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Abstract

Federated learning (FL) is a prevalent distributed ma-
chine learning approach that enables collaborative train-
ing of a global model across multiple devices without
sharing local data. However, the presence of long-tailed
data can negatively deteriorate the model’s performance in
real-world FL applications. Moreover, existing re-balance
strategies are less effective for the federated long-tailed is-
sue when directly utilizing local label distribution as the
class prior at the clients’ side. To this end, we propose
a novel Global Balanced Multi-Expert (GBME) frame-
work to optimize a balanced global objective, which does
not require additional information beyond the standard FL
pipeline. In particular, a proxy is derived from the accumu-
lated gradients uploaded by the clients after local training,
and is shared by all clients as the class prior for re-balance
training. Such a proxy can also guide the client grouping
to train a multi-expert model, where the knowledge from
different clients can be aggregated via the ensemble of dif-
ferent experts corresponding to different client groups. To
further strengthen the privacy-preserving ability, we present
a GBME-p algorithm with a theoretical guarantee to pre-
vent privacy leakage from the proxy. Extensive experiments
on long-tailed decentralized datasets demonstrate the effec-
tiveness of GBME and GBME-p, both of which show supe-
rior performance to state-of-the-art methods. The code is
available at here.

1. Introduction
Federated Learning (FL) is a collaborative training

method to develop a global model by utilizing decentralized
data from multiple clients [21]. It enables knowledge aggre-
gation over disparate data sources while mitigating privacy
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Figure 1: Global re-balance VS. Local re-balance1. X-axis
denotes several classical re-balance strategies. Global re-
balance significantly outperforms local re-balance in the FL
setting with long-tailed data, motivating us to optimize a
global balanced objective.

risks for individual clients. However, the model’s perfor-
mance of a FL system can be severely deteriorated in the
presence of long-tailed data distribution, which is an ubiq-
uitous problem in various realistic scenarios [13, 36], such
as medical applications [17], personal information protec-
tion [44] and autonomous vehicles [26].

Importantly, it is extremely difficult to learn a balanced
global model in the FL setting with long-tailed data [34],
especially for the minority classes [30]. In the concrete,
due to data heterogeneity, there may exist a large divergence
among the imbalanced distributions of different clients, e.g.,
different local datasets have different imbalance ratios or
minority classes (visualized in Section 9 in Supplementary
Material). Additionally, during the standard FL training,
partial client selection may randomly drop some minority
samples at each communication round, further decreasing
the model performance on minority classes. Therefore, the
long-tailed issue is more challenging in the FL scenarios.

Several techniques have been proposed to tackle the
federated long-tailed problem, such as loss re-weighting
[30, 34], client clustering [6], and client selection [39].

1Global re-balance means that the re-balance strategies adopt global
label distribution as the class prior, while local re-balance utilizes local
label distribution as the class prior.
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However, it is generally assumed that some sensitive in-
formation is accessible to the server, e.g., a balanced mini-
dataset [6, 34] or learnable hyper-parameters of clients [30],
which may not be available in realistic applications. Be-
sides, most of them focus on datasets with few classes (e.g.,
ten or twenty), and their effectiveness diminishes on large-
scale imbalanced datasets with a higher number of classes
[20, 43]. Furthermore, we report the performance of sev-
eral classical re-balance methods [2, 25, 12, 35, 4] under the
federated long-tailed setting in Figure 1. It is observed that
the performance improvement is limited compared with Fe-
dAvg [21] when taking local label distribution as the class
prior of re-balancing strategies (i.e., local re-balance).

Aiming to tackle the above problem, this work further
explores the effectiveness of existing class-prior based re-
balance algorithms for federated long-tailed learning. Ex-
perimentally, as indicated by Figure 1, deploying these al-
gorithms with global re-balance yields higher accuracy than
that with local re-balance1. The main reason arises from the
optimization objective gap between these two re-balance
strategies, where the global one provides a consistent ob-
jective with the centralized balancing training (introduced
in Section 3.1). However, global re-balance requires clients
to upload local label distributions to obtain global label dis-
tribution, thus increasing the risk of privacy leakage [34].

To get rid of those constraints, we propose a Global
Balanced Multi-Expert (GBME) framework to deal with
the federated long-tailed issue without requiring additional
information beyond the standard FL. Specifically, we derive
a local proxy from the accumulated gradients of the clients
after local training rather than from the local label distri-
bution, and then a global proxy is formulated as the class
prior for re-balance algorithms by integrating local proxies
of each client. Based on the cosine similarity between the
local and global proxy, clients can be divided into different
groups corresponding to different experts in a multi-expert
model. During the local training of a client, the correspond-
ing expert is trainable to learn balanced knowledge using
the global proxy as the prior, while other experts are frozen
to maintain the knowledge learned from other groups. Us-
ing a multiple selection strategy, a client can implicitly in-
teract with other groups in an ensemble manner to aggre-
gate balanced knowledge learned from different groups. To
further improve the privacy-preserving ability, we present a
GBME-p algorithm based on the differential privacy (DP)
[7] to prevent the privacy leakage of local label distribu-
tions. Concretely, the random Gaussian noises are added to
the weights of the final fully connected (FC) layer for lo-
cal proxy computation at the clients’ side before uploading.
The overall GBME framework is illustrated in Figure 2. In
summary, the key contributions of this work are as follows.

