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Abstract

Test-time task adaptation in few-shot learning aims to

adapt a pre-trained task-agnostic model for capturing task-

specific knowledge of the test task, rely only on few-labeled

support samples. Previous approaches generally focus on

developing advanced algorithms to achieve the goal, while

neglecting the inherent problems of the given support sam-

ples. In fact, with only a handful of samples available, the

adverse effect of either the image noise (a.k.a. X-noise) or

the label noise (a.k.a. Y-noise) from support samples can

be severely amplified. To address this challenge, in this

work we propose DEnoised Task Adaptation (DETA), a

first, unified image- and label-denoising framework orthog-

onal to existing task adaptation approaches. Without ex-

tra supervision, DETA filters out task-irrelevant, noisy rep-

resentations by taking advantage of both global visual in-

formation and local region details of support samples. On

the challenging Meta-Dataset, DETA consistently improves

the performance of a broad spectrum of baseline methods

applied on various pre-trained models. Notably, by tack-

ling the overlooked image noise in Meta-Dataset, DETA es-

tablishes new state-of-the-art results. Code is released at

https://github.com/JimZAI/DETA.

1. Introduction

Few-Shot Learning (FSL) refers to rapidly deriving new

knowledge from a limited number of samples, a central ca-

pability that humans naturally possess, but “data-hungry”

machines still lack. Over the past years, a community-wide

enthusiasm has been ignited to narrow this gap, especially

in fields such as computer vision [15,26,47], machine trans-

lation [4, 30, 54] and reinforcement learning [9, 17, 39].

The general formulation of FSL involves two stages: 1)

training-time task-agnostic knowledge accumulation, and

2) test-time task-specific knowledge acquisition, a.k.a. task

adaptation. In particular, the former stage seeks to pre-train

*Corresponding author.
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Figure 1. Dual noises in the support samples of a few-shot task.

Image noise (a.k.a. X-noise): the target object regions are often

obscured by interfering factors such as cluttered backgrounds, im-

age corruption, etc. Label noise (a.k.a. Y-noise): mislabeled sam-

ples. The goal of this work is to develop a first, unified image- and

label-denoising framework for reliable task adaptation.

a task-agnostic model on large amounts of training sam-

ples collected from a set of base classes. While the latter

targets adapting the pre-trained model for capturing task-

specific knowledge of the few-shot (or test) task with novel

classes, given a tiny set of labeled support samples. Early

progress in FSL has been predominantly achieved using

the idea of meta-learning, which aligns the learning objec-

tives of the two stages to better generalize the accumulated

knowledge towards few-shot tasks [39, 47, 54]. Neverthe-

less, recent studies [13,25,35,42] revealed that a good test-

time task adaptation approach with any pre-trained models

– no matter what training paradigms they were learned by,

can be more effective than sophisticated meta-learning algo-

rithms. Furthermore, with the recent success in model pre-

training techniques [14, 16, 33], designing efficient adapter-

based [24, 25, 55] or finetuning-based [6, 19, 46] task adap-

tation algorithms that can flexibly borrow “free” knowledge

from a wide range of pre-trained models is therefore of great

practical value, and has made remarkable progress in FSL.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Quantitative evidence that image- or label-noisy support

samples degrades test-time task adaptation performance. The re-

sults are averaged over 100 5-way 10-shot tasks sampled from the

five classes in Figure 1. Image-noisy samples here are manually

selected from all samples of the five classes. Label-noisy sam-

ples for each class are generated by uniformly changing the label

to that of other four classes. The baseline scheme TSA [25] is

applied to a RN-18 pre-trained on ImNet-MD [51] for task adap-

tation. As seen, the dual noises negatively impact task adaptation

performance, and our method consistently improves the baseline

under various ratios of image- or label-noisy support samples.

Despite the encouraging progress, existing approaches

mostly focus on developing advanced algorithms to mine

task-specific knowledge for few-shot tasks, while neglect-

ing the inherent problems of the given support samples. Un-

fortunately, the set of support samples collected from the

open world, no matter how small, can be unavoidably pol-

luted by noises. As illustrated in Figure 1, either the im-

age noise (a.k.a. X-noise) or the label noise (a.k.a. Y-noise)

could arise at possibly every phase of the task lifecycle1.

