
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models

Yaohua Zha1* Jinpeng Wang1∗ Tao Dai2† Bin Chen3 Zhi Wang1 Shu-Tao Xia4

Tsinghua Shenzhen International Graduate School, Tsinghua University1

College of Computer Science and Software Engineering, Shenzhen University2

Harbin Institute of Technology, Shenzhen3

Research Center of Artificial Intelligence, Peng Cheng Laboratory4

{chayh21,wjp20}@mails.tsinghua.edu.cn

Abstract

Pre-trained point cloud models have found extensive ap-
plications in 3D understanding tasks like object classifica-
tion and part segmentation. However, the prevailing strat-
egy of full fine-tuning in downstream tasks leads to large
per-task storage overhead for model parameters, which
limits the efficiency when applying large-scale pre-trained
models. Inspired by the recent success of visual prompt tun-
ing (VPT), this paper attempts to explore prompt tuning on
pre-trained point cloud models, to pursue an elegant bal-
ance between performance and parameter efficiency. We
find while instance-agnostic static prompting, e.g. VPT,
shows some efficacy in downstream transfer, it is vulnera-
ble to the distribution diversity caused by various types of
noises in real-world point cloud data. To conquer this limi-
tation, we propose a novel Instance-aware Dynamic Prompt
Tuning (IDPT) strategy for pre-trained point cloud mod-
els. The essence of IDPT is to develop a dynamic prompt
generation module to perceive semantic prior features of
each point cloud instance and generate adaptive prompt to-
kens to enhance the model’s robustness. Notably, extensive
experiments demonstrate that IDPT outperforms full fine-
tuning in most tasks with a mere 7% of the trainable param-
eters, providing a promising solution to parameter-efficient
learning for pre-trained point cloud models. Code is avail-
able at https://github.com/zyh16143998882/
ICCV23-IDPT.

1. Introduction
With the rapid development of 3D scanning technol-

ogy, point clouds, as irregular point sets that represent
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Figure 1. The pipeline of (a) the previous static prompt tuning in
VPT [22] and (b) our dynamic prompt tuning. Unlike the static
prompt tuning that is instance-agnostic, ours is adaptive to input by
concatenating the instance-aware prompt generated by a prompt
module into the last Transformer layer input.

3D geometry, have been widely used in various fields and
tasks. Deep learning-based point cloud processing tech-
niques [16, 24, 31, 33, 34, 45, 35] have drawn consider-
able attention as they can directly process raw point cloud
data while preserving its rich information. As a classic deep
learning paradigm, fine-tuning the foundation model pre-
trained [11, 26, 32, 51, 55] on massive raw point clouds in
specific downstream tasks has achieved state-of-the-art per-
formance. However, this approach is storage-intensive, as it
requires storing and deploying a separate copy of the back-
bone parameters for each task.

Recently, prompt tuning has surpassed fine-tuning in
multiple downstream tasks in the language and image do-
mains, significantly reducing storage requirements by fix-
ing the parameters of a pre-trained model and introducing
a small amount of task-specific learnable parameters into
the input space. Although some work [21, 20, 46, 54] have
attempted to introduce prompt into point cloud processing,
they all relied on pre-trained image models [38, 12]. To
date, less research has been denoted to prompt tuning in
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point cloud pre-trained models.
Inspired by the success of visual prompt tuning (VPT)

[22]), it is natural to adopt this idea to point clouds. As
shown in Figure 1(a), we call VPT a static prompting strat-
egy because it introduces prompt tokens as a few learnable
parameters concatenated to the input of a pre-trained point
cloud model. The prompt tokens are shared by any input
and therefore are instance-agnostic. Although such a strat-
egy performs well on synthetic datasets (e.g. ModelNet40
[47]), it causes significant performance degradation on real
scanned point cloud datasets (e.g. ScanObjectNN [41]).
Thus, static prompt tuning is not suitable for real point
clouds, where point clouds with different types of missing
or noisy points belong to different distributions. These ob-
servations motivate us to design a universal prompt-tuning
strategy for both synthetic and real point clouds.

To address this issue, we proposed an Instance-aware
Dynamic Prompt Tuning (IDPT) for point cloud pre-trained
models. As shown in Figure 1(b), IDPT develops a prompt
generation module to perceive the semantic prior features
of each point cloud instance and produces adaptive prompts
for different inputs. The proposed IDPT enables an adjust-
ing effect to mitigate the adverse noises in point cloud in-
stances and thus can enhance the robustness of pre-trained
models. We insert IDPT into the last Transformer layer for
a more accurate representation of point clouds. Extensive
experiments demonstrate the effectiveness of IDPT. Typi-
cally, IDPT yields competitive performance compared with
full fine-tuning but just requires about 7% of trainable pa-
rameters in downstream transfer.