(i) We experimentally and theoretically explore the effec-
tiveness of existing class-prior based re-balance algo-

rithms in federated long-tailed learning. It is demon-
strated that there is a mismatch between the optimiza-
tion objectives of local and global re-balance strate-
gies, where global re-balance performs better than the
local one on the imbalanced decentralized data.

(ii) We propose a GBME framework to achieve global
balanced training, where a proxy is designed as the
class prior for re-balancing algorithms without requir-
ing additional private information. The clients are di-
vided into multiple groups to collaboratively train a
multi-expert model, where the knowledge from differ-
ent groups can be aggregated in an ensemble manner.

(iii) To enhance the privacy-preserving ability, we present
a GBME-p algorithm with a theoretical guarantee to
prevent the privacy leakage of local label distributions,
where the Gaussian noises are added to the weights of
the last FC layer at the clients’ side before uploading.

(iv) The experiments on multiple benchmark datasets
demonstrate that GBME without requiring additional
private information can significantly outperform pre-
vious state-of-the-art (SOTA) methods. Besides,
GBME-p can still achieve superior performance under
the protection of the differential privacy.

2. Related Work
Federated Learning. FL [21] is a learning framework to
train a global model on distributed data of multiple clients
with privacy protection. One of the most important chal-
lenges is data heterogeneity. Many previous studies focused
on this problem [15, 18, 31, 27, 33] with the assumption of
a perfectly balanced global dataset (all local data). Recent
works [6, 39, 34, 30] proposed to handle class imbalance
issue in FL. For example, CReFF [28] deal with federated
long-tailed data inspired by [14]. However, these methods
usually required additional private information except for
model parameters of the clients with the privacy concerns,
e.g., CReFF [28] requires feature gradients of clients’ data.
Moreover, they only focused on datasets with a few classes,
and their effectiveness may diminish on the large-scale im-
balanced datasets with a larger amount of classes [30, 45].

Long-tailed Learning. Real-world data often exhibits a
long-tailed distribution, where the majority classes have
massive samples and the minority classes only have a few
samples [43]. Many re-balance strategies are proposed to
address such imbalance issues. Data re-sampling [3, 10, 14]
is a common type, such as over-sampling the minority sam-
ples [29, 14] or under-sampling [10] the majority sam-
ples. Another scheme to learn a balanced model is loss
re-weighting [32, 5]. Generally, these methods tend to
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give a large training loss for the minority samples. Re-
cent studies mainly focused on a good representation space
to improve the generalization ability. PaCo [4] introduced
a contrastive learning method over the long-tailed dataset.
Ensemble learning is also effective in long-tailed learning
[46, 37, 35, 42, 1]. Although these re-balance strategies
worked well on the centralized imbalance datasets, it re-
mains a question whether they are useful in federated long-
tailed learning. In this work, we theoretically and exper-
imentally explore this issue and propose a novel algorithm
to achieve a global balance training with existing re-balance
strategies for federated long-tailed learning.

3. GBME Learning Method
Problem Formulation. We discuss a typical FL setting
with total K clients. A distinct data source Dk contain-
ing Nk samples is held by client Ck. The global dataset is
defined as D =

⋃
k∈[K]Dk. Considering a S-class classifi-

cation task, (x, y) ∈ D is a training sample, where x is an
image in the input space X and y is its corresponding label.
Assume D follows a long-tailed distribution, i.e., the sam-
ple size is exponentially distributed w.r.t. class index. The
global imbalance ratio (IR) is defined as the ratio between
the largest and smallest class volumes. Typically, FL aims
at learning a single shared model and optimizing the global
objective as the aggregation of the local objectives:

min
θ∈Rd

K∑
k=1

nk

n
Fk(θ), where Fk(θ)=

1

nk

∑
(x,y)∈Dk

fθ(x, y), (1)

where the model is parameterized by θ and f is the loss
function. In the presence of class imbalance, the above for-
mulation suffers from both imbalanced and heterogeneous
data, which easily produces a model that performs poorly
on the minority classes. We summary the main challenges
of federated long-tailed learning as follows.

