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Abstract

Relational Language-Image Pre-training (RLIP) aims to
align vision representations with relational texts, thereby
advancing the capability of relational reasoning in com-
puter vision tasks. However, hindered by the slow conver-
gence of RLIPv11 architecture and the limited availability
of existing scene graph data, scaling RLIPv1 is challenging.
In this paper, we propose RLIPv2, a fast converging model
that enables the scaling of relational pre-training to large-
scale pseudo-labelled scene graph data. To enable fast scal-
ing, RLIPv2 introduces Asymmetric Language-Image Fu-
sion (ALIF), a mechanism that facilitates earlier and deeper
gated cross-modal fusion with sparsified language encoding
layers. ALIF leads to comparable or better performance
than RLIPv1 in a fraction of the time for pre-training and
fine-tuning. To obtain scene graph data at scale, we extend
object detection datasets with free-form relation labels by
introducing a captioner (e.g., BLIP) and a designed Rela-
tion Tagger. The Relation Tagger assigns BLIP-generated
relation texts to region pairs, thus enabling larger-scale re-
lational pre-training. Through extensive experiments con-
ducted on Human-Object Interaction Detection and Scene
Graph Generation, RLIPv2 shows state-of-the-art perfor-
mance on three benchmarks under fully-finetuning, few-
shot and zero-shot settings. Notably, the largest RLIPv2
achieves 23.29mAP on HICO-DET without any fine-tuning,
yields 32.22mAP with just 1% data and yields 45.09mAP
with 100% data. Code and models are publicly available at
https://github.com/JacobYuan7/RLIPv2.

1. Introduction
The pretraining-finetuning paradigm has achieved ma-

jor breakthroughs in vision and language domains [58, 13,
*Work conducted during their research internships at DAMO Academy.
†Corresponding author.
1RLIPv1 refers to the model presented in [86], and RLIPv2 refers to

the model presented in this paper.
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Figure 1: Left: Fine-tuning comparison on HICO-DET. Right:
Pre-training epoch and zero-shot (NF) comparison on HICO-DET.
Except where stated, RLIPv2-ParSeDA architecture is adopted.

23, 103, 65, 77]. In this context, a number of particularly
notable results have been obtained through aligned Vision-
Language Pre-training (VLP) [65, 42, 41, 78, 95, 91]. These
research efforts have typically employed a robust base
model [14, 25, 12, 74] that is trained on language-image
paired data to produce foundation models.

RLIPv1 [86] presents the first attempt to specifically
align vision representations and relational texts using VLP.
By pre-training on open-vocabulary scene graph data like
Visual Genome (VG) [38], RLIPv1 demonstrates its use-
fulness in zero-shot, few-shot and fully-finetuned Human-
Object Interaction (HOI) Detection. Although RLIPv1 is
proven effective, we find it challenging to scale for the fol-
lowing reasons:

(i) Model perspective: RLIPv1 converges slowly, as
exemplified by DETR [3]-based RLIPv1, which requires
150/90 epochs to converge during pre-training/fine-tuning.
Even when building on Deformable DETR (DDETR) [102]
and DAB-DDETR [56], 50/60 epochs are still required.

(ii) Data perspective: as observed by the authors of
RLIPv1, data with relation triplet annotations is scarce, im-
peding RLIPv1’s scaling. Annotating triplets in the form of
⟨subject, relations, object⟩ is both time- and cost-intensive.

To resolve the aforementioned challenges, we introduce
RLIPv2, a fast converging model that enables relational pre-
training on larger-scale pseudo-labelled scene graph data.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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From both the model and data perspectives, we summarize
the contributions of RLIPv2 as follows.

From the model perspective, we observe that the slow
convergence of DDETR can be attributed to the late
language-image fusion strategy: fusion after decoding.
Prior works [15, 44] have demonstrated an earlier and
deeper fusion mechanism facilitates cross-modal alignment.
In light of this, we propose Asymmetric Language-Image
Fusion (ALIF) in RLIPv2 that encourages fusion in the en-
coding stage with sparsified language layers. Without sac-
rificing inference speed thanks to sparsification, RLIPv2 re-
quires only 20 epochs to pre-train and fine-tune based on
DDETR family models [102, 56] as shown in Fig. 1, while
performing better than or comparably to RLIPv1.

From the data perspective, we leverage well-established
object detection datasets [53, 69, 39]. Specifically, we ex-
tend these datasets with relational annotations by pseudo-
labelling. To perform pseudo-labelling, we must tackle two
challenges: (i) sorting out the relations contained in the
image and (ii) tagging relation texts to region pairs. Re-
garding the first challenge, we employ external captioners
(e.g. BLIP [42]) that generate captions containing rela-
tion descriptions. Regarding the second challenge, we reuse
RLIPv2 model as a Relation Tagger (R-Tagger) that enables
assigning the generated open-vocabulary relation texts to
region pairs. Equipped with such a pipeline, we investi-
gate the scaling behavior of both the model and the data for
RLIPv2, which demonstrates improved zero-shot, few-shot
and fine-tuning performance.

Furthermore, we introduce Scene Graph Generation
(SGG), an analogously defined task to HOI detection for
evaluating RLIPv2. RLIPv2 achieves state-of-the-art per-
formance on Open Images v6 [39] for SGG, which under-
scores its robustness and efficacy in tackling relational rea-
soning tasks.