The main contributions can be summarized as follows:

• To our best knowledge, this is the first exploration of
prompt tuning on pre-trained point cloud models. We
reveal that VPT, the static prompting strategy, suffers
from the distributional diversity issue caused by vari-
ous types of noises in real-world point cloud data.

• To address the shortcoming, we propose an Instance-
aware Dynamic Prompt Tuning (IDPT) as an effective
solution. We develop a dynamic prompt generation
module to capture semantic prior features of each point
cloud instance and generate adaptive prompt tokens to
mitigate the noises.

• Extensive experiments on a variety of downstream
tasks show the competitive performance of IDPT with
full fine-tuning in most tasks while requiring much less
tunable parameters, e.g. about 7%.

2. Related Work
2.1. Pre-training Point Cloud Models

Recently, studies on pre-trained foundational models for
3D point clouds have achieved remarkable success. These

approaches first apply a pretext task to pre-train the foun-
dational model to learn the latent semantic information of
the point cloud and then fine-tune the model weights for
the target task to achieve higher performance. Existing pre-
train pretext tasks can be divided into discriminative tasks
[4, 9, 14, 48] and generative tasks [3, 11, 19, 25, 26, 32,
51, 55]. The discriminative approach distinguishes differ-
ent views of the same point cloud instance from other in-
stances, PointContrast [49] and CrossPoint [1] explore the
use of contrast learning of intra-domain and cross-domain
features to obtain rich self-supervised information. Gener-
ation methods typically rely on an autoencoder to learn the
latent features of the data by reconstructing the original in-
put. Point-BERT [51], Point-MAE [32] and PointM2AE
[55], based on masked autoencoders, have been very suc-
cessful. Additionally, Point-DAE [55] explores a more gen-
eral denoising autoencoder for point cloud learning by in-
vestigating more types of corruption beyond masking. ACT
[11] achieves a significant improvement on real scanned
point clouds by using pre-trained language models and im-
age models as cross-modal teachers to guide the learning of
3D self-supervised networks. However, the above methods
all utilize full fine-tuning to adapt pre-trained models to var-
ious downstream tasks. Our work further explores how to
reduce parameter storage in downstream tasks by utilizing
prompt tuning, building upon the aforementioned approach.

2.2. Prompt Learning in Computer Vision

Prompt tuning involves adding specific prompt informa-
tion to the input of a pre-trained model and adjusting down-
stream tasks to fit the pre-trained model. This is achieved
by fixing the pre-trained model parameters and fine-tuning
the prompt. It was first proposed in the language model
[7, 13, 23, 27, 28, 29] and gained popularity in the image
model [38, 39, 40, 57, 56] later due to its flexibility and
high performance. CLIP [38] uses fixed class-specific text
labels as prompts for prediction. Later, CoOp [57] learns
class-specific continuous prompts, and CoCoOp [56] builds
upon CoOp by introducing a lightweight network to learn
dynamic prompts for each instance. VPT [22] first intro-
duces the continuous prompt tuning framework into image
pre-trained models inspired by P-Tuning [28]. Additionally,
P2P [46] achieved the first application of prompts in point
clouds by learning color information in the input space of
point cloud rendering images as prompts for the 2D back-
bone network. PointCLIP [54] and CLIP2Point [20] project
the point cloud as a depth map and then use the pre-trained
CLIP [38] to understand the point cloud. However, all the
above work relies on pre-trained image models. Our work
discusses the tuning of pre-trained point cloud models with
appropriate prompting mechanisms.
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Figure 2. Overall pipeline of Instance-aware Dynamic Prompt Tuning (IDPT) for pre-trained point cloud models, which only updates the
parameters of the dynamic prompt generation module and downstream task head during a downstream tuning task. To capture various
sub-modes existing in the real-world data and enhance the robustness against noises (e.g., with different types of missing or noisy points),
we design a dynamic prompt generation module with graph convolution [45] layers to aggregate multi-scale contextual features and dy-
namically generate instance-adaptive prompt. Empirically, inserting the dynamic prompt before the last transformer layer yields promising
performance and enjoys decent efficiency at the same time.

3. Methodology

In this section, we first introduce the tuning pipeline
for a pre-trained point cloud model (§ 3.1). Next, we
present the empirical observation of static prompt tuning
(e.g. VPT [22]) and discuss its weaknesses (§ 3.2) that high-
light our motivations. At last, we describe our Instance-
aware Dynamic Prompt Tuning strategy in detail (§ 3.3).