Challenges. (1) Local datasets may exhibit varying im-
balanced distributions due to the distinct data sources, and
significantly differ from the global imbalanced distribution,
resulting in more severe heterogeneity. We visualize such
issue in Section 9 in Supplementary Material. (2) Partial
client selection for FL communications may drop some mi-
nority samples, further aggravating the imbalance issue be-
cause of insufficient minority data. As a theoretical motiva-
tion, we consider the following configuration to investigate
the effectiveness of class prior based re-balance techniques,
which inspires us to optimize a global balanced objective
instead of a local one for federated long-tailed learning.

3.1. Theoretical Motivation

We consider a binary classification problem where the
ground truth is either positive (y+) or negative (y−). Under

the heterogeneously imbalanced setting, given two clients
C0 and C1, we assume that client C0 accesses n+

0 positives
and n−

0 negatives, while client C1 accesses n+
1 positives and

n−
1 negatives. Without loss of generality, we consider a sim-

ple loss re-weighting strategy that takes the inverse of the
proportion of each class as the weight for this class, i.e.,
n0/n

+
0 for the positive class and n0/n

−
0 for the negative

class on client C0. Similarly, client C1 uses n1/n
+
1 for the

positive class and n1/n
−
1 for the negative class. The global

re-balance strategy takes the inverse of the global label dis-
tribution as the class weights, i.e., (n0+n1)/(n

+
0 +n+

1 ) for
positive class and (n0 + n1)/(n

−
0 + n−

1 ) for negative class.
We denote the global objectives of the global and local re-
balance strategies as Gg(θ) and Gl(θ), respectively. Then
we can measure the difference between Gg(θ) and Gl(θ).

Lemma 1 Using the global re-balance strategy, the global
objective yields the same form as the objective of the re-
balance methods on the centralized dataset:

Gg(θ) =
1

n+

∑
(x,y+)∈D

fθ(x, y
+) +

1

n−

∑
(x,y−)∈D

fθ(x, y
−). (2)

where n+ = n+
0 + n+

1 and n− = n−
0 + n−

1 .

Theorem 1 Under the above setting, let E be the estima-
tion of global label distribution. There exists a group of re-
balance weights e derived from E , whose global objective
Ge satisfies Gg(θ) ≤ Ge(θ) < Gl(θ). Then the optimiza-
tion objective gap ∆ = Gl(θ) − Gg(θ) can be written as:

∆ =
n1(n

+
0 )

2 + n0(n
+
1 )

2

n+
0 n

+
1 (n0 + n1)(n

+
0 + n+

1 )

∑
(x,y+)∈D

fθ(x, y
+)

+
n1(n

−
0 )

2 + n0(n
−
1 )

2

n−
0 n

−
1 (n0 + n1)(n

−
0 + n−

1 )

∑
(x,y−)∈D

fθ(x, y
−).

(3)

Interpretation. The above theorem illustrates the follow-
ing points: (1) The local re-balance strategy optimizes a
larger objective than the global one, which yields the same
objective function as the re-balance strategies on the cen-
tralized dataset. (2) There exists a re-balance strategy de-
rived from the global perspective, which exhibits a smaller
objective than the local re-balance strategies.

3.2. Global Proxy Information

Our theoretical results show that the global re-balance
strategy is more suitable in the federated long-tailed setting.
However, global label distribution is unavailable due to the
privacy concerns of FL. To overcome this drawback, we
propose a proxy called Global Proxy Information (GPI) de-
rived from the accumulated gradients of the clients, which is
inspired by an empirical observation [14]: in the FC layer,
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Figure 2: Multi-Expert Learning and Different Selection Strategies. (a) Training Pipeline. We first divide all clients into
different groups according to the similarity between their LPI and GPI. Then we select diverse clients for training different
experts in an ensemble manner. (b) Client selection with different α values. If α = 1, most clients are only selected one
time to update the corresponding expert of their groups. If 0 < α ≤ 1, a client may be selected multiple times to update
multiple experts corresponding to their groups and other groups, where different groups can interact with each other via such
selection. α = 0 indicates that a client is randomly selected to update one of the experts.
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Figure 3: Calculations of LPI and GPI.

the weight norms of majority classes are generally larger
than that of minorities.

Definition 1 (Local Proxy Information). For local training
on Dk, ∇kw

ij is the gradient of the weight wij connecting
j-th input with i-th output in the FC layer, where the input
dimension of the FC layer is H . Local proxy information
(LPI) of class i on Dk is defined as the gradient magnitude
associated with i-th output of the FC layer:

Ωk
i =

H∑
j=1

−∇kw
ij , where ∇kw

ij =
∂Fk(θ)

∂wij
, (4)

where Ωk
i is i-th element in the local proxy information vec-

tor Ωk of the client Ck.