It has been well recognized that a tiny portion of image-

noisy [21, 34] or label-noisy [31, 48] samples can compro-

mise the model performance to a large extent. When it

comes to test-time task adaptation, the adverse effects of

the dual noises can be remarkably magnified owing to the

scarcity of support samples, as quantitatively proven in Fig-

ure 2. Despite being harmful and inevitable, as far as we

know, both image noise and label noise have received con-

siderably less attention in test-time task adaptation. This

begs the following questions: 1) Is it possible to design a

method to tackle the two issues in a unified framework? 2)

Whether the designed method can be orthogonal to existing

task adaptation approaches, so as to achieve robust FSL?

In this work, we answer the above questions by propos-

ing DEnoised Task Adaptation (DETA), a first, unified

image- and label-denoising framework for FSL. The key

idea of DETA is to simultaneously filter out task-irrelevant

(i.e. noisy) local region representations of image-noisy sam-

ples, as well as global image representations of label-noisy

samples, relying only on the interrelation among the given

support samples of few-shot tasks. To this end, a parameter-

1In more challenging FSL scenarios, some or even all of the few ex-

amples are collected by an agent from a dynamic environment rather than

relying on humans, the dual noises become more common in this context.

free contrastive relevance aggregation (CoRA) module is

first designed to determine the weights of regions and im-

ages in support samples, based on which two losses are pro-

posed for noise-robust (or reliable) task adaptation: a local

compactness loss Ll that promotes the intra-class compact-

ness of clean regions, along with a global dispersion loss Lg
that encourages the inter-class dispersion of clean, image-

level class prototypes. The two losses complement each

other to take advantage of both global visual information

and local region details of support samples to softly ignore

the dual noises during the optimization. An overview of our

DETA framework is shown in Figure 3.

Flexibility and Strong Performance. The proposed DETA

is orthogonal to existing adapter-based task adaptation (A-

TA) and finetuning-based task adaptation (F-TA) paradigms,

therefore can be plugged into any types of these approaches

to improve model robustness under the joint (image, label)-

noise. On average, by performing image-denoising on the

vanilla Meta-Dataset (MD) [51], DETA improves the clas-

sification accuracy of A-TA, F-TA baselines by 1.8%∼1.9%,

2.2%∼4.1%, respectively (Table 1). In particular, by tack-

ling the overlooked image noise in the vanilla MD, DETA

further boosts the state-of-the-art TSA [25] by 1.8%∼2.1%

(Table 5). Also, by conducting label-denoising on the label-

corrupted MD, DETA outperforms A-TA, F-TA baselines by

1.8%∼4.2%, 2.8%∼6.1%, respectively (Table 2).

Contributions. To summarize, our contributions are three-

fold. 1) We propose DETA, a first, unified image- and label-

denoising framework for FSL. 2) Our DETA can be flexibly

plugged into both adapter-based and finetuning-based task

adaptation paradigms. 3) Extensive experiments on Meta-

Dataset show the effectiveness and flexibility of DETA.

2. Related Work

Few-shot Learning. Generalizing from a limited amount

of samples has been proven challenging for most existing

deep learning models. Prevalent FSL approaches learn new

concepts under scarce supervision by a meta-learning set-

ting [11, 12, 18, 27, 40, 45, 57, 59–61]. In Sup. Mat. (E.1),

we present a review of the literature on FSL approaches.

Test-time Task Adaptation in FSL. Recent progress re-

vealed that when there exists severe category/domain shift

between base classes and few-shot tasks, without perform-

ing test-time task adaptation, the generalization of any pre-

trained models would decrease remarkably [3, 35, 42]. Var-

ious attempts have been made to adapt the pre-trained mod-

els to few-shot tasks by devising model-specific adapters,

e.g., the residual adapter TSA [25] for ResNets [15], the

self-attention adapter eTT [55] for ViTs [7]. A survey of

test-time task adaptation is presented in Sup. Mat. (E.2).

Data-denoising for FSL. The training data collected from

the open world are unavoidably polluted by image noise or
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Figure 3. An overview of the proposed DETA (in a 2-way 3-shot exemple). During each iteration of task adaptation, the images together

with a set of randomly cropped local regions of support samples are first fed into a pre-trained model fθ (w/ or w/o a model-specific adapter

Aα) to extract image and region representations. Next, a Contrastive Relevance Aggregation(CoRA) module takes the region represen-

tations as input to determine the weight of each region, based on which we can refine the image weights by a momentum accumulator.