2. Related Work
Language-image pre-training for detection. Recently,

there has been a growing interest in learning visual rep-
resentations from language supervision [42, 41, 65, 1, 32,
34, 15, 44, 95, 76]. This paradigm of learning from lan-
guage supervision has also proven effective in improving
detection performance. MDETR [34] was the first work to
learn region-text correspondences in an end-to-end manner,
while X-DETR [2] improved upon MDETR by removing
the cross-modal fusion part that improves its training effi-
ciency. GLIP [44] extended this line of research by scaling
to web-scale data, leading to significant advances in zero-
shot object detection and data efficiency. DetCLIP [84] pro-
posed a paralleled concept formulation and a concept dic-
tionary to enable semantically rich region-text alignment.
RLIPv1 [86] was the first work to seek language-image
alignment via relations, and our work follows its footsteps

to achieve fast scaling of relational pre-training.
End-to-end HOI detection and scene graph gener-

ation. Relations can interpret visual content in a fine-
grained perspective [10, 31, 33]. Detecting and recog-
nizing relations utilizing HOI detection and scene graph
generation have been verified effective in image caption-
ing [85], image retrieval [33, 75], synthesis [83, 18], ac-
tivity understanding [31, 88, 87] and . The aim of these
tasks is to detect relation triplets from a given input im-
age. Before the emergence of DETR [3], the commonly
adopted pipeline was to adopt an off-the-shelf object de-
tector [66, 24] and design reasoning modules to infer re-
lations [20, 19, 63, 49, 48, 90, 7, 54, 46, 47, 81]. Initial
end-to-end design efforts extended detectors to support re-
lation recognition [50, 99, 82, 35, 55]. Further attempts fo-
cus on the adaptation of DETR to the field of HOI detec-
tion [89, 6, 36, 104, 71, 93, 94, 79, 37, 57, 101, 62, 64, 97]
and SGG [45, 11]. RLIPv1 [86] demonstrated the effec-
tiveness of relational pre-training in improving performance
and data efficiency. RLIPv2 builds upon RLIPv1, but seeks
to solve its scaling problem. The most related work [100]
also seeks scaling with the help of language. However, it
remains a two-stage detection pipeline, lacks semantic rich-
ness and adopts a naive matching algorithm that hinders its
performance.

3. Recap of RLIPv1
In this section, we will briefly review RLIPv1 [86], a

model that leverages both entity and relation descriptions
to perform VLP and that forms the basis for our approach.
As triplet detection architecture, RLIPv1 proposes a ParSeD
model that allocates decoupled embeddings for subjects,
objects and relations. The collective model RLIPv1-ParSeD
consists of three stages: Parallel Entity Detection, Sequen-
tial Relation Inference and Cross-Modal Fusion, as shown
in Fig. 2(a).

For Parallel Entity Detection, RLIPv1-ParSeD defines
two sets of queries Qs,Qo ∈ RNQ×D with NQ pairs of
subjects and objects to perform subject and object detection.
For Sequential Relation Inference, the model generates re-
lation queries Qr ∈ RNQ×D based on the decoded subject
and object queries Q̃s, Q̃o ∈ RNQ×D, and performs decod-
ing to obtain Q̃r ∈ RNQ×D for relation recognition. The
design of RLIPv1-ParSeD obeys the following probabilistic
factorization:

P(G|Qs,Qo,CE ;θPar,θSe) =

P(Bs,Bo|Qs,Qo,CE ;θPar) · P(R|Bs,Bo,CE ;θSe)
(1)

where CE denotes features from the DDETR encoder2;
θPar,θSe denote parameters for Parallel Entity Detection

2Since RLIPv2 targets fast scaling, we only focus on DDETR-based
detection architecture.

21650



Label Sequence

Im
age E

ncoder
Text E

ncoder

RoBERTa
Layer

DDETR
Layer

Gated
Cross-Attn

TR Parallel Entity 
Detection

Sequential 
Relation Inference

··· ···

··· ···

···

···

relation 
queries 

ALIF
Loss

Label Sequence

Im
age E

ncoder
Text E

ncoder

DDETR
Layer

Parallel Entity 
Detection

Sequential 
Relation Inference

··· ···
subject queries object queries 

··· ···

···

···

relation 
queries 

Cross
Encoder

Loss

RLIPv1-ParSeD RLIPv2-ParSeD

(a) (b)

Label Sequence with
candidate relation texts 

R-Tagger

subject queries object queries 

subject boxes object boxes 

Noise

Figure 2: The overview of (a) RLIPv1-ParSeD and (b) RLIPv2-ParSeD and R-Tagger. The red part (loss calculation and noise
injection) is only valid during training. In (a), Cross-Modal Fusion is achieved by the cross encoder. In (b), Cross-Modal Fusion is
achieved by ALIF. The two architectures have an equivalent number of DDETR layers.

and Sequential Relation Inference; Bs,Bo,R are sets of
detected subject boxes, object boxes and relations, respec-
tively. They collectively comprise the detection results G.

For Cross-Modal Fusion, RLIPv1-ParSeD appends addi-
tional Transformer encoding layers [74, 34, 43] to perform
language-image feature fusion on top of the decoded rela-
tion features Q̃r, entity label features LE ∈ RNE×D and re-
lation label features LR ∈ RNR×D. LE ,LR are extracted
from RoBERTa [58].

4. Methodology
In this section, we will introduce: (i) Asymmetric

Language-Image Fusion (ALIF) as an efficient Cross-
Modal Fusion mechanism in RLIPv2, as shown in Fig. 2(b);
(ii) the overall framework of extending the off-the-shelf ob-
ject detection datasets [53, 69] to support relational pre-
training.

