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Abstract

2D-to-3D human pose lifting is fundamental for 3D hu-
man pose estimation (HPE), for which graph convolutional
networks (GCNs) have proven inherently suitable for mod-
eling the human skeletal topology. However, the current
GCN-based 3D HPE methods update the node features by
aggregating their neighbors’ information without consid-
ering the interaction of joints in different joint synergies.
Although some studies have proposed importing limb in-
formation to learn the movement patterns, the latent syn-
ergies among joints, such as maintaining balance are sel-
dom investigated. We propose the Hop-wise GraphFormer
with Intragroup Joint Refinement (HopFIR) architecture to
tackle the 3D HPE problem. HopFIR mainly consists of
a novel hop-wise GraphFormer (HGF) module and an in-
tragroup joint refinement (IJR) module. The HGF module
groups the joints by k-hop neighbors and applies a hop-
wise transformer-like attention mechanism to these groups
to discover latent joint synergies. The IJR module lever-
ages the prior limb information for peripheral joint refine-
ment. Extensive experimental results show that HopFIR
outperforms the SOTA methods by a large margin, with a
mean per-joint position error (MPJPE) on the Human3.6M
dataset of 32.67 mm. We also demonstrate that the state-of-
the-art GCN-based methods can benefit from the proposed
hop-wise attention mechanism with a significant improve-
ment in performance: SemGCN [42] and MGCN [49] are
improved by 8.9% and 4.5%, respectively.

1. Introduction

Monocular 3D human pose estimation aims to accurately
regress the 3D locations of human joints in the camera co-
ordinate system from a single image. It plays an important
role in many applications, such as action recognition and
human–computer interaction. Compared with the monocu-
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Figure 1. Comparison of performance and model size between
the proposed HopFIR and SOTA methods, namely Modulated
GCN (MGCN) [49], SemGCN [42], Weight Unsharing [18], SR-
Net [39], GraphSH [36], and GraFormer [43]. The methods are
evaluated on the Human3.6M dataset [10] with ground truth 2D
joints as input. The arrow shows the performance improvement
obtained by inserting the HA layer into the other networks. Tiny,
small, and normal denote the feature dimension of the HopFIR are
32, 64, and 128, respectively.

lar systems, multi-view capture systems are expensive and
inconvenient to set up and operate, which prevents them
from being widely used in practice. To tackle the monocular
3D HPE task, some approaches [2, 15, 31, 32, 38] estimates
3D joint coordinates or heat maps directly from an image
via a convolutional neural network (CNN) [13, 14]. How-
ever, direct regression from the image space suffers from
the problem of a large parameter searching space, which al-
ways leads to a sub-optimal solution. Recently, Martinez
et al. [20] constructed a simple fully connected network us-
ing only 2D keypoints as input and achieved promising 3D
HPE performance, showing that the 3D human pose can
be efficiently and accurately estimated from 2D joint po-
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sitions. Inspired by them and considering the thoroughly
investigated 2D HPE, many works decompose the problem
into two subtasks, i.e., the 2D HPE and 2D-to-3D pose lift-
ing [18, 40, 49, 36]. 2D-to-3D pose lifting, therefore, has
emerged as a fundamental task in this area that our work
devotes to.

A key consideration in 2D-to-3D pose lifting is that the
human skeleton topology is inherently sparse and graph-
structured. Fully connected neural networks are less effec-
tive in modeling graph-structured data due to their simple
connections among all nodes and the probability of over-
fitting. To leverage the information of the human skeletal
topology, some works [36, 40, 49] have proposed to model
the human body with GCNs and have achieved SOTA re-
sults. For example, Ci et al. [4] introduced a locally con-
nected network to enhance the representation capability of
the GCN, and Liu et al. [18] explored the weight sharing and
feature transformation that occurs before or after feature ag-
gregation in the GCN. One limitation of these GCN-based
3D HPE methods, however, is that they update the node
features by aggregating their neighbors’ information with-
out considering the different contributions of these nodes to
different joint synergies.

Instead of considering all the joints of a skeleton as a
whole, Xue et al. [37] demonstrated that the human skele-
ton exhibits obvious part-wise inconsistency in its motion
patterns, as also reported in SRNet [39]. However, these
works are limited to considering prior structural informa-
tion of limb groupings and ignore investigating the latent
groups underlying joint synergies. For example, the relative
positions of the 1-hop neighbors of joint 0 are almost con-
stant in “Discussion” subject, which can be a latent group,
as shown in Fig. 2. Moreover, these works consider the
joints in a limb as a whole to calculate the relationship with
other limbs, which resulted in lower accuracy for peripheral
joints, such as wrists and feet.