Finally, a Local Compactness loss Ll, along with a Global Dispersion loss Lg are devised in a weighted embedding space for promoting

the mining of task-specific (or clean) representations. At inference, we only retain the adapted model fθ∗ (or f[θ;α∗]) to produce image

representations of support samples, on which we can build a noise-robust classifier guided by the refined image weights in the accumulator.

label noise, which may compromise the performance of the

learned models [1, 20, 48]. Limited works in FSL consid-

ered the influence of image noise [34, 56] or label noise

[28,36] on model generalization. Additionally, they mainly

focus on dealing with noises in base classes rather than in

the few-shot task. Particularly, Liang et al. [28] for the first

time explored the label noise problem in FSL. Differences

between the work [28] and ours are threefold. 1) We aim to

address both the image and label noises from support sam-

ples, where every sample is of great value in characteriz-

ing the few-shot task. 2) We take advantage of both global

visual information and local region details to achieve the

goal. 3) Our method is orthogonal to both adapter-based and

finetuning-based task adaptation methods. Even so, Liang

et al. [28] do bring a lot of inspiration to our method.

Cross-image Alignment for Representation Learning. A

plethora of cross-image alignment based FSL methods have

recently been developed to extract more discriminative rep-

resentations [18, 23, 38, 52, 53, 58]. Those methods high-

light important local regions by aligning the local features

between the support and query samples of few-shot tasks.

Despite the impressive performance, those none-adaptation

methods are unable to capture task-specific representations

when there exists severe category shift or domain shift be-

tween base classes and few-shot tasks [19, 35]. Moreover,

we often overlook the fact that owing to the small sample

size in few-shot tasks, negligible computational cost is re-

quired to model the relationships of the support samples.

3. Methodology

In this section, we elaborate our proposed DETA. Before

that, we introduce some preliminary concepts about test-

time task adaptation in FSL, and the mechanism of adapter-

based or finetuning-based task adaptation.

3.1. Preliminary

Assume we have a pre-trained task-agnostic model fθ
parameterized by θ, which serves as a feature backbone to

output a d-dimensional representation for each input im-

age. Test-time task adaptation seeks to adapt fθ to the test

task T = {S,Q}, by deriving task-specific knowledge on

the few-labeled support samples S = {(xi, yi)}
Ns

i=1, con-

sisting of Ns image-label pairs from C novel classes, i.e.,

yi ∈ {1, ..., C}. It is expected that the adapted model can

correctly partition the Nq query samples Q = {(xi)}
Nq

i=1 to

the C classes in the representation space. If there are ex-

actlyK support samples in each of these C classes, the task

is also called a C-way K-shot task.

Adapter-based Task Adaptation (A-TA). The goal of A-TA

is to capture the knowledge of the test task by attaching a

model-specific adapter Aα parameterized by α to the pre-

trained model fθ. During task adaptation, the parameters of

fθ, θ, are frozen and only the parameters α are optimized

from scratch using the support samples:

α := α− γ∇αL
S
(
[θ;α]

)
, (1)
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where γ is the learning rate, and

LS([θ;α]) =
1

Ns

∑

(x,y)∈S

ℓ
(
h(f[θ;α](x);S), y

)
, (2)

where ℓ is cross-entropy loss, f[θ;α] indicates the feature

backbone appended with the adapter, h is a non-parametric

classifier head capable of producing a softmax probability

vector whose dimensionality equals C. Notably, the recent

A-TA scheme TSA [25] achieved state-of-the-art results on

Meta-Dataset [51], by integrating a residual-adapter into the

pre-trained URL [24] model (w/ RN-18), and setting h to

the nonparametric Nearest Centroid Classifier (NCC) [37].

Finetuning-based Task Adaptation (F-TA). A-TA requires

model-specific adapters to adapt different pre-trained mod-

els, e.g., the residual adapter TSA [25] for ResNets [15],

the self-attention adapter eTT [55] for ViTs [7]. In contrast,

F-TA, originated from transfer learning literature [22] and

introduced into FSL by MAML [9], directly finetunes the

parameters θ of any pre-trained model fθ at test time, i.e.,

θ := θ − γ∇LS(θ), and is thus model-agnostic.