4.1. Asymmetric Language-Image Fusion

The core idea underpinning ALIF is to perform efficient
cross-modal fusion in the early stages of RLIPv2 as high-
lighted by [15, 44]. Unlike RLIPv1 that encourages cross-
modal alignment for entities and relations after the decod-
ing phase, ALIF performs this during the detection encod-
ing phase. This is particularly challenging for DDETR’s
encoder, since it relies on deformable attention that makes
it challenging to adopt dedicated encoder layers during the
detection encoding phase like [34, 60, 16].

To address this, we propose ALIF, a mechanism
that leverages DDETR encoding for the vision branch,
RoBERTa encoding for the language branch and gated
cross-attention for fusion. In contrast to previous work that
encodes image and language with an equivalent number
of layers [34, 16, 44, 15], we experimentally find that ex-
cessive RoBERTa layers do not improve its generalization

capability due to its potential for overfitting to pre-trained
data. Moreover, such a paradigm results in training diffi-
culty due to the increased model complexity. As a result,
we perform DDETR encoding densely while performing
RoBERTa encoding sparsely. We denote the vision fea-
tures from the backbone as C(0) and language features from
RoBERTa as L(0) (the concatenation of LE and LR). The
first ALIF module can be formulated as:

C̃(0), L̃(0) = Cross-attn(C(0),L(0)) (2)

C(Nv) = DDETRNv (C(0) +G(C̃(0))) (3)

L(1) = RoBERTa1(L(0) +G(L̃(0))) (4)

where C̃(0) denotes language features aggregated by cross
attention, and L̃(0) is analogously defined; Nv is the number
of DDETR layers in one ALIF; G(x) defines a gating func-
tion that gates the aggregated cross-modal features. Note
that CE is C(Nv) after stacking NALIF ALIF layers for
encoding. For the instantiation of G(x), we experiment
with three options: (i) G(x) = αx where α is a learn-
able scalar; (ii) G(x) = ax where a is a learnable vec-
tor; (iii) G(x) = SE(x) where SE denotes a Squeeze-and-
Excitation block [30] with a reduction ratio of 4. We also
experiment augmenting G(x) with tanh() introduced in [1]
(e.g. tanh(αx)), while only observing side effects. This in-
dicates the magnitude of language and vision features are
disparate, and a proper gating method is desired.

4.2. Relational Pseudo-labelling

RLIPv2 reuses object detection datasets to benefit pre-
training by pseudo-labelling, as shown in Fig. 3. We assume
that during the pre-training phase, the downstream entity
and relation distributions are unavailable to us. Then, to tag
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Figure 3: An overview of relational pseudo-labeling, which
tags object detection data with free-form relation texts. This pro-
cess enables pre-training to be performed on two kinds of data.

relation texts, we need to sort out the relations contained in
the image as detailed in Sec. 4.2.1, and to tag relation texts
to region pairs as detailed in Sec. 4.2.2.

4.2.1 Relation Candidate Set Generation

For a given image, relation candidate set generation aims
to generate a coarse-grained set of candidate subject-object
(SO) region pairs P and their candidate relation texts T .
First, we adopt BLIP to generate NCap captions for each
image. Note that when NCap = 1, we generate the caption
via beam search, a deterministic generation method; when
NCap > 1, we generate captions via nucleus sampling [26],
a stochastic generation methods with cumulative probabil-
ity threshold set to 0.9. Nucleus sampling adds semantic
diversity to the generated captions, which contributes to di-
versity in the relations.

Second, we adopt a scene graph parser [68] to parse the
obtained captions into relation triplets. To filter out invalid
parsed triplets, we perform string matching and keep those
whose subjects and objects can be matched with any en-
tities’ names or entities’ synonyms within the image [86].
This operation encloses a small set of possible SO region
pairs P and possible relation texts T for the pairs (which
are inputs to R-Tagger), without needing to traverse all
possible pairs.

4.2.2 Relation Tagger via RLIPv2 Architecture

The R-Tagger aims to assign candidate relation texts T to
candidate SO region pairs P for a given image. While one
alternative is executing the pre-trained RLIPv2 model to
perform SGG on object detection datasets to obtain pseudo-
triplets, the informative object annotations fail to be utilized
directly during the execution of RLIPv2. As a result, the
quality of pseudo-labels is degraded. A prior work [100]
adopts a coarse rule-based pseudo-labelling method that
employed a greedy matching algorithm to randomly assign
one relation text to an SO region pair as long as the rela-
tion texts’ corresponding SO texts match with the SO re-
gion pair. An “overlap” prior was applied to further filter
the triplets (i.e., a triplet is deemed valid only if the sub-
ject and object are overlapped). This method, however,

introduces excessive false positives, causing degraded pre-
training. Thus, we propose to reuse the RLIPv2 architec-
ture to perform relation prediction given ground-truth
SO region pairs as shown in Figure Fig. 2(b).

As outlined in Sec. 3, RLIPv2 also utilizes subject
queries Qs and object queries Qo as input. To allow for
the utilization of object annotations as the input, we pro-
pose to replace the detection queries Qs and Qo with object
embeddings [40], which aims to encourage Parallel Entity
Detection to reconstruct object representations and Sequen-
tial Relation Inference to recognize relations. Compared
with Eq. (1), the probabilistic factorisation of R-Tagger dur-
ing inference can be reformulated as:

P(R|B̂s, B̂o,CE ;θPar,θSe) =

P(B̃s, B̃o|B̂s, B̂o,CE ;θPar) · P(R|B̃s, B̃o,CE ;θSe)
(5)

where B̂s, B̂o denote the ground-truth SO boxes from the
region pair set P that include their positions and labels);
B̃s, B̃o denote contextualized SO representations. To allow
for decoding, we embed B̂s, B̂o to have an equivalent di-
mension with queries. Specifically, we use MLPs to project
positions and label text embeddings, and concatenate them
along the channel dimension to obtain query-like input.