3.1. Preliminaries

When fine-tuning a pre-trained point cloud model (e.g.
Point-MAE [32]), a point cloud X ∈ RM×3 with M points
is first divided into m point patches X ′ ∈ Rm×k×3 via Far-
thest Point Sampling (FPS) and K-Nearest Neighborhood
(KNN) algorithms, where each patch has k local points.
Then, all point patches will be embedded into a series of
input tokens E0 ∈ Rm×d with positional encoding via
a point patch embedding module. Next, we insert a clas-
sification token (i.e., [CLS]) c0 at the head of the patch
embeddings and forward the token embeddings to the pre-
trained model. Specifically, the forward process of each
transformer layer is defined as

[ci;Ei] = fi([ci−1;Ei−1]), i = 1, 2, · · · , N, (1)

where fi denotes the i-th transformer encoder layer. N is
the total transformer layer number of the pre-trained back-
bone. Finally, the model makes predictions by building
a task-specific head gh upon the output of the pre-trained

backbone:

y = gh([cN ;EN ]). (2)

All the parameters of {fi}Ni=1 and gh will be updated in a
downstream tuning task, which burdens the storage cost for
per-task model weights.

Recently, prompt [57, 22] has shown to be effective for
parameter-efficient tuning. The basic idea of prompt tun-
ing is to insert a few learnable prompt tokens into the input
token sequence, i.e., we modify Eq.(1) and Eq.(2) by

[ci;Pi;Ei] = fi([ci−1;Pi−1;Ei−1]), i = 1, 2, · · · , N,
(3)

y = gh([cN ;PN ;EN ]), (4)

where Pi is the inserted prompt tokens at the i-th layer. Dur-
ing the tuning process, we freeze the parameters of {fi}Ni=1

and only update prompt {Pi}Ni=1 and task-specific head gh,
which can largely reduce per-task storage cost.

3.2. Observation and Discussion

Inspired by the success of Visual Prompt Tuning (VPT)
[22], it is natural to extend such a prompting tuning strat-
egy to point clouds, as shown in Figure 1(a). As the
prompt tokens are instance-independent and shared by all
samples during downstream tuning, we term this kind of
strategy static prompt tuning. Our empirical study showed
that although VPT improves downstream performance com-
pared with tuning the task head only, it underperforms fully
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(b) ScanObjectNN (c) ShapeNetPart(a) ModelNet40

Figure 3. The t-SNE [42] visualization of the point cloud features extracted from with the Point-MAE [32] on three datasets: (a) Model-
Net40, (b) ScanObjectNN, and (c) ShapeNetPart. Different from synthetic datasets (e.g. ModelNet40 and ShapeNetPart) with clean and
compact cluster structures, in real-world datasets (e.g. ScanObjectNN), instances within the same category can present various sub-modes
(i.e. sub-clusters scattered in the embedding space) because real-world point clouds contain varying types of missing or noisy points.

Tuning Strategy #TP (M) ModelNet40
ScanObjectNN

OBJ_BG OBJ_ONLY PB_T50_RS

A.Only Head Tuning 0.27 93.2 87.40 87.13 80.33
B.VPT-Shallow [22] 0.28 93.4 87.61 89.04 80.99
C.VPT-Deep [22] 0.36 93.6 89.98 90.19 83.96
D.IDPT (Ours) 1.69 94.4 93.63 93.12 88.51

E.Full Fine-tuning 22.10 93.8 92.94 92.08 88.41

Table 1. Classification accuracy (%) for different tuning strate-
gies is reported. All experiments were conducted based on a pre-
trained Point-MAE [32] model, and a simple rotation augmenta-
tion in ACT [11] was employed on the ScanObjectNN [41] dataset.
’#TP’ denotes the number of trainable parameters.

fine-tuning by considerable margins. In particular, Table
1 presents the results of classification on several bench-
mark datasets. We can learn that static prompt tuning sig-
nificantly reduces the number of trainable parameters (i.e.,
about 1% to 2% of backbone parameters) compared with
fully fine-tuning. In terms of accuracy, although VPT-
Deep performs well on synthetic datasets (e.g. ModelNet40
[47]), it presents significant performance degradation on
real scanned point cloud datasets. For example, on the
PB_T50_RS variant of ScanObjectNN [41] dataset, fully
fine-tuning outperforms VPT-Deep by 4.5% accuracy.