3.2. Overview

Our framework DETA is illustrated in Figure 3, which

mainly consists of the following steps. For each iteration:

Step-1. A feature backbone f takes the images and a set of

randomly cropped image regions of the support samples as

input to obtain image and region representations.

Step-2. A contrastive relevance aggregation (CoRA) mod-

ule takes the region representations as input to calculate the

weights of different regions, based on which we can deter-

mine the image weights by a momentum accumulator.

Step-3. A projection head maps the high-dimensional im-

age and region representations to a lower dimensional em-

bedding space, where a local compactness loss Ll and a

global dispersion loss Lg are developed on the weighted re-

gion and image embeddings to promote the mining of task-

specific knowledge from support samples.

Step-4. The calculated Ll and Lg are jointly used to up-

date the parameters of the projection head and the feature

backbone f , i.e., α in f[θ;α] for A-TA, θ in fθ for F-TA.

3.3. Contrastive Relevance Aggregation

The motivation of CoRA is that a region, which shows

higher relevance (or similarity) to in-class regions while

lower relevance to out-of-class regions, is more likely to be

the object region and should be assigned a larger weight.

Given the support samples S = {(xi, yi)}
Ns

i=1 of a test-

time task, we first randomly crop k local regions of size

M ×M for every image xi. Next, the original image to-

gether with all cropped regions of each sample are fed into

f to generate image representation zi and region represen-

tations Zi = {zij}
k
j=1. Let Z(c) =

⋃Nc

i=1 Zi denote the

collection of representations of cropped regions in class c,
Z =

⋃C
c=1 Z

(c) the set of all representations of cropped re-

gions, whereNc is the number of images in class c. For each

region representation zij inZi, we construct its in-class and

out-of-class region representation sets as I(zij) = Z(c)\Zi
andO(zij) = Z\Z(c), respectively. Note that in I(zij), the

other k − 1 intra-image representations are dropped to alle-

viate their dominating impacts. CoRA calculates the weight

of each region based on the global statistics of in-class and

out-of-class relevance scores, respectively formulated as

ϕ(zij) =
1

|I(zij)|

∑

z
′∈I(zij)

ζ(zij , z
′), (3)

ψ(zij) =
1

|O(zij)|

∑

z
′∈O(zij)

ζ(zij , z
′), (4)

where ζ(·) indicates cosine similarity. These scores are then

normalized inside each class:

ϕ̃(zij)=
eφ(zij)

∑
z
′∈Z(c)eφ(z

′)
, ψ̃(zij)=

eψ(zij)

∑
z
′∈Z(c)eψ(z

′)
. (5)

Therefore, the final calculated region weight for zij can be

defined as λij = ϕ̃(zij)/ψ̃(zij) ∈ R. A pytorch-like pseu-

docode for CoRA is illustrated in Figure 3.

A Momentum Accumulator for Image-weighting. Aside

from weighting the local regions, we also need to assess the

quality of the images themselves for filtering out label-noisy

samples. Intuitively, the most direct way to determine the

weight of an image xi, ωi, is to average the weights of all k

cropped regions belonging to it, i.e., ωi =
1
k

∑k
j=1 λij .

However, the randomly cropped regions in different task

adaptation iterations may have large variations, resulting the

frailty of the calculated image weights. A momentum accu-

mulator is thus developed to cope with this issue by

ωti =

{
1
k

∑k
j=1 λij , if t = 1

γωt−1
i + 1−γ

k

∑k
j=1 λij , if t > 1

(6)

where ωti denotes the accumulated image weight of xi in the

t-th iteration of task adaptation, γ is the momentum hyper-

parameter, and we set it to 0.7 in our method. For brevity,

we omit the superscript t in the following sections.

3.4. Noiserobust Task Adaptation

DETA performs image- and label-denoising in a unified

framework to achieve noise-robust task adaptation. To this

end, DETA simultaneously 1⃝ promotes the intra-class

compactness of clean regions – to filter out noisy local

representations (e.g. cluttered backgrounds of image-noisy

samples), and 2⃝ encourages the inter-class dispersion

of clean, image-level class prototypes – to filter out noisy
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global representations (i.e. images of label-noisy samples).