Definition 2 (Global Proxy Information). The global proxy
information (GPI) of class i is defined as the weighted sum-
mation of the local proxy information:

Πi :=

K∑
k=1

nk

n
I(Ωk

i > 0)Ωk
i , (5)

where I(·) is the indicator function and the value is 1 if · is
true, 0 otherwise. Πi is i-th element in the GPI vector Π.

I(·) is necessary since negative LPI value may result in
unstable behavior of GPI. In fact, as shown in Figure 3, the
LPI estimation only involves the accumulated gradients of
the FC layer, thus the central server receives no additional
private information compared with the vanilla FedAvg [21].
GPI can be obtained by aggregating the accumulated gra-
dients of different clients. Then the server broadcasts GPI
to each client, where GPI is used as the class prior for ex-
isting re-balance strategies during local training. Besides,
the clients are required to upload LPI only in the beginning
commutation round, then global re-balance training can be
conducted in the subsequent FL communication rounds.

4818



Experimentally, as shown in Section 4, we find that previ-
ous re-balance strategies with GPI can effectively improve
the accuracy of medium-/few-shot classes while reducing
the performance drop of many-shot classes.

3.3. Multi-Expert Learning

Guided by our proxy analysis, we utilize a multi-expert
architecture to handle the federated long-tailed issue. The
global and local models have the same structure, i.e., a
shared backbone followed by multiple experts and each ex-
pert has individual learnable blocks. The algorithm is illus-
trated in Figure 2 and Algorithm 1 with the following steps.

Client Grouping. Based on the Section 3.2, we define the
cosine similarity between LPI and GPI of client Ck as:

Cosine(Ωk,Π) =
Ωk ·Π
∥Ωk∥∥Π∥

, (6)

where · denotes the dot product operation. Then we can
obtain the ranked clients by sorting the similarity scores
and the clients with closed similarity are divided into the
same group. Let hyper-parameter M be the group number,
M experts are allocated for each client corresponding these
groups respectively, i.e., group Pi corresponds to expert Ei.

Client Selection. In each communication round, two
parts of the clients are selected to update the expert Ei: (1)
αR clients are randomly selected from the group Pi; (2)
(1 − α)R clients are randomly selected from other clients.
0 ≤ α ≤ 1 is a hyper-parameter to control the client se-
lection, which influences the interactions among different
groups. As shown in Figure 2(b), if α = 1, there is no inter-
action among different groups, where each group only up-
dates the corresponding expert. If α = 0, by M times boost-
strap sampling, i-th selected client is to update Ei individu-
ally. To enhance the interaction among different groups, we
utilize 0 ≤ α ≤ 1 to achieve a multiple selection strategy
as shown in Figure 2(b).

Expert Ensemble. The server broadcasts the global
model to the selected clients for local training. For each
client, the classification loss is calculated based on the av-
erage logits of all experts to integrate the knowledge of dif-
ferent groups. Here, we adopt the balanced softmax loss
(BSM) [25] due to the effectiveness of logit adjustment for
class imbalance issue [24]. Denote the class prior informa-
tion as π, e.g., local label distribution, global label distribu-
tion, and GPI. BSM loss is written as:

LBSM =
1

nk

∑
(x,y)∈Dk

−y log s

(
1

M

M∑
i=1

vi (x, θ) + log π

)
,

(7)

Algorithm 1: GBME(-p) Framework

1 Initialization: t = 0, and θ
(0)
i = θ(0),∀i;

2 while Dk ∈ {D1,D2, · · · ,DK} do
3 one optimization round on Dk: θ̂(0)k ;
4 GBME-p: ∇kŵ

ij = ∇kw
ij +N (t)

k ;
5 compute LPI Ωk for client k by Definition 1;
6 upload Ωk and θ̂

(0)
k ;

7 end
8 compute GPI Πc for each class c by Definition 2;
9 client grouping by Eq. (6): {P1, · · · , PM};

10 while t < T do
11 broadcast the global model: θ(t)i = θ(t);
12 client selection for updating each expert;
13 while Di ∈ {D1,D2, · · · ,DR} do
14 θ

(t+1)
i = argminLBSM(θ

(t)
i ,Di)

15 end
16 global aggregation: θ(t+1) =

∑K
i=1

ni

n θ
(t+1)
i ;

17 t←− t+ 1

18 end

where s(·) is the softmax function and vi(·) is the output
logits of expert Ei. During the local training of a client, only
the backbone and selected experts are updated, while other
experts are kept frozen. After local updates, the selected
clients uploads the updated model parameters and the server
aggregates them into the global model with FedAvg [21].