Denoising training of R-Tagger. The training losses of
R-Tagger are identical to RLIPv1:

L = λ1Ll1 + λ2LGIoU + λ3(Ls + Lo) + λ4Lr (6)

where L is comprised of the ℓ1 loss for box regression Ll1,
GIoU loss [67] LGIoU , Cross-Entropy (CE) loss for subject
and object classes Ls,Lo, and Focal loss [52] for relations
Lr. λ1, λ2, λ3, λ4 are set to 2.5, 1, 1, 1 as fixed weights to
balance multi-task training [86, 89, 71].

However, due to the identical input and training objec-
tives of Parallel Entity Detection, the model will attempt
to find a shortcut, i.e., identity mapping, to achieve the
minimum loss value. To avoid this, we draw inspiration
from [40] which adds noise to B̂s, B̂o during training.
Specifically, we follow [40] to add center shifting and box
scaling noise to box positions and add label flipping noise
to box labels. The noise scale of center shifting and box
scaling is set to 0.4, and the noise scale of label flipping is
set to 0.2 following [40]. Furthermore, to prevent the in-
formation leakage between the same region with different
noise, we apply attention masks to block the information
flow between the same regions in Parallel Entity Detection.

Inference of R-Tagger. After the training of R-Tagger,
we can use it to infer relations without additional noise
based on Eq. (5). For each inference, the maximum number
of region pairs is NQ. If candidate SO region pairs exceed
NQ, we infer multiple times and merge the results. To quan-
tify the confidence of a relation, we calculate the product of
the top-1 score from the softmax distribution over the sub-
ject, the object and the original relation sigmoid score. To
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Nv NALIF Rare Non-Rare Full #Params FPS

1 6 10.92 13.99 13.28 246.8M 18.93
2 3 12.12 14.07 13.62 206.6M 21.49
3 2 10.57 14.05 13.25 193.2M 22.15
6 1 11.26 13.90 13.30 179.8M 23.17

Table 1: The effect of the sparsification of language encoding
layers in Cross-Modal Fusion. Results are evaluated on HICO-
DET under zero-shot (NF) setting. FPS (frames per second) is
tested on a single NVIDIA A100 with a minibatch size 1.

select pseudo-labels, we choose those whose relation con-
fidence exceeds a threshold η. η is set to 0.2 by default
(details can be found in the Appendix).

4.3. Pre-training, Fine-tuning and Inference

Regarding pre-training and fine-tuning of RLIPv2, we
first merge results from Parallel Entity Detection and Se-
quential Relation Inference to obtain NQ triplets. Next,
we employ the bipartite matching algorithm originally pro-
posed in [71] to match the predicted and ground-truth triplet
annotations. The overall loss is identical to Eq. (6). The
techniques introduced in RLIPv1, i.e. Label Sequence
Extension, Relation Quality Labels and Relation Pseudo-
Labels, are employed by default for a fair comparison. Re-
garding the inference of RLIPv2, we sort the relation con-
fidence (defined in Sec. 4.2.2) of the correctly localised
triplets (IoU > 0.5) and select the Top-K triplets. K is
set to 100 by default following [86, 71, 45, 11].

5. Experiments
Pre-training datasets. To pre-train RLIPv2, we utilize

VG [38], COCO [53] and Objects365 [69]. VG has 108k
images annotated with free-form relation and object annota-
tions. COCO has 117k images with only object annotations
in 80 classes, and Objects365 has 1,742k images with only
object annotations in 365 classes. Thus, we use relational
pseudo-labelling to tag relation labels for COCO and Ob-
jects365, enabling them to support relational pre-training.

Downstream datasets. For HOI detection, we fol-
low [71, 86, 89, 93] to evaluate on HICO-DET [4] and V-
COCO [22]. For HICO-DET that contains 117 verbs and 80
objects, we evaluate under the Default setting on Full, Rare
and Non-Rare sets. For V-COCO that contains 24 interac-
tions and 80 objects, we evaluate following the official eval-
uation code [22] under two scenarios: AP#1

role and AP#2
role.

For SGG, we assess RLIPv2 on the widely-used Open Im-
ages v6 [39] dataset, which is annotated with 288 objects
and 30 relations. We evaluate RLIPv2 using standard evalu-
ation metrics [39, 96]: Recall@50 (R@50), weighted mean
Average Precision for relation detection (wmAPrel) and
phrase detection (wmAPphr). The final score is calculated

Gating tanh() Rare Non-Rare Full

α

!

10.47 13.83 13.05
a 9.91 13.54 12.70

SE 11.07 13.89 13.24

α

✗

12.12 14.07 13.62
a 10.98 14.07 13.36

SE 11.07 14.00 13.32

Table 2: Comparisons of different gating functions introduced
in Sec. 4.1. We report zero-shot (NF) results on HICO-DET.

as: scorewtd = 0.2 ∗ R@50 + 0.4 ∗ wmAPrel + 0.4 ∗
wmAPphr.