To formalize our idea, we first map each image represen-

tation zi and its region representations Zi = {zij}
k
j=1 to

a low-dimensional embedding space by a projection head.

The l2 normalized image embedding and k region embed-

dings are denoted as ei and Ei = {eij}
k
j=1 = {rι}

k
ι=1,

respectively. Define E(c) and E similar to Z(c) and Z.

To achieve 1⃝, we softly pull together (resp. push away)

clean regions from the same class (resp. different classes),

guided by the calculated region weights of CoRA. For every

pair of region embeddings ri and rj from the same class

and their region weights λi and λj , the loss function is

l(ri, rj) = − log
exp(λiri · λjrj/τ)∑

rv∈E\ri
exp(λiri · λvrv/τ)

, (7)

where τ is a temperature parameter. The objective function

is equivalent to minimizing the following loss:

Ll =
1

∑C
c=1

kNc×(kNc−1)
2

C∑

c=1

∑

ri,rj∈E(c)

✶ri ̸=rj
l(ri, rj). (8)

We term Ll local compactness loss, since it encourages the

intra-class compactness of clean local regions. By regular-

izing the task adaptation process with Ll, task-irrelevant

local representations from support samples (e.g. cluttered

backgrounds of image-noisy samples) can be effectively fil-

tered out during the optimization.

To achieve 2⃝, we propose a global dispersion loss that

encourages large distances among different class prototypes

aggregated by clean images. Inspired by ProtoNet [47], we

assign region-level queries to image-level class prototypes

in a soft manner, guided by the calculated image and re-

gion weights. Concretely, we first use all image embeddings

{ei}
Ns

=1 to construct C aggregated class prototypes as

µc =
1

Nc

∑

yi=c

ωiei, c = 1, 2, ..., C, (9)

where the impact of label-noisy samples from each class c
are weakened by a lower image weight ωi. Next, we esti-

mate the likelihood of every region embedding rj , based on

a softmax over distances to the prototypes:

p(y = m|rj) =
exp

(
ζ(rj ,µm)

)
∑C
c=1 exp

(
ζ(rj ,µc)

) . (10)

The global dispersion loss, Lg , thus can be expressed as

Lg = −
1

Ns × k

Ns×k∑

i=1

λi log
(
p(y = yi|ri)

)
, (11)

where λi is used to constrain the contribution of region i.
We experimentally found that using different collections of

region embeddings, rather than a fixed set of image embed-

dings (i.e. {ei}
Ns

=1) as queries to enlarge distances among

image-level class prototypies in different iterations is more

effective (in Eq. 10). One possible reason is that in addition

to promoting the inter-class dispersion of clean, image-level

class prototypes, Lg also complements Ll to improve the

intra-class compactness of clean regions by Eq. 10.

Finally, the two losses are complementary to strengthen

the mining of more discriminative representations from sup-

port samples, by optimizing the following objective:

L = βLl + Lg, (12)

where β is used to balance the importance of the two losses.

3.5. Task Adaptation and Inference

During task adaptation, we iteratively construct a set of

local regions from the inner-task support samples, and per-

form SGD update using L. At inference, we only retain

the adapted model to produce image representations of sup-

port samples, on which we build a noise-robust prototypical

classifier guided by the refined image weights in the mo-

mentum accumulator. More details are in Sup. Mat. (A).

Discussion. In terms of computational efficiency, DETA is

better equipped to handle the dual noises in few-shot tasks

than in training-time base classes or other generic scenar-

ios with large training datasets. Computational issues in

DETA caused by 1) the weighting of inner-task images and

regions, and 2) the multiplicative expansion of support sam-

ples (brought by cropped regions) for task adaptation, can

be substantially weakened due to the much smaller number

of samples in few-shot tasks. Please refer to Sup. Mat. (D)

for an analysis of DETA w.r.t. computational efficiency.

4. Experiments

In this section, we perform extensive experiments to

demonstrate the flexibility and effectiveness of DETA.