Here we briefly discuss why static prompt tuning per-
forms well on synthetic datasets but poorly on real scanned
datasets. We adopt a perspective from Domain Adaptation
(DA) [2, 5, 6, 17] and consider the transferring from pre-
trained models to downstream tasks. Our goal is to bridge
the source and target domains with different distributions
so as to enhance the prediction robustness of the pre-trained
model. By definition, the source domain ps(xs) refers to
the distribution of pre-training data, and the target domain
pt(xt) refers to the distribution of downstream task data.
Empirically, we found that

pt(xt) ̸= ps(xs), (5)

while we ask for a robust model such that

pt(yt|xt) = ps(ys|xs), (6)

where x denotes the input and y denotes the output. There-
fore, the goal of domain adaptation is to find a transforma-
tion Φ(·), such that

pt(Φ(xt)) = ps(Φ(xs)). (7)

Both fine-tuning and prompt tuning can be regarded as
approaches to approximate the transformation Φ(·). Fine-
tuning adjusts all parameters of the pre-trained model to fit
Φ(·), whereas prompt tuning introduces additional prompt
parameters to fit Φ(·). From Table 1, we can learn that full
fine-tuning achieves satisfactory performance by fitting all
model parameters. In contrast, the static prompt shows in-
flexibility in mitigating the domain gap, suffering from the
noises in the target domain.

We also provide an intuitive analysis of such a phe-
nomenon. Specifically, Figure 3 shows the t-SNE [42] visu-
alization of point cloud features extracted with Point-MAE
[32] on the test sets of three datasets: (a) ModelNet40 [47],
(b) ScanObjectNN [41], and (c) ShapeNetPart [50]). It re-
flects the downstream task data distribution (i.e., target do-
main) to some degree. More details about the visualization
of t-SNE are in the supplemental experiments. As shown
in the figure, on synthetic datasets like ModelNet40 and
ShapeNetPart, instances from the same class tend to dis-
tribute in relatively clear and tight clusters. Quite differently
on the real scanned dataset ScanObjectNN, instances from
the same class scatter to many sub-clusters in the feature
space, indicating the mixing of various sub-distributions
corresponding to different sub-modes. Our intuition is that
synthetic datasets like ModelNet40 and ShapeNetPart con-
tain complete, uniform, and relatively clean point clouds,
such as the airplanes shown in Figures 3(a) and 3(c). In con-
trast, ScanObjectNN consists of real scanned point clouds
with varying types of missing or noisy points, making up
different sub-modes within the same class. For example,
Figure 3(b) shows two kinds of chairs: one is mostly miss-
ing, while the other is more complete. As static prompt
tuning fails to capture various sub-modes in real-world data
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distribution, it highlights the necessity of an adaptive or dy-
namic prompting strategy.

3.3. Instance-aware Dynamic Prompt Tuning

To address the aforementioned issues of static prompt
tuning, we propose Instance-aware Dynamic Prompt
Tuning (IDPT). Figure 2 shows the pipeline of IDPT.

3.3.1 Dynamic Prompt Generation Module

To capture various sub-modes existing in the real-world
data and enhance the robustness against noises (e.g., with
different types of missing or noisy points), we utilized
EdgeConv [45] at the patch level to perceive local point
cloud shapes at a larger scale. Specifically, as shown in
Figure 2, point patch tokens EN−1 are processed by three
EdgeConvs to generate three patch features at different
scales. Then, the multi-scale patch features are concate-
nated and fed into a linear layer, followed by max pooling
to generate an instance-aware dynamic prompt PN−1:

PN−1 = φP (EN−1). (8)

φP (·) denotes the dynamic prompt generation module.
Next, we forward PN−1 accompany with EN−1 to the

last transformer layer fN :

[cN ;PN ;EN ] = fN ([cN−1;PN−1;EN−1]). (9)

Finally, we concatenate [CLS] token cN , prompt token
PN , and patch tokens EN together before feeding them into
a task head. The final prediction is made by:

y = gh([cN ;PN ;EN ]). (10)

3.3.2 Prompt Insert Position

Perceiving various sub-modes in real-world point cloud data
relies on high-level semantic information. As higher (or
deeper) transformer layers grasp global semantic informa-
tion (e.g. density, shape, or categorical information) bet-
ter, IDPT prefers to insert prompts at deeper transformer
layers to ensure an accurate perception of point cloud se-
mantics. In particular, we found that inserting the dynamic
prompt before the last transformer layer yields robust per-
formance and also enjoys decent efficiency. We provide de-
tailed quantitative analysis in § 4.3.3.

4. Experiments
We evaluated the performance of the proposed approach

on classification, few-shot learning, and segmentation tasks.
We used three widely used pre-trained models, Point-Bert
[51], Point-MAE [32], and ACT [11], as our baseline. No-
tably, our IDPT is a universal paradigm that can be applied
to any pre-trained point cloud model.