To address the abovementioned problems in monocular
3D HPE, we propose a novel architecture: the Hop-wise
GraphFormer with Intragroup Joint Refinement (HopFIR).
The first key component of HopFIR is a novel hop-wise
GraphFormer (HGF) module that considers k-hop neigh-
bors. In the HGF module, the information of every hop
of every joint is aggregated into the hidden space, such that
N × k groups of features are obtained for a skeleton model
with N joints. Meanwhile, a hop-wise transformer-like at-
tention mechanism is designed to extract the correlation
among feature groups, which computes similarity by the dot
product of the node feature and the group feature. The pro-
posed HGF module enables the network to discover latent
joint interactions considering human joint synergy. Because
the HGF leverages little prior information about the human
body and ignores the interaction among joints in a limb, es-
pecially the interactions of peripheral joints associated with

a limb, we introduce an intragroup joint refinement (IJR)
module to strengthen the intragroup correlation of joints
grouped by limb prior information. Specifically, a resid-
ual block is built from two HGF modules followed by one
IJR module. The proposed HopFIR architecture achieves
optimal regression accuracy with a stack of three blocks.

To summarize, our work makes the following contribu-
tions:

• To the best of our knowledge, we design the first Hop-
wise GraphFormer module to explore potential joint corre-
lations underlying human joint synergy. We also prove that
other GCN-based methods can benefit from the proposed
HGF module efficiently, as shown in Fig. 1.

• We design an Intragroup Joint Refinement module,
which attends to intragroup joints to refine joint features
through the associated limb, especially the wrists and feet.
The IJR module enables HGF modules to discover the latent
synergies among joints.

• We propose the novel Hop-wise GraphFormer with
Intragroup Joint Refinement (HopFIR) architecture for 3D
HPE, which is built entirely from HGF and IJR modules.
Specifically, two HGF modules and one IJR module are
coupled into a block.

• Extensive experiments demonstrate the effectiveness
and generalizability of the proposed modules and HopFIR
architecture by providing new state-of-the-art results on two
challenging datasets, i.e., Human3.6M [10] and MPI-INF-
3DHP [21].

2. Related Work
3D Human Pose Estimation. Early works [26, 29] use

handcrafted features, perspective relationships, and geomet-
ric constraints to estimate the 3D human pose. Recent pose
estimation approaches can be generally divided into two
categories. The first category of networks regresses 3D
human joints directly from the image [24, 46]. Pavlakos
et al. [24] adopted a CNN to predict the voxel-wise likeli-
hoods for each joint, and Zhou et al. [46] directly embedded
a kinematic object model into the networks to learn the gen-
eral multi-articulate object pose. Approaches in the second
category decouple the 3D HPE task into 2D pose estimation
from an image and 3D pose estimation from the detected
2D joints (2D-to-3D). For example, Martinez et al. [20] pro-
posed a simple yet effective baseline with fully-connect net-
works and proved that 3D human poses can be regressed
simply and effectively from 2D keypoints. Our paper fol-
lows this pipeline and focuses on the 2D-to-3D pose lifting.
For promoting 3D human pose regression accuracy, it is cru-
cial to group joints with consideration of their interactions
rather than treating all joints of a skeleton as a whole. Xue et
al. [37] divided the human skeleton graph into five groups
according to the limbs to explore part-wise motion incon-
sistency, and Zeng et al. [39] split the human joints into
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local regions and recombined the global information from
the rest of the joints. Our proposed HopFIR differs from
these approaches by grouping joints by the k-hop neighbors
of each joint and prior limb information, which enables the
network to discover latent connections between groups in
different human joint synergies.

Graph Convolutional Networks. GCNs [5, 7, 12, 27]
generalize the capability of CNNs by performing convolu-
tion operations on graph-structured data. GCNs can be di-
vided into two categories: the spectral-based approaches [5]
and the spatial-based approaches [12]. Our approach falls
into the second category, which applies message-passing
operations on the graph nodes and their neighbors.

Due to the graph-structure topology of the human skele-
ton, many works [4, 18] have introduced GCN to tackle
the 3D HPE task. Zhao et al. [42] proposed a SemGCN
to learn the semantic relationships between human joints,
and Zou et al. [49] proposed a weight modulation and an
affinity modulation based on the SemGCN. These methods
aggregate the first-order neighborhood messages to update
the feature matrix by assigning different weights to different
nodes. Some works [47, 48] have extended the first-order
neighbors to high-order neighbors in the spatial domain di-
rectly. Zeng et al. [40] designed a hierarchical fusion block
by dividing the fusion procedure into two stages, where all
the high-order neighbors of a node are aggregated into a fea-
ture in the first stage and fuse it with the node feature and
the first-order neighbor in the second stage. Zhao et al. [43]
introduced Chebyshev graph convolution to fuse informa-
tion among the k-hop neighbors of a joint directly. These
works updated features by aggregating each node’s own k-
hop neighborhood information in a GCN layer. However,
HopFIR considers the k-hop groups of all nodes to recon-
struct the k-hop feature of a node through the proposed at-
tention mechanism, which can enhance the representation
capability of GCNs.