Datasets. We conduct experiments on Meta-Dataset (MD)

[51], the most comprehensive and challenging large-scale

FSL benchmark, which subsumes ten image datasets from

various vision domains in one collection, including ImN-

MD, Omglot, etc. Please refer to [51] for details of MD. We

consider two versions of MD in our experiments. Vanilla

MD for image-denoising: We assume the labels of the ten

vanilla MD datasets are clean – a commonly-used assump-

tion in generic label-denoising tasks [10, 21, 28], and di-

rectly use the vanilla MD to verify the image-denoising per-

formance of our method. Label-corrupted MD for label-

denoising: following [21, 28] we scrutinize the robustness

of DETA to label noise, by manually corrupting the labels

of various ratios (10%∼70%) of support samples. Yet, it

is worth mentioning that in the standard task-sampling pro-

tocol for MD, the generated test tasks are way/shot imbal-
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anced, a.k.a. varied-way varied-shot. To avoid cases where

the number of support samples in a class is less than 10,

we adopt a unified task sampling protocol for the two MD

versions by fixing the shot of every inner-task class to 10,

i.e., varied-way 10-shot. However, when conducting com-

parisons with state-of-the-arts, we still employ the standard

varied-way varied-shot protocol for fair comparison.

Baseline Methods. We verify the effectiveness and flexibil-

ity of DETA by applying it to a broad spectrum of baseline

methods applied on various diverse pre-trained models. For

A-TA, we consider the two strong baselines TSA [25] and

eTT [55]. Both of them integrate a model-specific adapter

to the pre-trained model: TSA integrates a residual adapter

to the single-domain URL (w/ RN-18 pre-trained on 84×84
ImN-MD) [24] and eTT attaches a self-attention adapter to

DINO (ViT-S) [5]. As for F-TA, motivated by [25]2, we use

the NCC head instead of a linear classifier which is common

in transfer learning literature. We denote this F-TA scheme

F-NCC, and use it for adapting different pre-trained models

including MOCO (w/ RN-50) [16], CLIP (w/ RN-50) [41],

DeiT (w/ ViT-S) [49] and Swin Transformer (Tiny) [33]. All

models are trained on Imagenet-1k, except for CLIP, which

is trained on large-scale image captions. For all baseline

methods, we match the image size in model pre-training

and task adaptation, i.e., the image size is set to 84 × 84
for TSA [25], and 224× 224 for other methods.

Implementation Details. Following [25, 55], we perform

task adaptation by updating the pre-trained model (or the

appended task adapter) for 40 iterations on each few-shot

task. During each iteration of our DETA, 4 and 2 image re-

gions are cropped from every support sample for TSA and

other methods, respectively. The projection head in our net-

work is a two-layer MLP, and the embedding dimension is

128. The two temperatures τ and π, are set to 0.5 and 0.07,

respectively. The hyperparameter β is set to 0.1. More de-

tailed settings are provided in Sup. Mat. (B).

Evaluation Metric. We evaluate our method on 600 ran-

domly sampled test tasks for each MD dataset, and report

average accuracy (in %) and 95% confidence intervals.

4.1. Experimental Results

In this part, we seek to answer the following questions.

Q1. Can DETA consistently enhance task adaptation results

for any types of baselines by performing image-denoising

on support samples?

Q2. Can DETA perform robustly in the presence of various

ratios of label-noisy support samples?

Q3. Can DETA boost the current state-of-the-art, after tack-

ling the overlooked image noise in the MD benchmark?

2The nonparametric NCC has been proven in [25] to be more effective

for adapter-based or finetuning-based task adaptation than other competi-

tors such as logistic regression, support vector machine and Mahal. Dist.

Image-denoising. To validate the effectiveness of DETA

on image-denoising, we conduct experiments on the vanilla

MD with six baseline approaches shown before. The quan-

titative results of the baseline methods w/ or w/o DETA are

reported in Table 1. We can observe from the results: 1)

DETA consistently improves adapter-based and finetuning-

based task adaptation methods, which confirms that DETA

is orthogonal to those methods and able to improve model

robustness to image noise for them. 2) DETA achieves sig-

nificant performance gains on both TSA (for 84 × 84-size

input images) and other methods (for 224 × 224-size im-

ages), suggesting DETA’s flexibility. 3) DETA can tackle

both the two types of image noise: background clutter (in

ImgN-MD, etc) and image corruption (in Omglot and Qk-

Draw), qualitative results are shown in Section 4.3.