4.1. Experiment Settings

To ensure comparison fairness, we have used the same
experimental settings as the default fine-tuning method for
each baseline. This involves freezing the weights of the
pre-trained point cloud model and only updating the param-
eters of the Prompt Model and Head during downstream
task training. All experiments were conducted on a single
GeForce RTX 3090 24GB. We have explored the perfor-
mance of the simple rotation augmentation from ACT [11]
on the ScanObjectNN [41] dataset, which is denoted as †
in our table. In the downstream task experiments, we report
the best result of 10 repeated experiments with different ran-
dom seeds. In the ablation study, we report average results.

4.2. Prompt Tuning in Downstream Tasks

4.2.1 Object Classification on Real-World Dataset

In the study of point cloud pre-training models, it is com-
mon practice to conduct pre-training on the ShapeNet [8]
dataset, which typically only contains clean point clouds
and assumes that all point clouds are identically distributed.
However, in reality, point clouds often suffer from issues
such as noise and missing points, resulting in a diverse dis-
tribution. We first assess our IDPT performance on the
ScanObjectNN [41] dataset, which consists of about 15K
point cloud samples by 15 categories. These objects are
scanned indoor scene data, which are usually cluttered with
background and occluded by other objects.

We conducted experiments on three variants of ScanOb-
jectNN [41] (OBJ-BG, OBJ-ONLY, and PB-T50-RS). The
results are shown in Table 2, † indicates that the pre-trained
model used simple rotational augmentation of ACT during
fine-tuning or prompt tuning, and without † indicates the
default augmentation method. We observed that: (i) We
achieved state-of-the-art (SOTA) performance with IDPT
on Point-MAE†. In comparison to the current state-of-the-
art method ACT, we have achieved gains of 0.34%, 1.21%,
and 0.3% respectively in the three variants of ScanOb-
jectNN, while utilizing only 7% of its trainable parameters.
(ii) Our IDPT outperforms full fine-tuning in most cases
with fewer trainable parameters. These results demonstrate
the excellent performance of our method on real scanned
point clouds with various data distributions. We believe this
is due to the introduction of a semantic prior of real point
cloud data on the one hand, and fewer trainable parameters
to mitigate overfitting on the other.

4.2.2 Object Classification on Synthetic Dataset

We evaluate IDPT on the ModelNet40 [47] dataset for ob-
ject classification. ModelNet40 [47] includes 12,311 clean
3D CAD models for 40 categories. Each point cloud is com-
plete, uniform, and noise-free, and all point clouds in the
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Method #TP (M) OBJ_BG(↑) OBJ_ONLY(↑) PB_T50_RS(↑)

Supervised Learning Only

PointNet [33] 3.5 73.3 79.2 68.0
PointNet++ [34] 1.5 82.3 84.3 77.9
DGCNN [45] 1.8 82.8 86.2 78.1
PointCNN [24] 0.6 86.1 85.5 78.5
BGA-DGCNN [41] 1.8 - - 79.7
BGA-PN++ [41] 1.5 - - 80.2
DRNet [36] - - - 80.3
GBNet [37] 8.8 - - 80.5
SimpleView [15] - - - 80.8
PRANet [10] 2.3 - - 81.0
MVTN [18] - - - 82.8
PointMLP [31] - - 85.7

with Self-Supervised Representation Learning (Full Fine-tuning)

Transformer [51] 22.1 79.86 80.55 77.24
OcCo [51] 22.1 84.85 85.54 78.79
Point-BERT [51] 22.1 87.43 88.12 83.07
MaskPoint [26] 22.1 89.70 89.30 84.60
Point-MAE [32] 22.1 90.02 88.29 85.18
Point-M2AE [53] - 91.22 88.81 86.43
ACT† [11] 22.1 93.29 91.91 88.21
Point-MAE† [32] 22.1 92.94 92.08 88.41

with Self-Supervised Representation Learning (IDPT)

Point-BERT w/ IDPT 1.7 88.12 (↑ 0.69) 88.30 (↑ 0.18) 83.69 (↑ 0.62)
Point-MAE w/ IDPT 1.7 91.22 (↑ 1.20) 90.02 (↑ 1.73) 84.94 (↓ 0.24)
ACT† w/ IDPT 1.7 93.12 (↓ 0.17) 92.26 (↑ 0.35) 87.65 (↓ 0.56)
Point-MAE† w/ IDPT 1.7 93.63 (↑ 0.69) 93.12 (↑ 1.04) 88.51 (↑ 0.10)

Table 2. Classification results on three variants of ScanObjectNN
dataset, and we report the number of trainable parameters (#TP)
and classification accuracy(%). † indicates that the pre-trained
model used simple rotational augmentation of ACT [11] during
fine-tuning or prompt tuning. We achieve state-of-the-art perfor-
mance with IDPT on Point-MAE† and our IDPT outperforms full
fine-tuning in most cases with fewer trainable parameters.

dataset are independently and identically distributed. We
follow standard protocols to split ModelNet40 into 9843 in-
stances for the training set and 2468 for the testing set. Stan-
dard random scaling and random translation are applied for
data augmentation during training. For fair comparisons,
following previous work [51, 32, 11], we also use the stan-
dard voting method [30] during testing.