Graph Attention. Graph attention networks [34] is a pi-
oneer work that pay attention to the data in a graph structure
by assigning an attention weight to each node. The intro-
duction of the transformer [33] for machine translation tasks
has proven the capacity of attention for sequential input.
ViT [6] introduces the transformer into computer vision and
achieves excellent performance. Inspired by them, some re-
searchers have adopted the transformer for 3D HPE. Zhao et
al. [43] applied self-attention to capture global information
by calculating the similarity of all nodes. PoseFormer [44]
directly applies Transformer Encoder (TE) by viewing each
joint and each frame as tokens in the spatial and tempo-
ral domains, respectively. MixSTE [41] is based on [44],
where each joint feature is represented by the temporal TE
to model the joint motion. P-stmo [28] replaces the spa-
tial TE with MLP and applies Stride Transformer Encoder
to map N frames to one frame. MHFormer [17] generates
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Figure 2. An illustration of the human skeleton graph and the
groups in HGF and IJR modules. The k-hop neighbors of a joint
are set as a group in HGF modules where (a) indicates the 1-hop
groups of different joints and (b) indicates several latent groups
because of physical limitations. (c) indicates the joints grouped by
prior limb information.

multi-hypothesis at different depths of stacked spatial TEs
by viewing all frames of each joint feature as a token, then
communicates these hypotheses with cross-attention and
self-attention. Different from the existing graph attention
for 3D HPE, we propose the intergroup multi-head attention
mechanism among the k-hop groups of all nodes, which
assigns the attention weights by computing the similarity
between the node feature and k-hop group feature. More-
over, we introduce the intragroup multi-head self-attention
in limb groups to refine the joint features and promote the
HGF module to discover the latent synergies among joints.

3. The Proposed HopFIR
This paper proposes a novel architecture to regress the

3D human pose from N given 2D keypoints X ∈ RN×2.
The proposed framework mainly consists of the HGF and
IJR modules. In this section, we first review the vanilla
Graph Convolutional Network and Transformer in Sec. 3.1.
We then introduce the HGF and IJR modules in Sec. 3.2
and Sec. 3.3, respectively. Finally, we present the network
architecture in Sec. 3.4.

3.1. Vanilla GCN and Transformer

GCN. A graph is defined as G = (V, E), where V is a
set of N nodes and E is the adjacency matrix representing
the edges between the nodes. Given a collection of input
features H l ∈ RN×D, a generic GCN layer that aggregates
neighborhood information can be formulated as follows:

H(l+1) = σ(ÃH lW ) (1)

where W ∈ RD×D′
is the learnable weight matrix that

transforms the feature dimension from D to D′, and σ(.)
is the activation function, such as ReLU [22]. H(l+1)

is the updated feature matrix, Ã ∈ RN×N is the sym-
metrically normalized affinity matrix [12] with added self-
connections, and A ∈ {0, 1}N×N is the adjacency ma-
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Figure 3. The HopFIR architecture, with details of the HGF and IJR modules. The designed block is a residual block [9] built by two HGF
modules followed by one IJR module. The proposed architecture with three blocks achieves optimal performance. Arrows of different
colors represent different hops and groups in HGF and IJR, respectively.

trix. The (i, j)th entry aij = 1 representing node j is the
neighbor of node i. Otherwise, they are not connected and
aij = 0. Therefore, the none-neighbor nodes have a weak
influence on each other in the vanilla GCN, which hinders
the modeling of underlying joint synergy in 3D HPE.

Transformer. Transformer architecture relies entirely
on self-attention to compute representations of its input and
output. The self-attention function maps the inputs to the
queries Q, keys K, and values V by weight matrices WQ,
WK , and WV , respectively, and the matrix of outputs is cal-
culated as:

Attention(Q,K, V ) = Softmax(QKT /
√
d)V (2)

where d is the feature dimension of Q, and 1√
d

is a scal-
ing factor to prevent extremely small gradients. The multi-
head self-attention (MHSA), which performs self-attention
in parallel, projects the queries, keys, and values P times
with different linear projections to the respective subspaces,
as follows:

MultiHead(Q,K, V ) = Concat(D1, ..., DP )Wo (3)

where WO is the projection matrix of outputs, Dp =
Attention(QW p

Q,KW p
K , V W p

V ), and p ∈ [1, .., P ].