Label-denoising. We further demonstrate the effectiveness

of DETA on label-denoising on the label-corrupted MD.

Concretely, we manually corrupt the labels of different ra-

tios (10%∼70%) of support samples for each task, by uni-

formly changing the correct image labels to the other C − 1
classes. Table 2 reports the average accuracy of different

baselines methods w/ or w/o our DETA on the ten MD

datasets, under different ratios of corrupted support sam-

ples. We have the following observations. 1) The few-shot

classification performance gradually decreases as the ratio

of label-noisy support samples increases. 2) DETA con-

sistently improves the baseline methods by a large margin

in all settings, demonstrating its effectiveness to improve

model robustness to label noise. 3) Compared with the ob-

tained image-denoising results in Table 1, the performance

gains of DETA w.r.t. label-denoising are more significant.

Possible reasons are twofold. i) The negative impact of label

noise on performance is more significant than that of image

noise, as the label-noisy samples contain almost no valuable

object features associated with the correct classes. ii) When

one class contains samples from other classes, our designed

CoRA can identify the harmful regions more precisely by

taking advantage of out-of-class relevance information.

State-of-the-art Comparison. So far, we can see that our

DETA can be flexibly plugged into both adapter-based and

finetuning-based task adaptation methods to improve model

robustness to the dual noises. It is interesting to investigate

whether DETA can further boost the current state-of-the-art

after tackling the image-noisy samples in the vanilla MD.

Hence, we apply our DETA to the state-of-the-art scheme

TSA [25] and conduct experiments on MD with a group

of competitors, e.g., FLUTE [50], URL [24], eTT [55]. In

Table 5, we can observe DETA considerably improves the

strong baseline TSA and establishes new state-of-the-art re-

sults on nearly all ten MD datasets, which further confirm

the effectiveness and flexibility of our DETA. More impor-

tantly, the achieved results also uncover the ever-overlooked

image noise problem of the MD benchmark. More qualita-
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Model Method ImN-MD Omglot Acraft CUB DTD QkDraw Fungi Flower COCO Sign Avg

URL TSA [25] 58.3 ± 0.9 80.7 ± 0.2 61.1 ± 0.7 83.2 ± 0.5 72.5 ± 0.6 78.9 ± 0.6 64.7 ± 0.8 92.3 ± 0.3 75.1 ± 0.7 87.7 ± 0.4 75.5

(RN-18) + DETA 58.7 ± 0.9 82.7 ± 0.2 63.1 ± 0.7 85.0 ± 0.5 72.7 ± 0.6 80.4 ± 0.6 66.7 ± 0.8 93.8 ± 0.3 76.3 ± 0.7 92.1 ± 0.4 77.3 (+1.8)

DINO eTT [55] 73.2 ± 0.8 93.0 ± 0.4 68.1 ± 0.7 89.6 ± 0.3 74.9 ± 0.5 79.3 ± 0.7 76.2 ± 0.5 96.0 ± 0.2 72.7 ± 0.6 86.3 ± 0.7 80.9

(ViT-S) + DETA 75.6 ± 0.8 93.6 ± 0.4 67.7 ± 0.8 91.8 ± 0.3 76.0 ± 0.5 81.9 ± 0.7 77.2 ± 0.5 96.9 ± 0.3 78.5 ± 0.6 88.5 ± 0.7 82.8 (+1.9)

MoCo F-NCC 70.7 ± 1.0 82.5 ± 0.4 55.1 ± 0.8 67.0 ± 0.8 81.3 ± 0.5 73.8 ± 0.7 54.8 ± 0.9 89.2 ± 0.5 76.8 ± 0.7 79.6 ± 0.6 73.0

(RN-50) + DETA 73.6 ± 1.0 83.9 ± 0.4 59.1 ± 0.8 73.9 ± 0.8 80.9 ± 0.5 76.1 ± 0.7 60.7 ± 0.9 92.3 ± 0.5 79.0 ± 0.7 84.2 ± 0.6 76.4 (+3.4)

CLIP F-NCC 67.0 ± 1.0 89.2 ± 0.5 61.2 ± 0.8 84.0 ± 0.7 74.5 ± 0.6 75.5 ± 0.7 57.6 ± 0.9 92.1 ± 0.4 72.1 ± 0.8 79.8 ± 0.7 75.3