Implementation details. To assess the effectiveness of
RLIPv2, we choose to adopt DDETR [102] to compose
RLIPv2-ParSeD and adopt DAB-DDETR [56] to compose
RLIPv2-ParSeDA. To peform a fair comparison with pre-
vious works, we ensure that RLIPv2 has Nv ∗NALIF = 6
DDETR/DAB-DDETR encoding layers. For Parallel En-
tity Detection and Sequential Relation Inference, 3 layers
are adopted following [86, 89, 71, 93]. NQ is set to 100
during pre-training and fine-tuning, except when we fine-
tune on HICO-DET where NQ is set to 64 following [93].
Regarding model initialization, we use COCO detection pa-
rameters as initialisation when using VG or VG and COCO
for pre-training; when using VG, COCO and Objects365 for
pre-training, we use COCO and Object365 detection param-
eters as initialisation. Regarding the configuration of mini-
batch sizes and learning rate (LR), we set the minibatch size
to 64, LR for the text encoder to 1.41e-5 and LR for other
modules to 1.41e-4 when using ResNet-50 [25] and Swin-
T [59]; We set the minibatch size to 32, LR for the text
encoder to 1e-5 and LR for other modules to 1e-4 when us-
ing Swin-L [59]. RLIPv2 and R-Tagger are pre-trained and
fine-tuned for 20 epochs unless otherwise stated, with LR
dropping by a factor of 10 at the 15th epoch. For the BLIP
captioner, we adopt the ViT-L/16 [14] model fine-tuned on
COCO Caption [8].

5.1. Ablation Study

We perform the ablation study using RLIPv2-ParSeD
with ResNet-50 as the backbone, and VG as the pre-training
dataset unless otherwise stated. We pre-train for 20 epochs
and evaluate performance on HICO-DET under the zero-
shot with no fine-tuning (NF) setting.

5.1.1 Asymmetric Language-Image Fusion

Sparsification of the language layers. First of all, we ab-
late on the number of language layers to investigate the
effect of sparsifying language encoding layers in Cross-
Modal Fusion. As introduced in Sec. 4.1, dense language
layers cause difficult training. To avoid training collapse,
we compute classification losses (Ls,Lo and Lr) using all
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Model
Pre-training Fully-finetuning

FPSEp. Time Zero-shot (NF) Ep. Result

RLIPv1-ParSeD 50 25.9h 11.20 / 14.73 / 13.92 60 24.67 / 32.50 / 30.70 21.89
RLIPv2-ParSeD 20 10.9h 12.12 / 14.07 / 13.62 20 26.47 / 33.51 / 31.89 21.49

RLIPv1-ParSeDA 50 27.2h 11.34 / 14.56 / 13.82 60 22.85 / 30.87 / 29.03 19.41
RLIPv2-ParSeDA 20 11.3h 13.03 / 14.98 / 14.53 20 27.01 / 35.21 / 33.32 18.94

Table 3: Comparisons of RLIPv1 and RLIPv2 under zero-shot (NF) and fully-
finetuning settings on HICO-DET pre-trained on VG. Results are reported on Rare/Non-
Rare/Full sets. FPS is tested on a single NVIDIA A100 with minibatch size 1. Pre-
training time is tested on 8 NVIDIA A100. “Ep.” denotes number of epochs.

Initialization Rare Non-Rare Full

COCO (default) 12.12 14.07 13.62

R-Tagger 12.55 13.64 13.39
w/o noise 9.94 12.74 12.09

w/o attn masks 8.55 11.22 10.61

Table 4: The quality of R-Tagger param-
eters. Results are evaluated using RLIPv2-
ParSeD with ResNet-50 under zero-shot (NF)
setting.

intermediate language features rather than using only the
last layer of language features in Cross-Modal Fusion. Re-
sults are shown in Tab. 1. Our findings suggest that spar-
sifying the language encoder does not compromise zero-
shot performance and improves parameter efficiency. We
attribute this to overfitting effects on upstream datasets im-
pairing models’ generalization. We choose Nv = 2 and
NALIF = 3 as the default hyper-parameters for the follow-
ing experiments.

The choice of the gating function G(x). To investigate
the effect of the gating function on cross-modal fusion, we
experiment with variants of the gating function as described
in Sec. 4.1. The results are shown in Tab. 2. We note that
tanh consistently degrades performance for the three gat-
ing methods. We conjecture that the output range of tanh
can constrain the magnitude of the features to be fused, thus
limiting the performance. Based on the results, we choose
the simplest one: the learnable scalar gating method param-
eterised by α.

Comparisons of RLIPv2 with RLIPv1. To compare
the architectural benefit of RLIPv2 with RLIPv1, we adopt
DDETR [102] and DAB-DDETR [56] to follow two de-
signs, and evaluate performance under zero-shot (NF) and
fully-finetuning setting. Results are shown in Tab. 3. From
this table, we can observe that by modifying the architec-
ture without compromising much inference speed, RLIPv2
generally outperforms its RLIPv1 counterpart. Specifically,
RLIPv2 obtains comparable zero-shot results to RLIPv1,
while costing about 0.4× pre-training time. In terms of
fine-tuning results, RLIPv2 surpasses RLIPv1 with 0.33×
fine-tuning time due to earlier and deeper fusion.

5.1.2 Relational Pseudo-labelling

By default, we use RLIPv2-ParSeD with ResNet-50 back-
bone as the basic structure of R-Tagger.