3.2. Hop-wise GraphFormer

Previous GCN studies for 3D HPE aggregate multi-hop
neighborhood information [40, 48] or assign an attention
weight to each first-order neighbor [42, 49]. To effectively
capture the node’s neighborhood message and increase the
representational capacity of GCNs, we introduce the hop-
wise GraphFormer (HGF) module, which treats each hop
as a group (Fig.2 a,b) and computes the attention weights
for each hop (more intuitive descriptions for k-hop can be
found in the supplementary material). By considering the
relationship within k hops, we can obtain N×k groups for a

skeleton graph with N joints, which provides enough com-
binations of joints to discover the latent correlations among
joints in different human joint synergy.

We first define the k-hop matrix Ak as

akij =

{
1, d(vi, vj) = k

0, otherwise
(4)

where d(vi, vj) denotes the distance of the shortest path be-
tween vi and vj on the skeleton graph. The k-hop neighbor-
hood information is aggregated with a weighted sum of the
target node’s k-hop neighbors, named HopGCN:

ski =
∑
j

akijhjW
k (5)

where ski ∈ RD is a hidden representation of the k-hop
neighborhood information. Eq. 5 is similar to Eq. 1 but with
the extended definition of A to k hops. The weight matrix
W is assigned to the respective hops.

Before aggregating the hidden representation ski to the
target node, we propose a transformer-like attention mech-
anism computing the similarity between the node feature hi

and the k-hop hidden representation, as shown in Eq. 6:

zki =
∑
j

softmaxj(
his

k
j
T

√
d

)skj . (6)

Due to the structure of the human skeleton and the joint
synergy, the k-hop neighborhood of joint i is related to that
of other joints. In Fig. 2, for example, the synergy of hop S1

5

is related to hop S1
6 and S1

3 . By packing zki , hi, and ski into
matrices Zk, H , and Sk, we can calculate Zk in parallel:

Zk = softmax(
HSkT

√
d

)Sk (7)

Zk can also be reconstructed using the self-attention mech-
anism purely on hop features or swap the positions of H and
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Sk. A performance comparison of these cases is discussed
in the experimental results.

We further reduce the dimension of hidden representa-
tion by using a fully connected(FC) layer based on the order
of the neighborhood, considering different amounts of in-
formation related to the target node, as formulated in Eq. 8.

rki = F k(zki ) (8)

where rki is the refined representation of the k-hop neigh-
borhood information with respect to node i, and F k is the
mapping function. The refined representation is then con-
catenated to the updated node feature.

All the refined representations of hop-wise neighbor-
hoods and the target node feature hi are encoded to a D-
dimensional vector:

h′
i = F (hi, r

1
i , r

2
i , r

3
i , ..., r

k
i ) (9)

where h′
i is the final updated feature of node i in this layer,

and F is the aggregation function. Packing together the up-
dated features of all nodes, Eq. 9 can be rewritten as:

H ′ = F (H,R1, R2, R3, ..., Rk). (10)

We thereby obtain as the core layer of the HGF module the
hop-wise attention (HA) layer, which extracts latent corre-
lations between feature groups and aggregates k-hop neigh-
borhood information. With the increment of k, we get more
N groups on which to explore the underlying joint syner-
gies. The value of k can be adjusted based on the tasks and
pipelines. According to the experimental results, three hops
achieve optimal performance in the HopFIR architecture.

To fuse the current global information and original 2D
information, we concatenate all the joint features in a batch
and feed them into a FC layer to extract the current global
information. We then concatenate the extracted global in-
formation, 2D information, and the output of the HA layer
on the feature dimension of the joint feature to fuse all the
information in another FC layer.

3.3. Intragroup Joint Refinement

The proposed HGF module splits the skeleton graph into
different groups based on the k-hop neighborhood of each
joint, which attends to the key groups in joint synergies.
However, HGF leverages little prior information about the
human body and ignores the interaction among joints in a
limb, especially the interaction of the peripheral joints asso-
ciated with limbs, such as the wrists and feet. We introduce
an intragroup joint refinement (IJR) module to strengthen
the intragroup correlation of joints grouped by limb prior
information, as shown in Fig. 2(c). The HGF features of the
joints in each limb group are refined in the IJR module by
using multi-head self-attention [33], as in Eq. 11.

Hg = MHSA(MHSA(H)g) (11)

where H is the feature matrix from the HGF module,
MHSA(H)g is the feature matrix of the group g updated
by global multi-head self-attention, and Hg is the final fea-
ture matrix of the group g updated by the IJR module. More
details of the IJR module are provided in Fig. 3.