As shown in Table 3, Point-MAE with IDPT achieves
state-of-the-art performance with an accuracy of 94.4%.
This represents a 0.6% improvement compared to fine-
tuning. Additionally, other pre-trained models with IDPT,
such as Point-BERT and ACT, demonstrate certain im-
provements compared to full fine-tuning. These results sug-
gest that the incorporation of semantic priors of each in-
stance can yield significant improvements.

4.2.3 Few-shot Learning

We conducted few-shot experiments on ModelNet40, us-
ing the n-way, m-shot setting, following previous works
[32, 51, 55]. The results for the settings of n ∈ 5, 10 and
m ∈ 10, 20 are presented in Table 4. Our IDPT achieved
performance gains in most cases compared to full fine-
tuning, demonstrating its efficacy in few-shot learning.

Method ST? #TP (M) Data Type Accuracy (%)

Supervised Learning Only

PointNet [33] - 3.5 1k Points 89.2
PointNet++ [34] - 1.5 1k Points 90.7
DGCNN [45] - 1.8 1k Points 92.9
PCT [16] N 2.9 1k Points 93.2
PVT [52] N - 1k Points 93.6
PointTransformer [52] N - 1k Points 93.7
MVTN [18] - 11.2 12 Images 93.8
SimpleView [15] - - 6 Images 93.9
PointMLP [31] 14.9 1k Points 94.5

with Self-Supervised Representation Learning (Full Fine-tuning)

Transformer [51] Y 22.1 1k Points 91.4
OcCo [51] Y 22.1 1k Points 92.1
EPCL [21] - - 1k Points 92.9
Point-BERT [51] Y 22.1 1k Points 93.2
ACT [11] Y 22.1 1k Points 93.7
Point-MAE [32] Y 22.1 1k Points 93.8
MaskPoint [26] Y 22.1 1k Points 93.8
Point-M2AE [53] N 15.3 1k Points 94.0
CLIP2Point [20] - - 10 Images 94.0
P2P [46] - 1.2 1 Images 94.0

with Self-Supervised Representation Learning (IDPT)

Point-BERT w/ IDPT Y 1.7 1k Points 93.4 (↑ 0.2)
ACT w/ IDPT Y 1.7 1k Points 94.0 (↑ 0.3)
Point-MAE w/ IDPT Y 1.7 1k Points 94.4 (↑ 0.6)

Table 3. Classification results on ModelNet40 [47] dataset. ‘ST’
indicates whether the backbone is a standard Transformer [43]
without any special design or inductive bias. ‘1k Points’ indicates
that the input data is 1k points and ‘n Images’ indicates that the
input data is n images. Our IDPT outperforms full fine-tuning in
each baseline with fewer trainable parameters.

5-way 10-way

10-shot 20-shot 10-shot 20-shot

with Self-Supervised Representation Learning (Full Fine-tuning)

DGCNN-OcCo [44] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2
Transformer-OcCo [51] 94.0±3.6 95.9±2.3 89.4±5.1 92.4±4.6
Point-BERT [51] 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint [26] 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
EPCL [21] 95.1±2.7 97.3±1.6 91.1±4.2 93.5±3.8
Point-MAE [32] 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-M2AE [53] 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0
ACT [11] 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8

with Self-Supervised Representation Learning (IDPT)

Point-BERT w/ IDPT 96.0±1.7 (↑) 97.2±2.6 (↑) 91.9±4.4 (↑) 93.6±3.5 (↑)
Point-MAE w/ IDPT 97.3±2.1 (↑) 97.9±1.1 (↑) 92.8±4.1 (↑) 95.4±2.9 (↑)
ACT w/ IDPT 96.7±2.5 (↓) 98.2±0.9 (↑) 92.4±4.5 (↓) 95.5±3.0 (↓)

Table 4. Few-shot learning on ModelNet40. We report the average
classification accuracy (%) with the standard deviation (%) of 10
independent experiments. Our IDPT achieved performance gains
in most cases compared to full fine-tuning in few-shot learning.