The necessity of denoising pre-training and atten-
tion masks for R-Tagger. If noise is not added during
R-Tagger’s pre-training, the loss will fluctuate instead of
steadily decreasing as the optimization proceeds. If atten-
tion masks are not utilized to prevent information leakage,
the model will tend to learn an identity mapping, thus de-

Tagging Method Overlap Rare Non-Rare Full

Greedy [100]
✗ 11.15 11.65 11.55
! 13.16 14.70 14.35

CLIP (ViT-L/14) [65]
✗ 12.66 12.76 12.74
! 14.63 14.94 14.87

R-Tagger (ResNet-50)
✗ 15.33 15.54 15.49
! 15.36 15.37 15.36

Table 5: Comparisons of relation tagging methods. “Overlap”
denotes the “overlap” prior for SO pairs introduced in Sec. 4.2.2.
We report zero-shot (NF) results pre-trained on VG and COCO.
We use oracle captions from COCO Caption [8] (NCap = 5).

Caption type NCap Rare Non-Rare Full

Oracle 5 15.33 15.54 15.49

BLIP (beam) 1 9.86 12.02 11.52
BLIP (nucleus) 5 14.67 14.76 14.74
BLIP (nucleus) 10 15.08 15.10 15.09
BLIP (nucleus) 20 14.24 14.91 14.75

BLIP (nucleus)* 5 12.31 14.37 13.89

Table 6: Comparisons of different caption types. “beam” and
“nucleus” denote beam search and nucleus sampling. “Oracle” de-
notes captions from COCO Caption. By default, we adopt COCO
Caption fine-tuned BLIP model. * denotes that we adopt the pre-
trained BLIP model.

grading its ability to infer relations. R-Tagger is pre-trained
for 20 epochs. To assess the quality of R-Tagger’s param-
eters, thanks to R-Tagger’s identical structure to RLIPv2-
ParSeD, we initialize RLIPv2-ParSeD with R-Tagger’s pa-
rameters and pre-train for 10 epochs. We evaluate the zero-
shot (NF) performance on HICO-DET as shown in Tab. 4.
We observe that removing additional noise or attention
masks both impair performance, highlighting their impor-
tance.

Comparisons of different relation tagging strategies.
We compare R-Tagger with other two methods: (i) the
greedy matching algorithm [100]; (ii) the CLIP [65] tag-
ging method. Specifically, to tag relations for a given SO
region pair with a candidate relation text, the CLIP tagging
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Dataset Relation candidate Rare Non-Rare Full

VG - 12.12 14.07 13.62

VG+COCO BLIP 15.08 15.10 15.09
VG+COCO Selection from VG 10.34 11.33 11.11

Table 7: Comparisons of methods to generate relation candi-
date sets. We report zero-shot (NF) results on HICO-DET.

VG VG+COCO VG+COCO+O365

ResNet-50 13.03 / 14.98 / 14.53 15.00 / 16.60 / 16.23 19.64 / 17.24 / 17.79
Swin-T 13.01 / 16.06 / 15.35 17.13 / 18.74 / 18.37 21.24 / 19.47 / 19.87
Swin-L 19.93 / 18.74 / 19.02 22.59 / 21.09 / 21.44 27.97 / 21.90 / 23.29

Table 8: Model and dataset scaling experiments us-
ing RLIPv2-ParSeDA. Results are evaluated on HICO-DET
Rare/Non-Rare/Full sets under zero-shot (NF) setting.

Model Backbone Extra mR@50 R@50
wmAP

scorewtdrel phr

VCTree [73] X101-F - 33.91 74.08 34.16 33.11 40.21
G-RCNN [82] X101-F - 34.04 74.51 33.51 34.21 41.84

Motifs [90] X101-F - 32.68 71.63 29.91 31.59 38.93
Unbiased [72] X101-F - 35.47 69.30 30.74 32.80 39.27
GPS-Net [54] X101-F - 35.26 74.81 32.85 33.98 41.69
RelDN [96] R101 - 36.80 72.75 29.87 30.42 38.67
BGNN [46] R101 - 39.41 74.93 31.15 31.37 40.00
SGTR [45] R101 - 42.61 59.91 36.98 38.73 42.28
RelTR [11] R50 - - 64.47 34.17 37.44 41.54

RLIPv2-ParSeD R50* - 44.58 58.04 43.30 43.12 46.18
R50* - 44.88 60.20 44.73 43.36 47.28
R50† - 45.59 61.15 45.71 43.73 48.01
R50 (i) 50.42 63.35 47.65 45.23 49.82
R50 (ii) 52.07 64.53 49.14 46.14 51.01
R50 (iii) 51.31 65.99 49.54 45.71 51.30

Swin-T (iii) 59.61 68.81 52.70 48.01 54.05

RLIPv2-ParSeDA

Swin-L (iii) 64.72 72.49 56.38 50.70 57.34

Table 9: Comparisons with previous methods on Open Images
v6 SGG benchmark. X101-F denote ResNeXt-101 FPN [80]. *

and † denote ImageNet pretrained and COCO object detection pre-
trained. “Extra” denotes extra relations adopted from (i) VG, (ii)
VG+COCO and (iii) VG+COCO+O365.

method clips the minimum bounding box of the SO region
pair, creates two prompts (“a photo of {subject} {relation}
{object}” and “a photo of {subject} not interacting with
{object}” are adopted as positive and negative prompts.),
and performs zero-shot prediction. If the softmax proba-
bility of the positive prompt is greater than a pre-defined
threshold, we tag this relation text to this SO region pair.
(We traverse the threshold and find the optimal one for the
CLIP tagging method, as detailed in the Appendix.) We
also ablate on the “overlap” prior [100] to observe whether
a given tagging method relies on strong prior knowledge
to filter out false positive relations. The results are shown
in Tab. 5. From this table, we conclude that greedy match-
ing and CLIP tagging method generate a significant num-
ber of low-quality non-overlapped triplets. Thus, the “over-
lap” prior is essential for them. R-Tagger, however, suf-