3.4. GBME-p with Privacy Guarantee

In this section, we propose a GBME-p algorithm to ad-
dress the federated long-tailed problem with privacy protec-
tion based on the concept of differential privacy (DP) [7],
which provides a theoretical criterion for privacy preserva-
tion of distributed learning systems.

Definition 3 (Differential Privacy [7]). A randomized al-
gorithmM : P → R with domain P and rangeR is (ϵ, δ)-
DP (ϵ is privacy budget and δ is failure probability), if for
all measurable setsR′ ⊆ R for any two adjacent databases
Di,D′

i ∈ P:

Pr[M(Di) ∈ R′] ≤ eϵ Pr[M(D′
i) ∈ R′] + δ. (8)

Definition 4 (Gaussian Mechanism). Given any function
M : P → R, the Gaussian mechanism is defined as:
Mg(D, σ) =M(D) + N , where N is a random variable
drawn from the Gaussian(σ2) distribution, where σ is the
standard derivation.

Theorem 2 For c2 > 2 ln(1.25/δ), the Gaussian Mecha-
nism with parameter σ ≥ c∆/ϵ is (ϵ, δ)-DP with arbitrary
ϵ ∈ (0, 1). c is influenced by δ to adjust σ.

4819



GBME-p. Inspired by the above DP mechanism, we pro-
pose an algorithm named GBME-p that incorporates the
privacy protection ability into the GBME. Concretely, we
adopt the Gaussian mechanism for the LPI estimation, i.e.,
the Gaussian noises parameterized by privacy-related pa-
rameters (e.g., ϵ,∆) are added to the weights of the final FC
layer. Algorithm 1 outlines the GBME(-p) algorithm for
training a balanced model with (ϵ, δ)-DP requirement.

In fact, (ϵ, δ)-DP ensures that LPI is protected against
potential differential attacks. Existing studies [14] indicate
that the gradient magnitude of the FC layer is related to the
label count of the corresponding class. Such privacy in-
formation can be well protected by introducing the Gaus-
sian mechanism into the LPI estimation. Moreover, each
client only needs to compute and upload LPI once at the
first round, followed by the standard FL communications.
Therefore, each client with (ϵ, δ)-DP can effectively main-
tain a privacy-preserving LPI via a single query.

4. Experiment
4.1. Experimental Setup

Datasets. We conduct experiments on three long-tailed
datasets: CIFAR-10-LT, CIFAR-100-LT [2], and ImageNet-
LT [20]. Following [20], we report the top-1 accuracy of the
global model on the balanced test set under different imbal-
ance ratios (IR=50 and IR=100), as well as accuracy for
many-shot, medium-shot, and few-shot classes.

FL Settings. We consider two popular settings to sim-
ulate heterogeneity [40]: (1) Dirichlet partition [9]. For
each class in the global dataset, we first generate pc ∼
Dir(αdir) for class c, then allocate pkc proportion of the
samples in class c to client k. αdir is a hyper-parameter for
the degree of data heterogeneity. A smaller αdir indicates a
higher heterogeneity degree. We set αdir as 0.5 for CIFAR-
10-LT, 0.1 for CIFAR-100-LT, and 0.05 for ImageNet-LT.
The visualizations of data distribution are shown in Section
9 in Supplementary Material. (2) Pathological partition
[21, 41]. Each client is randomly assigned limited classes
from all classes, i.e., 3 out of 10 classes for CIFAR-10-LT
and 10 out of 100 classes for CIFAR-100-LT.

Implementations. We adopt ResNet-18 [11] for CIFAR-
10-LT, ResNet-32 [11] for CIFAR-100-LT, and ResNeXt-50
[38] for ImageNet-LT for fair comparisons. In each commu-
nication round, 20 clients are selected with 2 local epochs.
More implementation details are reported in Section 6 in
Supplementary Material.

Baselines. Including FedAvg [21] as the baseline, differ-
ent methods are compared. (1) FL methods: FedProx [16],
SCAFFOLD [15], FedAlign [22], and a client grouping

Table 1: Comparison results under Dirichlet partition.

Methods CIFAR-10-LT CIFAR-100-LT ImageNet
100 50 100 50 -LT

FedAvg [21] 53.16 61.67 34.48 36.84 33.80
FedProx [16] 61.43 71.78 34.16 38.77 32.98
SCAFFOLD [15] 58.11 69.96 34.94 37.07 34.23
FedAlign [23] 58.83 66.07 35.36 39.80 32.35
IFCA [8] 60.97 70.53 33.56 36.36 33.07
Ratio Loss [34] 53.31 62.26 33.06 34.94 33.15
CLIMB [30] 60.28 72.29 34.66 40.22 35.29
Focal Loss [19] 53.88 59.00 33.88 38.03 32.85
CRT-IB [14] 53.80 63.52 32.48 37.61 31.77
CRT-CB [14] 63.31 69.87 34.06 39.60 35.52
GBME 71.07 76.85 40.42 45.16 45.75
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Figure 4: Accuracy tendency of GBME along with commu-
nication rounds on CIFAR-100-LT with IR = 100.