4.2.4 Part Segmentation

For part segmentation, we follow previous work [11, 32] to
add prompts to the input of 3-rd, 7-th and 11-th layers and
the task head. Since we empirically observed that using a
single-layer MLP achieves comparable performance to the
three-layer EdgeConv architecture in the segmentation task,
we adopt a simple single-layer MLP as the dynamic prompt
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Methods #TP (M) mIoUc mIoUI

Supervised Learning Only

PointNet [33] - 80.39 83.7
PointNet++ [34] - 81.85 85.1
DGCNN [45] - 82.33 85.2

with Self-Supervised Representation Learning (Full Fine-tuning)

Transformer [51] 27.09 83.42 85.1
OcCo [51] 27.09 83.42 85.1
MaskPoint [26] - 84.60 86.0
Point-BERT [51] 27.09 84.11 85.6
Point-MAE [32] 27.06 84.19 86.1
ACT [11] 27.06 84.66 86.1

with Self-Supervised Representation Learning (Prompt Tuning)

Point-MAE w/ VPT 5.35 83.64 85.4
Point-MAE w/ IDPT 5.69 83.79 85.7
ACT w/ VPT 5.35 83.48 85.4
ACT w/ IDPT 5.69 83.82 85.9

Table 5. Part segmentation results on the ShapeNetPart dataset.
The mean IoU across all categories, i.e., mIoUc (%), and the mean
IoU across all instances, i.e., mIoUI (%) are reported.

generation module at each layer to reduce the number of
trainable parameters.

According to experimental results in Table 5, our IDPT
outperforms the static prompting strategy, VPT [22]. It ver-
ifies the effectiveness of our dynamic prompting strategy in
part segmentation. But they are still inferior to full fine-
tuning, We attribute the performance gap to the difficulty of
fine-grained understanding of point clouds, which makes it
challenging to transfer pre-trained backbones with limited
tunable parameters to the segmentation task. Fortunately,
the design of instance-aware dynamics in IDPT helps to
mitigate such a gap. We believe developing effective struc-
ture modeling mechanisms in the parameter-efficient tuning
strategy is a promising direction for fine-grained point cloud
tasks.

4.3. Ablation Study

To investigate the architecture design and tuning set-
tings of our proposed strategy, we conducted extensive abla-
tion studies on classification tasks in 2 variants of ScanOb-
jectNN [41] (OBJ_BG and OBJ_ONLY).

4.3.1 Compare IDPT with Other Tuning Strategies

In order to demonstrate the superiority of our proposed
instance-aware dynamic prompt tuning over other tuning
strategies (Head tuning, VPT [22] and full fine-tuning),
we conducted extensive ablation studies as shown in Table
1. The specific tuning strategies used are as follows: (A)
Head tuning (where freezes the backbone and serves as a
true reference for “whether prompt tuning improves perfor-
mance”), (B) VPT-Shallow [22], (C) VPT-Deep [22], (D)

Propmt Strategy Trainable Parameters Type Tr. Param. OBJ_BG OBJ_ONLY

w/o prompt Head 0.27 87.40 87.13

VPT-Deep 10 prompts + Head 0.36 89.98 90.19
VPT-Deep 28 prompts + Head 0.52 90.02 90.53
VPT-Deep 156 prompts + Head 1.70 90.19 90.53

IDPT PM (1-layer MLP) + Head 0.52 91.43 90.98
IDPT PM (3-layer MLPs) + Head 1.49 91.64 91.34
IDPT PM (1 EdgeConv) + Head 0.81 91.77 91.67
IDPT PM (2 EdgeConvs) + Head 1.25 91.95 91.67
IDPT PM (3 EdgeConvs) + Head 1.70 92.48 92.19
IDPT PM (1 Transformer layer) + Head 2.14 92.03 91.22

Table 6. Effects of the number of trainable parameters and the
structure of prompt generation module.

our IDPT, and (E) Fine-tuning.
Our IDPT tuning strategy (D) has outperformed other

tuning strategies by achieving the highest level of perfor-
mance while utilizing fewer trainable parameters. When
compared to the baseline (A), we observed a 5.08%,
5.06%, and 8.18% improvement on the three variants of
ScanObjectNN, respectively. Our strategy also significantly
outperformed the traditional static prompt (B and C). Ad-
ditionally, our method demonstrated a significant improve-
ment over fine-tuning (E), as it greatly reduced the num-
ber of trainable parameters while still improving perfor-
mance. Overall, these experiments clearly demonstrate that
our IDPT tuning strategy is highly effective.