Method Backbone UC-RF UC-NF

VCL [27] ResNet-50 10.06 / 24.28 / 21.43 16.22 / 18.52 / 18.06
ATL [28] ResNet-50 9.18 / 24.67 / 21.57 18.25 / 18.78 / 18.67
FCL [29] ResNet-50 13.16 / 24.23 / 22.01 18.66 / 19.55 / 19.37

GEN-VLKT [51] ResNet-50 21,36 / 32.91 / 30.56 25.05 / 23.38 / 23.71
RLIPv1-ParSeD [86] ResNet-50 16.43 / 30.59 / 27.76 16.99 / 24.71 / 22.93
RLIPv1-ParSe [86] ResNet-50 19.19 / 33.35 / 30.52 20.27 / 27.67 / 26.19

RLIPv2-ParSeDA ResNet-50 21.45 / 35.85 / 32.97 22.81 / 29.52 / 28.18
RLIPv2-ParSeDA Swin-T 26.95 / 39.92 / 37.32 21.07 / 35.07 / 32.27
RLIPv2-ParSeDA Swin-L 31.23 / 45.01 / 42.26 22.65 / 40.51 / 36.94

Table 10: Comparisons with methods on HICO-DET under
UC-RF and UC-NF settings. We adopt ResNet-50 as the back-
bone. Results are reported on Unseen/Seen/Full sets.

Method Backbone 1% Data 10% Data

RLIPv1-ParSeD [86] ResNet-50 16.22 / 18.92 / 18.30 15.89 / 23.94 / 22.09
RLIPv1-ParSe [86] ResNet-50 17.47 / 18.76 / 18.46 20.16 / 23.32 / 22.59

RLIPv2-ParSeDA ResNet-50 22.13 / 24.51 / 23.96 23.28 / 30.02 / 28.46
RLIPv2-ParSeDA Swin-T 24.26 / 28.92 / 27.85 28.31 / 32.93 / 31.87
RLIPv2-ParSeDA Swin-L 31.89 / 32.32 / 32.22 34.75 / 38.27 / 37.46

Table 11: Comparisons on HICO-DET under few-shot set-
tings. Results are reported on Rare/Non-Rare/Full sets.

fers a slight performance drop when using the “overlap”
prior, indicating that R-Tagger generates more reliable non-
overlapped triplets. Besides, although CLIP is pre-trained
on a massive quantity of language-image pairs, it struggles
in recognizing relations, which R-Tagger is expert in.

Comparisons of different caption types. Previous ex-
periments demonstrate that oracle COCO captions can ben-
efit pre-training. However, most datasets lack such high-
quality captions. Thus, BLIP provides an alternative for
caption generation. We conduct experiments on various
caption types, as shown in Tab. 6. From this table, we
can observe that: (i) BLIP-generated captions achieve a de-
cent performance compared to oracle captions, indicating
the practicality of adopting generated captions for pseudo-
labelling. (ii) If we compare BLIP model with different pa-
rameters (COCO Caption fine-tuned or only pre-trained),
we can see that the fine-tuned model generates better cap-
tions with more boost on the Rare set (12.31 → 14.67).
We conjecture that the caption quality of the curated style
dataset COCO Caption is better than pre-training captions
harvested from the web. (iii) By adopting generated cap-
tions, we can increase the number of captions per image,
thus diversifying the relations contained in captions and
boost RLIPv2 (11.52 → 15.09). Besides, although datasets
like Conceptual Caption [70] (CC3M) also provide cap-
tions, the quantity of captions (average one caption per im-
age) is not enough to describe many relations in an image.
In comparison, our pipeline can work without caption an-
notation while performing better.

The necessity of using captioners. By default, we use
BLIP to generate relation texts. Another option is to query
all possible SO pairs and select all possible relation texts
from VG as it contains an enormous quantity of relations
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Model Backbone Extra Relations
HICO-DET V-COCO

Zero-shot (NF) Fully-finetuning AP#1
role AP#2

role

InteractNet [21] R50-FPN - - 7.16 / 10.77 / 9.94 40.0 -
UnionDet [35] R50-FPN - - 11.72 / 19.33 / 17.58 47.5 56.2

PPDM [50] HG104 - - 13.97 / 24.32 / 21.94 - -
HOTR [36] R50 - - 17.34 / 27.42 / 25.10 55.2 64.4
QPIC [71] R50 - - 21.85 / 31.23 / 29.07 58.8 61.0
OCN [89] R50 - - 25.56 / 32.51 / 30.91 64.2 66.3
CDN [93] R50 - - 27.39 / 32.64 / 31.44 61.7 63.8

GEN-VLKT [51] R50 - - 29.25 / 35.10 / 33.75 62.4 64.5
QAHOI [5] Swin-L* - - 29.80 / 37.56 / 35.78 - -

UniVRD [98] ViT-H/14† - - 31.65 / 39.99 / 38.07 65.8 66.9
RLIPv1-ParSeD [86] R50 VG 11.20 / 14.73 / 13.92 24.67 / 32.50 / 30.70 61.7 63.8
RLIPv1-ParSe [86] R50 VG 15.08 / 15.50 / 15.40 26.85 / 34.63 / 32.84 61.9 64.2