Table 2: Comparison results under pathological partition.

Methods CIFAR-10-LT CIFAR-100-LT
100 50 100 50

FedAvg [21] 52.79 56.58 33.90 37.73
FedProx [16] 53.55 56.08 33.07 38.04
SCAFFOLD [15] 54.68 54.24 34.14 39.00
FedAlign [23] 47.27 50.33 32.12 37.05
IFCA [8] 53.85 57.02 31.28 37.49
Ratio Loss [34] 49.94 51.01 34.54 38.48
CLIMB [30] 51.71 55.14 34.48 37.30
Focal Loss [19] 52.95 58.19 33.81 37.79
CRT-IB [14] 55.40 59.70 32.15 36.82
CRT-CB [14] 58.82 59.24 35.32 39.82
GBME 63.07 60.19 38.84 43.46

method IFCA [8] for data heterogeneity, Ratio Loss[34] and
CLIMB[30] for class imbalance; (2) centralized long-tailed
methods: Focal Loss [19], CRT-IB, CRT-CB [14], LDAM
[2], BSM [25], LADE [12], RIDE [35], and PaCo [4].

4.2. Main Results

Comparisons Results for Dirichlet Partition. The main
results with the Dirichlet partition are summarized in Table
1. Overall, our approach GBME consistently outperforms
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Table 3: Accuracy of different class priors, i.e., GPI, local
and global label distributions.

Methods CIFAR-10-LT CIFAR-100-LT ImageNet
100 50 100 50 -LT

FedAvg [21] 53.16 61.67 34.48 36.84 33.80

L
oc

al

LDAM [2] 63.55 69.50 32.54 37.01 30.70
BSM [25] 66.64 74.29 35.55 39.50 34.39
LADE [12] 66.05 74.54 33.28 39.89 36.32
RIDE [35] 59.95 69.05 34.94 39.09 40.00
PaCo [4] 65.11 71.35 35.92 40.03 38.26

G
lo

ba
l

LDAM [2] 67.69 72.41 36.61 40.01 38.66
BSM [25] 65.81 74.15 38.56 42.45 39.63
LADE [12] 66.03 74.06 39.82 42.95 39.37
RIDE [35] 60.37 68.39 34.59 39.35 40.81
PaCo [4] 69.60 72.36 37.63 41.26 39.74

G
PI

LDAM [2] 66.73 72.58 35.36 39.17 34.88
BSM [25] 67.44 74.36 37.19 41.91 37.64
LADE [12] 66.89 74.79 38.61 41.08 38.52
RIDE [35] 58.64 68.63 35.88 39.39 40.30
PaCo [4] 68.84 75.35 37.76 43.24 39.04
GBME 71.07 76.85 40.42 45.16 45.75

Table 4: Accuracy of many/medium/few classes using local
label distribution (Local), global label distribution (Global)
and GPI on CIFAR-100-LT with IR = 100.

Methods Many Medium Few Average
FedAvg [21] 62.03 32.26 4.93 34.48

L
oc

al

LDAM [2] 56.23 29.91 7.97 32.54
BSM [25] 57.63 36.34 8.87 35.55
LADE [12] 54.00 33.74 8.57 33.28
RIDE [35] 64.97 31.11 4.37 34.94
PaCo [4] 35.60 46.34 24.13 35.92

G
lo

ba
l

LDAM [2] 52.03 37.63 17.43 36.61
BSM [25] 51.54 41.49 20.00 38.56
LADE [12] 52.57 43.34 20.83 39.82
RIDE [35] 63.29 32.34 3.73 34.59
PaCo [4] 42.06 41.23 28.27 37.63

G
PI

LDAM [2] 56.14 33.80 12.93 35.36
BSM [25] 52.80 39.26 19.07 37.19
LADE [12] 55.34 40.46 12.20 38.61
RIDE [35] 63.66 34.91 4.60 35.88
PaCo [4] 45.94 42.23 22.67 37.76
GBME 49.97 44.14 24.93 40.42

previous works under different imbalance ratios. Com-
pared with FedAvg, previous approaches obtain a small im-
provement on the large-scale datasets (CIFAR-100 and Im-
ageNet), while our method can outperform previous solu-
tions by a large margin. As shown in Figure 4, our method
performs better than most baselines at any communication
round and outperforms all comparison methods after about
1600 communication rounds, when the learning rate decays.

Comparisons Results for Pathological Partition. The
pathological partition is a challenging setting for FL. As

Table 5: Accuracy comparisons of GBME-p on CIFAR-
100-LT (IR=100).