4.3.2 Amount of Trainable Parameters and Structure

We conducted experiments with varying numbers of train-
able parameters to evaluate the effectiveness of our mod-
els. In VPT-Deep, we adjusted the trainable parameters
by controlling the number of prompts in each layer input.
Meanwhile, in IDPT, we experimented with various net-
work structures, including MLP, graph convolution (Edge-
Conv), and Transformer layers. Our experimental results,
as shown in Table 6, demonstrate the following: (i) Using a
single-layer MLP in IDPT resulted in significant improve-
ments of 4.03% and 3.85% in OBJ_BG and OBJ_ONLY, re-
spectively, when compared to the baseline without prompts.
These results suggest that introducing semantic priors from
the downstream task data can be highly effective. (ii) In-
creasing the number of parameters in VPT resulted in only
limited performance improvements. It shows that merely
increasing the number of parameters without introducing a
semantic prior has limited performance improvement. (iii)
For IDPT, EdgeConv proved to be an effective prompt mod-
ule. Compared to MLP and Transformer, EdgeConv focuses
more on local neighborhood information, allowing it to bet-
ter perceive the specific shape of the point cloud and provide
a better representation for downstream data semantic priors.

4.3.3 Prompt Insert Position

We conducted an analysis to observe the impact of integrat-
ing our dynamic prompt in various depths of Transformer
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Figure 4. Effect of prompt insert position. Ei means to insert
our dynamic prompt into the input of i-th layer of the pre-trained
Transformer. ’All Layers’ means to insert our dynamic prompt in
each layer of the Transformer using a prompt module with shared
parameters.

layers. The experimental results, as demonstrated in Fig-
ure 4 (a) and (b), indicated that the addition of a prompt to
deeper layers resulted in better performance. This can be
attributed to the fact that our prompt generation module uti-
lizes patch tokens to perceive the semantic priors of each
point cloud, and deeper patch tokens comprise more com-
prehensive semantic information.

Additionally, we found that applying the prompt to all
layers using a prompt module with shared parameters in the
"all_layer" setting did not produce satisfactory results. This
is due to the fact that the shared prompt module can cause
degradation in the semantic prior representation, and using
independent parameters for each layer would result in an
unacceptable increase in the number of parameters. As a
result, we decided to add the prompt to the input of the final
layer of the Transformer.

4.3.4 Qualitative Analysis of the Ability to Approxi-
mate Φ(·) in Downstream Adaptation

We analyzed the effectiveness of various tuning strategies
for the transformation function Φ(·) by conducting a qual-
itative analysis of their fitting capability. The strategies we
evaluated included (a) the pre-trained model, (b) VPT-Deep,
and (c) IDPT. To visualize the input (EN−1) and output
(EN ) of all point patches in the N -th layer of the Trans-
former on ScanObjectNN, we utilized a pre-trained model
based on Point-MAE. The results of our visualization are
presented in Figure 5, which displays the visualization out-
comes of the three tuning strategies.

The performance of different strategies for approximat-
ing the function Φ(·) with the Transformer model varies.
The pre-trained model (a) uses the Transformer with fixed
parameters and shows the worst performance. VPT-Deep
(b), which adds trainable static prompt parameters to all
layers’ inputs to approximate Φ(·), resulting in a better in-
put feature distribution EN−1 in the N -th layer than (a).
However, the output features EN are still scattered, indi-
cating a poorer Φ(·) approximate. IDPT takes a different
approach by introducing the semantic prior of each instance
and adding dynamic prompts to the input space of the N -

Point-MAE w/ 
IDPT (Ours)

Point-MAE w/ 
VPT-Deep

Point-MAE w/o 
Prompt

Point Patch 
Embeddings
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Figure 5. The t-SNE visualization of the point patch features
extracted EN−1 and EN from the test sets of ScanObjectNN
(PB_T50_RS) using a pre-trained Point-MAE with different tun-
ing strategies. This visualization partly reflects the approximation
of the transformation function Φ(·) by different tuning strategies.

th layer to approximate Φ(·). Although the input features
EN−1 at the N -th layer are as scattered as (a), the output
features EN are tightly clustered for the same category af-
ter concatenating EN−1 with our prompt through the same
network as (a). It indicates that our strategy can effectively
align the different distributions and is the best approximate
strategy for Φ(·).

5. Conclusion
In this paper, we investigate prompt tuning on pre-trained

point cloud models to pursue the balance between perfor-
mance and parameter efficiency. We found that the popular
visual prompt tuning strategy cannot work well in real point
clouds due to the distribution diversity. Therefore, we pro-
posed instance-aware dynamic prompt tuning (IDPT) with
a prompt generation mechanism to enhance the model’s
robustness in downstream transfer. Extensive experiments
validated IDPT as a universal and effective solution.
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