RLIPv2-ParSeDA R50 VG 13.03 / 14.98 / 14.53 27.01 / 35.21 / 33.32 63.0 65.1
RLIPv2-ParSeDA R50 VG+COCO 15.00 / 16.60 / 16.23 27.89 / 35.27 / 33.57 64.5 66.7
RLIPv2-ParSeDA R50 VG+COCO+O365 19.64 / 17.24 / 17.79 29.61 / 37.10 / 35.38 65.9 68.0
RLIPv2-ParSeDA Swin-T VG+COCO+O365 21.24 / 19.47 / 19.87 33.66 / 40.07 / 38.60 68.8 70.8
RLIPv2-ParSeDA Swin-L VG+COCO+O365 27.97 / 21.90 / 23.29 43.23 / 45.64 / 45.09 72.1 74.1

Table 12: Comparisons with previous methods on HICO-DET and V-COCO. Results on HICO-DET are reported on Rare/Non-
Rare/Full sets. R50 and HG denote ResNet-50 [25] and Hourglass [61]. * denotes the backbone is pre-trained with 384× 384 resolution,
while others use 224× 224. † indicates the backbone is pre-trained using LiT [92], then fine-tuned on Objects365, COCO and HICO with
the objective of object detection.

(36,515 kinds). Then, we run R-Tagger with selected rela-
tion texts as T and all region pairs as P . The results are
shown in Tab. 7. We can observe that selecting from VG
generates low-quality candidates, harming performance.

Model scaling and dataset scaling. Equipped with the
labelling pipeline introduced above, we can scale RLIPv2
to larger models and datasets. In Tab. 8, we adopt RLIPv2-
ParSeDA as the base architecture and observe the benefit
of scaling by zero-shot (NF) performance on HICO-DET.
In terms of data, adding COCO and Objects365 can both
boost performance, and the benefit of adding data exhibits
a log scaling trend [9]. Models pre-trained with Objects365
consistently have better Rare result, which we attribute to
the distribution misalignment of Objects365 and HICO-
DET [17]. In terms of models, switching to stronger back-
bone models can improve the data efficiency at the cost of
larger amounts of computation. Regarding scaling experi-
ments using RLIPv2-ParSeD, we present it in the Appendix.

5.2. Comparisons with State-of-the-Arts

Scene graph generation. We compare RLIPv2 series
models with previous methods on Open Images v6 in Tab. 9.
We also report mean Recall@50 (mR@50) to better show
the usefulness of RLIPv2. Our findings suggest that (i)
with the assistance of DDETR family models, RLIPv2 can
serve as a strong baseline without any pre-training; (ii) naive
object detection pre-training can boost the performance to
some extent (47.28 → 48.01), while pre-training on VG
can further boost the performance especially on mR@50
(45.59 → 50.42); (iii) adding pseudo-labelled relation an-

notations in pre-training or switching to stronger backbones
both contribute to better performance. However, the boost
of adding Objects365 is negligible. We attribute this to the
distribution discrepancy of Objects365 and Open Images
v6.

HOI Detection under UC-NF and UC-RF settings.
We report results in Tab. 10 on unseen combinations (UC)
under UC-RF and UC-NF settings following [27, 28]. We
only fine-tune for 10 epochs under UC-NF setting. Our
method outperforms previous methods except on one met-
ric. We attribute this to the strong transferability of CLIP
features that GEN-VLKT adopts. Regarding experiments
using RLIPv2-ParSeD, we present it in the Appendix.

Few-shot HOI Detection. We follow [86] to only fine-
tune 10 epochs on partial data (1% and 10%), results of
which are shown in Tab. 11. We can observe significant
improvements upon all metrics by scaling up pre-training
compared with previous methods. This improves the prac-
ticality of RLIPv2 in low-data scenarios. Regarding experi-
ments using RLIPv2-ParSeD, we present it in the Appendix.

HOI detection under fully-finetuning and zero-shot
(NF) settings. We compare the performance of RLIPv2
series models with previous methods on HICO-DET and
V-COCO in Tab. 12. We can observe from the table that
(i) dataset and model scaling can both boost the final per-
formance on two datasets; (ii) on HICO-DET, the benefit
of pre-training is more prominent on zero-shot than fully-
finetuning, especially on the Rare set. Regarding experi-
ments using RLIPv2-ParSeD, we present it in the Appendix.
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Figure 4: (a) Visualization of pseudo-labelled relations on
COCO. Left column: R-Tagger; right column: CLIP tagging
method. (b) Visualization of failure cases of R-Tagger.

5.3. Qualitative Analysis

Comparisons of relation tagging methods. We vi-
sualize three examples to compare the quality of pseudo-
labelled relations by R-Tagger and CLIP tagging method
in Fig. 4(a). Generally, CLIP is more object-centric and
position-agnostic, and thus struggles in discriminating rela-
tions. It tends to tag relations as long as the subject and ob-
ject have strong co-occurrence priors. However, R-Tagger
tags more reasonable relations.

Failure cases of R-Tagger. Recognizing relations is
challenging, especially in complex scenes. In Fig. 4(b), we
present three examples of R-Tagger’s failure cases. In par-
ticular, we observe failure cases when the scene contains
multiple similar subjects or objects.

6. Conclusion
In this paper, we propose RLIPv2, a fast converging

model that enables the scaling of relational pre-training to
larger-scale pseudo-labelled datasets. Comprehensive ex-
periments on HOI detection and scene graph generation un-
der various settings demonstrate its effectiveness compared
to previous methods. We anticipate that our work can galva-
nize further research efforts to focus on relational reasoning,
fostering advancements that yield tangible benefits not only
to the research community but also to broader society and
humanity.
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