3.4. The HopFIR Architecture

The HopFIR architecture consists of the proposed HGF
and IJR modules, as illustrated in Fig. 3. The residual block,
which contains two HGF modules and one IJR module, is
designed as the basic block in HopFIR. Moreover, we de-
fine a linear embedding layer to map the input to the latent
space and a HG module to transform the output into 3D
space. The HG module is a variant of HGF designed for
the output layer, more details of which are provided in the
supplementary material. HopFIR accepts 2D keypoints as
input, which can be obtained via an off-the-shelf 2D detec-
tor. The graph is obtained by adding a normalized globally
learnable k-hop graph to the skeleton graph and then sym-
metrically normalizing it, as in [49]. We use the L1-norm
loss and L2-norm loss to compute the error between ground
truth and prediction with the weighted sum as follows:

L = α

N∑
n=1

∥Yn − Ŷn∥2 + β

N∑
n=1

∥Yn − Ŷn∥1 (12)

where N is the joint number, Ŷn is the predicted 3D position
of joint n, Yn is the ground truth, α = 1, and β = 0.1.

4. Experiments
In this section, we first introduce the experimental setup

and implementation details of the HopFIR networks. We
then present our experimental results and comparisons with
state-of-the-art methods. Finally, we conduct several abla-
tion studies of the proposed architecture.

4.1. Datasets and Evaluation Protocols

Datasets. Human3.6M [10] is currently the largest pub-
licly available dataset for 3D human pose estimation, with
3.6 million video frames. It captures accurate 3D human
joint positions from four camera viewpoints and records 11
subjects performing 15 assigned actions. Following previ-
ous works [49, 36, 42], we train our model on five subjects
(S1, S5, S6, S7, S8) and test it on two subjects (S9, S11).
In contrast to Human3.6M, MPI-INF-3DHP [21] includes
complex outdoor scenes, which are commonly used to eval-
uate the generalizability of proposed methods. Accordingly,
we use the test set of MPI-INF-3DHP to verify the general-
izability of our model.

Evaluation Protocols. For Human3.6M [10], we eval-
uate our model on two standard evaluation protocols: the
mean per-joint position error (MPJPE) and the mean per-
joint position error after Procrustes alignment (P-MPJPE).

14989



Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al. [20] ICCV2017 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Zhao et al. [42](†) CVPR2019 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Ci et al. [4](†) ICCV2019 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Pavllo et al. [25] CVPR2019 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Cai et al. [2](†) ICCV2019 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Liu et al. [18](†) ECCV2020 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
zeng et al. [39] ECCV2020 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9
Zou et al. [49](†) ICCV2021 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Xu et al. [36](†) CVPR2021 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Zhao et al. [43] (∆)(†) CVPR2022 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Ours(∆)(†) 43.9 47.6 45.5 48.9 50.1 58.0 46.2 44.5 55.7 62.9 49.0 45.8 51.8 38.0 39.9 48.5

Table 1. Quantitative comparison on Human3.6M with detected 2D poses as input under Protocol #1, in millimeters. The best results
are highlighted in bold and the second-best results are underlined. (†) indicates GCN-based methods and (∆) indicates Transformer-based
methods.

Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Zhou et al. [45](+) ICCV2019 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9
Ci et al. [4](+)(∗)(†) ICCV2019 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Martinez et al. [20] ICCV2017 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao et al. [42](†) CVPR2019 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Cai et al. [2](†) ICCV2019 33.4 39.0 33.8 37.0 38.1 47.3 39.5 37.3 43.2 46.2 37.7 38.0 38.6 30.4 32.1 38.1
Liu et al. [18](†) ECCV2020 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
zeng et al. [39] ECCV2020 35.9 36.7 29.3 34.5 36.0 42.8 37.7 31.7 40.1 44.3 35.8 37.2 36.2 33.7 34.0 36.4
Zou et al. [49](†) ICCV2021 - - - - - - - - - - - - - - - 37.4
Xu et al. [36](†) CVPR2021 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
Zhao et al. [43] (∆)(†) CVPR2022 32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2
Ours(∆)(†) 31.3 34.0 28.0 32.0 33.1 42.1 34.1 28.1 33.6 39.8 31.7 32.9 33.8 26.7 28.9 32.7

Table 2. Quantitative comparison on Human3.6M with ground truth 2D keypoints as input under Protocol #1, in millimeters. (+) uses
additional data from MPII [1]. (∗) uses pose scales in both training and testing. The best results are highlighted in bold.

These are referred to Protocol #1 and Protocol #2, re-
spectively. The MPJPE and P-MPJPE are given in mil-
limeters. For MPI-INF-3DHP [21], we follow previous
works [4, 42, 49] by reporting the percentage of correct key-
points (PCK) with a threshold of 150 mm and the area under
the curve (AUC) for a range of PCK thresholds.