Methods ϵ Accuracy
LDAM [2] - 35.36
BSM [25] - 37.19
LDAE [12] - 38.61
RIDE [35] - 35.88
PaCo [4] - 37.76

GBME-p

5 38.50
10 39.27
20 39.88

100 40.24

shown in Table 2, the proposed GBME still achieves com-
petitive accuracy under such setting, which outperforms all
comparison methods. More comparisons of our method are
shown in Section 7 in Supplementary Material.

Effectiveness of GPI. We compare the different priors in-
cluding GPI, local and global label distributions. As shown
in Table 3, using global label distribution usually performs
better than using local label distribution, which is consistent
with our theoretical conclusions (Lemma 1 and Theorem 1).
Besides, using GPI exhibits competitive results with global
label distribution (unknown due to privacy). Our method
can obtain the best result on each dataset. Besides, we
visualize the class-wise GPI curves on CIFAR-100-LT in
Section 8 in Supplementary Material. GPI can improve
the performance of minority classes and reduce the perfor-
mance drop of majority classes, as it exhibits a similar yet
flatter tendency compared with the global label distribution.
Thus, GPI is effective for federated long-tailed learning.

Evaluation on Minority Classes. To better understand
the improvement of our method, we report the accuracy
for many/medium/few-shot classes on CIFAR-100-LT with
IR = 100 in Table 4. Our method exhibits superior per-
formance for medium-shot and few-shot classes. For re-
balance methods (i.e., LDAM, BSM and LADE), using GPI
can improve the performance for medium-shot and few-shot
classes compared with local label distribution. Similarly,
using GPI can increase the accuracy for medium-shot and
many-shot classes for RIDE and PaCo, while the improve-
ment is slight for few-shot classes since RIDE and PaCo
focus on representation quality over all classes rather than
merely minority classes. Compared with global label distri-
bution, previous re-balance methods with GPI can produce
competitive results on minority classes.

Evaluation with Privacy Protection. In Table 5, we re-
port the comparison results of GBME-p with various pro-
tection levels ϵ. The δ is fixed as 0.03. It is observed that
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Table 6: Accuracy with the standard deviation.
Dataset CIFAR-100-LT CIFAR-10-LT ImageNet-LT
IR 100 50 100 50 -
FedAvg [21] 34.02±0.52 36.95±0.46 55.76±3.64 65.09±3.18 33.96±0.56
SCAFFOLD [15] 34.58±0.45 37.69±0.54 60.33±2.15 70.99±0.93 34.21±0.38
GBME 40.14±0.54 44.66±0.47 73.12±1.86 77.24±1.48 46.02±0.33

Table 7: Comparisons under the IID distribution.
IID CIFAR-100-LT CIFAR-10-LT
IR 100 50 100 50
FedAvg [21] 39.29 44.82 55.79 71.73
GBME 44.16 49.05 72.39 79.08

Table 8: Comparisons between GBME with 1000 commu-
nication rounds and FedAvg with 2000 rounds.

Method CIFAR-100-LT CIFAR-10-LT
IR 100 50 100 50
FedAvg [21] 34.48 36.84 53.16 61.67
GBME 35.11 37.66 64.11 71.17

GBME-p with the Gaussian mechanism can still outperform
previous solutions. Along with decreasing ϵ, the perfor-
mance of GBME-p is also decreasing since we restrict the
stronger privacy guarantees. As shown in Figure 6, GBME-
p can keep lower similarity between the LPI and local label
distribution, thus is able to protect the label privacy of the
clients. Besides, GPI can work well as a global balanced
prior because the similarity between GPI and global label
distribution is very higher.

4.3. Further Analysis

Connection between Weight Norm and Gradient Sum-
mation in LPI. For a classifier trained on long-tailed data,
the gradient magnitude for the weights of a class is corre-
lated with the sample number of this class, e.g., larger gra-
dient summation of one update (orange line) on majority
classes, resulting in larger weights and weight norms (blue
line) on majority classes, as shown in Figure 5.

IID Data Distribution. In this section, we report the
comparison results under the IID data distribution. Table
7 shows that the proposed GBME achieves much higher ac-
curacy than FedAvg on IID data, telling that GBME can
well handle long-tailed FL in both IID and non-IID cases.

Accuracy with the Standard Deviation. We conduct the
experiments for multiple times and report the mean and the
standard deviation. As indicated by Table 6, GBME can
obtain the best accuracy compared with the baselines.

Computation Cost. Using FLOPs per round as the com-
putation cost, with ResNet-32 on CIFAR-100-LT (IR=100),
the basic cost of FedAvg is 1520.42G. Additional costs of
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Normalized Updates Sum

Figure 5: Curves of normalized weight norm and gradient
sum on CIFAR-100-LT with IR=100.

