
PCSA[13] 0.022 0.961 0.880 0.902 0.041 0914 0.831 0.866 N/A N/A N/A N/A
DCFNet[65] | 0.016 0.969 0.900 0914 0.037 0916 0.849 0.877 0.029 0.875 0.716 0.762
FSNet[17] 0.020 0.970 0.902 0.920 0.041 0.935 0.888 0.890 | 0.023 0.924 0.821 0.864
Ours 0.010 0.987 0.946 0.950 0.019 0.974 0.944 0.934 0.015 0.967 0.882 0.893

Table 5: Ablation study for the proposed CST and SGST
blocks, and our level-isomerous fusion scheme. Bold font

Table 8: Effectiveness of foreground-background separate
modeling in SGST. “S” denotes foreground and background

indicates the best trade off between accuracy and speed.

Low Level | HighLevel | J Mean1 | F Mean?1 | FPS 1
MGA[22] MGA[22] 79.7 80.7 27
MAT[72] MAT[72] 80.0 80.9 16
HFAN[39] | HFAN[39] 81.5 80.8 42
VT VT 84.2 85.4 3
CST VT 84.2 85.2 36
CST SGST 84.6 85.6 39
CST CST 82.9 83.6 44
SGST SGST 84.5 85.8 29
VT SGST 84.6 85.7 4
SGST CST 82.9 83.9 33

separation. “F” denotes foreground.

Method J Mean T | F Mean 1
Ours (w/o S) 84.3 85.4
only F 81.8 82.2
Ours 84.6 85.6

consistency outperforms the recent leading method HFAN
[39], and the improvement is particularly prominent for the

lightweight backbones

MiT-bO [

] and Swin-Tiny [

We also conduct experiments with ResNet50 and ours

Table 6: Performance comparison with lightweight Trans-
formers.

Method J Meant | F Meant | FPS
AxialNet[15] 83.6 84.4 32
PoolFormer[63] 82.0 83.8 41
EdgeViT[25] 84.1 83.9 36
PVT V2[54] 83.0 84.6 30
PVT[53] 81.0 83.6 28
Ours 84.6 85.6 39

Table 7: Performance comparison with the state-of-the-art

method HFAN[39] on different backbones.
Backbone | J&F 1 (HFAN[39]) | J&F 1 (Ours)
MiT-b0 81.2 85.1
ResNet101 87.0 87.5
Swin-Tiny 86.7 89.2

on Transformers’ behavior under ZVOS settings to learn
task-specific attention in a flexible data-driven manner, and
provides both improved accuracy and efficiency.

Performance with Different Backbones. We adopt dif-
ferent backbones to verify the generality of the proposed
feature fusion method. Tab. 7 shows that our method

achieve 85.1 J&JF with 26 FPS, which is comparable in
accuracy but significantly more efficient than the previous
leading method EFS[20] (85.6 J &F, 2 FPS).
Foreground-background Separate Modeling in SGST. In
Tab. 8, we ablate our method by removing the foreground-
background separation in SGST (top row), which calculates
attention by indiscriminately mixing the foreground and
background together as vanilla Transformer. Results verify
the effectiveness of the main concept of SGST that model-
ing the semantic dependencies explicitly for the foreground
and background. Furthermore, we explore the impact of
modeling only the foreground dependencies, which aligns
with our final goal. However, as evidenced by the second
row of Tab. 8, a significant decrease in performance is ob-
served, suggesting that both foreground and background are
crucial in aiding the comprehension of semantics.

Merging Ratio in Soft Token Selection. SGST uses to-
ken soft merging to eliminate foreground/background re-
dundancy. We study the impact of different merging ratios
(i.e. K/N) on performance. Tab. 9 shows that 1/9 merging
ratio obtains superior performance with 87% reduction of
computational cost compared with vanilla Transformer.
Visualization. Fig. 5 shows some qualitative results of Iso-
mer, showing its promising prediction ability across various
challenging situations. Fig. 6 visualizes several attention
maps (heatmaps) of VT (b) and CST (c), showing that CST
captures mostly similar query-independent dependency as
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Figure 5: Qualitative results on three challenging video clips from DAVIS-16[41].

Table 9: Ablations on the ratio of key/value soft merging in
SGST.

K/N | JMean?t | F Mean 1
1 83.6 84.1
4/9 84.1 85.2
1/4 84.1 85.4
1/9 84.6 85.6
1/36 83.7 84.4

(a) Ground Truth (b) Low level VT Maps (c) CST Maps (d) SGST Maps

Figure 6: Illustration of the attention maps from VT and
CST and token gathering heatmaps from SGST.

VT but with less computational effort. Fig. 6(d) shows
the token gathering heatmaps learned in SGST, which effec-
tively distinguishes between foreground and background to
help the network explicitly model semantic dependencies.

Limitation and Future Work. Since videos often contain
multiple moving objects, optical flow maps tend to have
a lot of noise. Therefore, directly fusing optical flow in-
formation at the pixel level may not be the best approach
for ZVOS. Instead, a promising solution could be a sim-
ple coarse-to-fine pipeline, which involves using a detec-
tion network to roughly locate the target area (such as a
bounding box) through the optical flow map, and then using
an image segmentation network to segment the foreground
and background in the detected region. This pipeline not
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only helps locate moving objects with the aid of optical flow
maps, but also avoids the influence of optical flow noise dur-
ing segmentation, and benefits from more image segmenta-
tion data (e.g., salient object detection datasets). We plan to
explore this avenue in our future work.

5. Conclusion

This paper proposes a new ZVOS framework named Iso-
mer (level-isomerous Transformer), which treats the differ-
ent feature fusion levels distinctively. We develop two core
components Context-Sharing Transformer (CST) and Se-
mantic Gathering-Scattering Transformer (SGST) to model
the contextual dependencies from different levels effec-
tively and efficiently. In early fusion stages, CST mod-
els the global-shared contextual information by comput-
ing one query-independent dependence map for all query
tokens. In late fusion stages, SGST captures long-range
semantic-specific dependency by computing the foreground
and background attentions separately with a soft token
merging mechanism. Experimental results show that the
proposed Isomer achieves state-of-the-art performance in
both ZVOS and VSOD tasks with real-time inference. To
our best knowledge, this work is the first successful appli-
cation of Transformers in ZVOS task, which could provide
a new paradigm for the dense prediction vision tasks in ex-
ploring Transformer based architecture.
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