4.2. Implementation Details

Following previous work [25], we obtain the detected
2D poses using the cascaded pyramid network(CPN) [3].
We do not use data augmentation during training and test-
ing with the 2D ground truth input to verify the efficacy of
our model. We adopt Adam [11] optimizer and all experi-
ments are conducted on a single NVIDIA RTX 3090 GPU.
3D pose regression from 2D detections is more challenging
than that from 2D ground truth because the former needs
to deal with some extra uncertainty in the 2D space. To
manage this uncertainty, we set different configurations for
them. In experiments with 2D ground truth as the input, we
train the HopFIR networks with an initial learning rate of
0.001, a decay factor of 0.90 per 4 epochs, a batch size of
64, channels of 128, and PReLU activation [8]. When using
detected 2D poses, we train the HopFIR networks with the
initial learning rate of 0.006, a decay factor of 0.95 per 4
epochs (but 0.2 for the first 4 epochs), a batch size of 256,
256 channels, and LeaklyReLU activation [19]. To avoid
overfitting, we apply Dropout[30] with a dropout rate of 0.5.

4.3. Comparison with State-of-the-art

We compare the performance of HopFIR with some
SOTA methods on Human3.6M under Protocol #1 and Pro-
tocol #2, with the results shown in Table 1. Our method
reaches an MPJPE of 48.50 mm and outperforms the best
of the existing approaches [49] on all 15 actions. Given the
uncertainty of 2D detections, we also investigate the capa-
bility of HopFIR networks using ground truth 2D key points
as input. As shown in Table 2, HopFIR obtains surprisingly
better performance when given precise 2D joint information
and produces SOTA results, which verifies its effectiveness.

4.4. Ablation Study

We conduct a comprehensive ablation study on Hu-
man3.6M to validate the individual effectiveness of each
component of the proposed HopFIR architecture under con-
trolled settings. We follow previous works [18, 36, 49]
conducting the ablation experiments using GT as inputs to
avoid the influence of the 2D pose detector.

Effectiveness of Different Modules. We separately ver-
ify the effectiveness of the HGF module and IJR module
and conduct experiments on first-order neighbors, removing
all modules and the multi-hop mechanism. Note that GCN
and HopGCN refer to applying only vanilla GCN (Eq. 1)
and HopGCN (Eq. 5) to Fig. 3, respectively. The results in
Table 3 show that each module improves the performance
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Method Channels Params MPJPE P-MPJPE
GCN 128 0.36M 40.63 31.65
HopGCN 128 0.59M 39.15 31.40
HopGCN & IJR 128 2.15M 36.62 29.23
HopGCN & HGF 128 1.05M 35.19 28.81
HopGCN & IJR 64 0.57M 36.69 29.68
HopGCN & HGF 80 0.48M 36.01 29.58
HopGCN & HopFIR 128 2.15M 32.67 26.20
HopGCN & HopFIR 64 0.54M 33.52 27.37
HopGCN & HopFIR 32 0.14M 35.19 28.71

Table 3. Ablation experiments on the proposed modules.

over the GCN-only approach, and coupling the two lay-
ers to form a HopFIR block achieves further performance
improvement. The HopFIR networks reduce the MPJPE
to 32.67 mm, which represents a 7.2% improvement over
GraFormer [43]. By reducing feature channels in HopGCN
& IJR and HopGCN & HGF, we decrease parameters to
0.57M and 0.48M. However, the models still achieved er-
rors of 36.69mm and 36.01mm, compared to the HopGCN
with 39.15mm error and 0.59M parameters, which should
be attributed to the structure design other than the model
size. Moreover, we reduce the HopFIR network parameters
by changing the channels to 64 and 32, respectively, which
are also superior to SOTA.

Effectiveness of the HA Layer. In sec. 3.2, we intro-
duce k-hop groups to discover latent joint interactions in hu-
man joint synergies. The attention matrices in Fig. 5 show
the latent joint synergies captured by HopFIR, in which
each weight of row i indicates a discovered latent group
for the corresponding joint i. To verify the effectiveness
of HA layer, we explore the correlation between all joints
with a transformer encoder instead of HA layer, which ex-
plores the correlation between individual nodes but ignores
the synergy between groups of joints in the human body
and obtained 36.21 mm error. Moreover, we remove the
human body prior by using random graph instead of skele-
ton graph without changing the HopFIR architecture and
reached 34.68 mm error, suggesting that latent group cor-
relations can be explored by k-hop groups, but group cor-
relations underlying joint synergies can be better explored
based on the human body prior.

In Table 4, we show the experimental results of three
different ways to design the HA layer. HSS is the method
selected in this paper, where H, S, and S are Q, K, and V ,
and H and S represent the node feature and the k-hop group
feature, respectively. As we do not follow [33] in apply-
ing a linear transformation of Q, K, and V , we also show
the result of such a linear transformation, which is denoted
as HA+W. The experiment results show that HSS similar-
ity achieves better performance in the HopFIR architecture,
but one can choose the type of similarity according to the
network property.