GBME are from LPI calculation (i.e., 760.21G) and multi-
ple experts (i.e., 696.06G for 3 experts). Since LPI is only
computed in the first round, its cost is negligible but the ac-
curacy gain is large (i.e., 2.7%). The trade-off between the
cost and benefit of multiple experts is controlled by the ex-
pert number. Adding one expert with 348G additional cost,
the accuracy gain is about 1.6%.

Communication Cost. Using the parameters of a client
as the communication cost, GBME (0.77M for 3 experts)
has more parameters than FedAvg (0.46M). However, Table
8 shows that GBME can outperform FedAvg with only half
communication rounds.

4.4. Ablation Studies

Component Analysis. Table 9 illustrates the component
analysis of our method, including different class priors
(GPI, local and global label distributions) as well as with
and without the multi-expert architecture. It is observed that
both class prior and multi-expert architecture can influence
the final performance. In detail, taking global label distri-
bution as the prior can obtain the best result, because it is
ground-truth information of the dataset but unavailable in
practice. Using GPI can achieve similar accuracy compared
with global label distribution. Both of them outperform the
local label distribution, which is consistent with our theoret-
ical results. The performance can be further improved when
combining GPI and the multi-expert architecture.

Different Client Grouping Strategies. In this part, we
analyze the effects of different client grouping strategies,
involving: randomly grouping clients (Random strategy),
grouping clients by the cosine similarity between local and
global label distributions (Label strategy), and grouping
clients by the cosine similarity between LPI and GPI (GPI
strategy). The main results are shown in Table 10, which in-
dicate that the random strategy contributes little to the per-
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Figure 6: Visualizations of the similarity between the proxy
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Figure 7: GBME with varying α values for client selection
on CIFAR-100-LT with IR = 100.

Table 9: Component analysis for GBME, including differ-
ent priors with and without multi-expert ensemble.

Methods Prior Ensemble CIFAR-100-LT ImageNet
100 50 -LT

FedAvg [21] 34.48 36.84 33.80
BSM [25] local 35.55 39.50 34.39
BSM [25] global 38.56 42.45 39.63
BSM [25] global ! 41.77 45.32 45.57
BSM [25] GPI 37.19 41.91 37.64
BSM [25] GPI ! 40.42 45.16 45.75

Table 10: GBME with different grouping strategies and loss
functions on CIFAR-100-LT with IR = 100.

Methods Ensemble Group strategy Accuracy
LDAM [2] ! - 35.36
LDAM [2] ! GPI 38.25
BSM [25] ! - 37.19
BSM [25] ! Random 37.38
BSM [25] ! Label 40.51
BSM [25] ! GPI 40.42

formance, while the label and GPI strategy bring about a
3% improvement in accuracy, respectively. Thus, GPI for
grouping clients can improve the final performance for re-
balance strategies, such as BSM [25] and LDAM loss [2].

Table 11: GBME with different expert numbers on CIFAR-
100-LT.

Expert Number IR = 100 IR = 50 Parameters(Million)
M = 1 37.19 41.91 0.46
M = 2 38.71 44.92 0.52
M = 3 40.42 45.16 0.77
M = 4 41.68 46.88 1.02
M = 5 41.85 46.59 1.27

Varying α for Client Selection. As shown in Figure 7,
the relationship between the hyper-parameter α and the ac-
curacy exhibits a non-linear tendency. 0 < α < 1 can pro-
mote the information interaction among different groups via
a multiple selection, where α ≈ 0.6 maximums such inter-
action power to obtain the higher performance. If α = 1,
each group only updates the corresponding expert and the
client cannot interact with other groups. Hence it exhibits
a lower accuracy due to heterogeneity. If α = 0, the client
randomly updates an expert at each round, which also per-
forms a lower accuracy due to the limited interaction.

Different Expert Numbers. The effect of expert number
M are shown in Table 11. It can be observed that a larger
M results in the better performance but more parameters.
Considering the trade-off between performance and com-
munication cost, M = 3 and M = 4 are both good.

5. Conclusions
In this work, we propose a novel global balanced multi-

expert (GBME) framework to address federated long-tailed
problem. In particular, a proxy is designed as the class prior
for existing re-balance algorithms to optimize a global bal-
anced objective without requiring local label distributions.
Such proxy can also guide the client grouping and selection
to aggregate the heterogeneous knowledge in an ensemble
manner. Moreover, we present a GBME-p algorithm with
a theoretical guarantee, which equips the privacy protection
ability with the concept of differential privacy. Extensive
experiments on long-tailed decentralized datasets demon-
strate the effectiveness of our method, both GBME and
GBME-p showing superior performance to SOTA methods.
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