We further insert the HA layer into SOTA pose esti-

Attention
HA HA+W

HSS SSS SHH HSS SSS SHH
Params 2.15M 2.50M
MPJPE 32.67 34.18 34.28 33.29 33.53 33.90
P-MPJPE 26.20 27.70 27.71 27.16 27.40 27.41

Table 4. Quantitative comparison of HA layers with different sim-
ilarity computing approaches.

Method Channels Params MPJPE P-MPJPE
SemGCN [42] 128 0.27M 42.14 33.53
SemGCN + HA(HSS) 128 0.49M 38.41 30.56
SemGCN + HA(SSS) 128 0.49M 41.30 33.07
SemGCN + HA(SHH) 128 0.49M 38.81 31.05
SemGCN [42] w/ Non-local [35] 128 0.43M 40.78 31.46
SemGCN w/ Non-local +HA(HSS) 128 0.66M 38.03 30.50
SemGCN w/ Non-local +HA(SSS) 128 0.66M 37.75 30.17
SemGCN w/ Non-local +HA(SHH) 128 0.66M 37.94 29.71
Modulated GCN [49] 128 0.29M 38.25 30.06
Modulated GCN +HA(HSS)+W 128 0.96M 36.54 29.09
Modulated GCN +HA(SSS)+W 128 0.96M 36.14 29.02
Modulated GCN +HA(SHH)+W 128 0.96M 37.38 30.02

Table 5. Comparison of the improved performance of proposed
HA layer added on different methods. We test on two GCN-based
methods: SemGCN [42] and MGCN [49].

Num-k Channels Params MPJPE P-MPJPE
1 128 1.88M 35.88 28.76
2 128 2.03M 34.96 27.74
3 128 2.15M 32.67 26.20
4 128 2.27M 35.58 28.35

Num-Block Channels Params MPJPE P-MPJPE
1 128 0.80M 37.33 30.71
2 128 1.47M 34.21 27.63
3 128 2.15M 32.67 26.20
4 128 2.82M 33.84 27.63

Table 6. Ablation study for number of k-hop and designed blocks.
The units of MPJPE and P-MPJPE are millimeters (mm).

mation methods, namely SemGCN [42] and Modulated
GCN [49], to investigate its generalizability. No changes
are made to their source code, with the HA layer inserted
before the information aggregation stage of these methods.
The experimental results in Table 5 show that the HA layer
improves these previous SOTA networks to a large degree;
especially, the MPJPE of SemGCN [42], is reduced from
42.14 mm to 38.41 mm, representing an 8.9% improve-
ment. Moreover, HA layer with linear transformation (W)
makes learning more stable, so We test HA and HA+W in
SemGCN and MGCN, respectively, to show both of them
are effective. For a fair comparison of parameters, we tested
MLP and MHSA instead of HA, both of them with 1.03M
parameters, and achieved 39.12mm and 39.22mm errors, re-
spectively. More details can be found in the supplementary
material. Experiments on the above methods of aggregating
first-order neighbor information demonstrate the effective-
ness of HA and also indicate that latent joint grouping can
recognize the human joint synergies.

Error on Peripheral Joints. We report the regres-
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Figure 4. Comparison of MPJPE for peripheral joints on the test
set of the Human3.6M. R and L denote right and left, respectively.

Block Channels Params MPJPE P-MPJPE
(H)(I) 128 1.78M 34.43 27.79
(I)(H) 128 1.78M 34.13 27.56

(H)(I)(H) 128 2.15M 35.08 27.98
(I)(H)(H) 128 2.15M 34.20 27.60
(H)(H)(I) 128 2.15M 32.67 26.20

Table 7. Ablation study for arrangements of the designed block.
(I) and (H) denote IJR module and HGF module, respectively.

MPJPE P-MPJPE MPJVE
PoseFormer [44] (T=81) 44.3 36.5 3.1
MixSTE [41] (T=243) 40.9 32.6 2.3
MHFormer [17] (T=351) 43.0 - -
P-STMO [28] (T=243) 42.1 34.4 -
Ours (T=243) 41.1 32.5 2.1

Table 8. Quantitative comparision on Human3.6M with detected
2D pose (CPN) in video. T denotes the number of input frames.

Methods PCK AUCGS no GS Outdoor All
Martinez et al. [20] 49.8 42.5 31.2 42.5 17.0
Ci et al. [4] 74.8 70.8 77.3 74.0 36.7
zeng et al. [39] - - 80.3 77.6 43.8
Li et al. [16] 70.1 68.2 66.6 66.9 -
Zhao et al. [43] 80.1 77.9 74.1 79.0 43.8
Liu et al. [18] (weight unsharing) 77.6 80.5 80.1 79.3 47.6
Xu et al. [36] 81.5 81.7 75.2 80.1 45.8
Nie et al. [23] - - - 83.5 45.9
Zou et al. [49] 86.4 86.0 85.7 86.1 53.7
Ours 89.1 85.9 85.9 87.2 57.0

Table 9. Quantitative comparisons on the MPI-INF-3DHP test set.
GS denotes green screen.

sion accuracy for the peripheral joints (wrists and feet) in
Fig. 4 in comparison with some previously proposed meth-
ods [49, 42, 39]. The HopFIR network with IJR modules
outperforms SOTA methods on the right foot (RFoot) by 6.7
mm, left foot (LFoot) by 7.7 mm, left wrist (LWrist) by 9.6
mm, and right wrist (RWrist) by 7.7 mm. The experimental
results verify that the intragroup joint attention within each
limb group strengthens the capabilities of the HopFIR.

Different Numbers of k-Hops. As HopFIR is designed

𝟏𝟏-𝒉𝒉𝒉𝒉𝒉𝒉 𝟐𝟐-𝒉𝒉𝒉𝒉𝒉𝒉 𝟑𝟑-𝒉𝒉𝒉𝒉𝒉𝒉

Figure 5. Attention weight of the j-th k-hop for the i-th joint,
deeper color indicates higher correlation. i-th row and j-th col
represent i-th joint and k-hop of j-th joint, respectively.

MGCN&GT HopFIR&GT MGCN&GT HopFIR&GT

Figure 6. Qualitative visual results for HopFIR and MGCN [49]
on the Human3.6M. The black lines are the ground truth (GT) and
the red lines are the predictions of HopFIR and MGCN. Wrong
predictions are circled. The bottom row shows our failure case.

to extract the correlation between feature groups, we set dif-
ferent k values to discover various latent connections un-
derlying the human joint synergies, with the results shown
at the top of Table 6. The MPJPE gradually decreases as
the number of hops increases, and reaches the best perfor-
mance at 3 hops. Therefore, the optimal number of hops for
3D HPE is 3, which entails that we obtain 16 × 3 groups
from the skeleton graph. Each of the 16 groups corresponds
to a potential correlation among coupled nodes at different
distances, and three hops is sufficient to recognize the joint
synergies.

Arrangement of the Designed Block. To investigate
the optimal structure of the designed block, experiments are
performed with various block numbers and various combi-
nations of HGF and IJR modules. As shown at the bottom
of Table 6, the error gradually decreases as the number of
blocks increases, until the best performance is achieved at
3 blocks. As shown in Table 7, the (H)(H)(I) arrangement
achieves the optimal results by reducing the error to 32.67
mm. HGF treats each hop as a group and applies a hop-
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wise attention mechanism to these groups to discover la-
tent joint synergy. IJR utilizes the limb prior for peripheral
joint refinement. Thus, (H)(H)(I) first integrates the com-
plete joint information and then refines it by IJR. While
(I)(H)(H) reverses this procedure resulting in the insuffi-
cient utilization of joint information. That the results are
superior to GraFormer [43] in all cases except for the single-
block model indicates that the HopFIR has significant hu-
man pose representation capabilities.

Extend to Temporal Domain. Without a specific design
to integrate temporal information, we extend to the temporal
domain by adding two TEs after each block and replacing
the HG module with a linear layer, and achieved competi-
tive results as shown in table 8.

Cross-Dataset Results on MPI-INF-3DHP. Table 9
further compares HopFIR with previous methods on cross-
dataset scenarios to validate its generalizability. For these
experiments, we train our model on the Human3.6M dataset
and test it on the test set of the MPI-INF-3DHP dataset. The
results show that our approach obtains better results than
other methods, which verifies the generalizability of our ap-
proach to unseen scenarios.

Qualitative Results. In Fig. 6, we show the visual re-
sults on Human3.6M in the world space. The bottom of the
figure shows some failure cases of HopFIR, which predict
some wrong joint positions. The figure shows that HopFIR
is able to predict 3D joint positions more accurately, even
for poses that cause difficulties for MGCN.

5. Conclusions
We present the Hop-wise GraphFormer with Intragroup

Joint Refinement (HopFIR) as a novel architecture for 3D
human pose estimation. The proposed architecture mainly
comprises the HGF and IJR modules. The HGF mod-
ule improves on the GCN-based pose estimation networks
by grouping the joints by k-hop neighborhood and cap-
turing the potential joint correlations in the different joint
synergies. Because the peripheral joints strongly inter-
act with intra-limb joints, the proposed IJR module ap-
plies intragroup attention to refine the peripheral joint fea-
tures through the associated limb. The proposed method
achieves new state-of-the-art results while maintaining a
modest model size.
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