(RN-50) + DETA 69.6 ± 0.9 92.2 ± 0.5 59.7 ± 0.8 88.5 ± 0.7 76.2 ± 0.6 77.2 ± 0.7 64.5 ± 0.9 94.5 ± 0.3 72.6 ± 0.8 80.7 ± 0.7 77.6 (+2.3)

DeiT F-NCC 90.0 ± 0.6 92.5 ± 0.2 65.3 ± 0.7 89.8 ± 0.4 73.9 ± 0.6 83.3 ± 0.5 70.3 ± 0.8 92.2 ± 0.4 83.0 ± 0.6 85.0 ± 0.6 82.5

(ViT-S) + DETA 90.8 ± 0.6 93.3 ± 0.2 71.6 ± 0.7 92.4 ± 0.4 78.0 ± 0.6 84.1 ± 0.6 75.2 ± 0.8 84.4 ± 0.4 95.5 ± 0.6 90.0 ± 0.6 85.2 (+2.7)

Vanilla F-NCC 90.8 ± 0.8 91.2 ± 0.3 57.6 ± 1.0 88.3 ± 0.5 76.4 ± 0.6 81.9 ± 0.8 67.8 ± 0.9 92.3 ± 0.4 82.5 ± 0.6 83.9 ± 0.8 81.3

SwinT + DETA 91.8 ± 0.9 92.5 ± 0.3 68.9 ± 0.9 92.7 ± 0.5 79.5 ± 0.7 82.8 ± 0.6 76.6 ± 0.8 96.4 ± 0.4 82.9 ± 0.4 89.9 ± 0.7 85.4 (+4.1)

Table 1. Few-shot classification results of different methods on MD. The A-TA methods TSA [25] and eTT [55] integrate a model-specific

adapter to the pre-trained model, while the F-TA method F-NCC use a model-agnostic NCC head for adapting different pre-trained models.

Model Method
Ratio of noisy labels

10% 30% 50% 70%

URL

(RN-18)

TSA [25] 72.8 65.0 54.1 38.3

+ DETA 74.8 (+2.0) 67.2 (+2.2) 56.0 (+1.9) 40.1 (+1.8)

DINO

(ViT-S)

eTT [55] 78.0 67.7 53.8 37.8

+ DETA 80.3 (+2.3) 70.7 (+3.0) 58.0 (+4.2) 41.9 (+4.1)

MoCo

(RN-50)

F-NCC 70.4 63.3 52.4 36.6

+ DETA 74.1 (+3.7) 68.0 (+4.7) 57.8 (+5.4) 40.1 (+3.5)

CLIP

(RN-50)

F-NCC 73.0 65.5 53.3 36.9

+ DETA 75.7 (+2.7) 69.7 (+4.2) 58.5 (+5.2) 40.8 (+3.9)

DeiT

(ViT-S)

F-NCC 80.0 74.3 64.1 44.9

+ DETA 83.3 (+3.3) 77.2 (+2.9) 67.1 (+3.0) 47.7 (+2.8)

Vanilla

SwinT

F-NCC 78.8 71.6 59.8 42.2

+ DETA 83.9 (+5.1) 77.3 (+5.7) 65.9 (+6.1) 46.8 (+4.6)

Table 2. Average few-shot classification results of different models

on MD, with various ratios of label-noisy support samples.

Image Region Image-denoising Label-denoising (30%)

! % 73.0 63.3

! ! 73.8 (+0.8) 63.9 (+0.6)

Table 3. The impact of data augmentation caused by cropped re-

gions on model performance. The baseline is MoCo (w/ RN-50).

ID Setting Img-denois. Label-denois.

A Baseline 73.8 63.9

B + CoRA∗ 74.1 64.3

C + CoRA 74.4 64.8

D + CoRA + Ll 75.5 65.4

E + CoRA + Lg 75.2 66.6

F + CoRA + Ll + Lg 75.8 67.1

G + CoRA + Ll + Lg + MA (DETA) 76.4 (+2.6) 68.0 (+4.1)

Table 4. Ablation studies for the designed components of DETA

on MD. The baseline model is MoCo (w/ RN-50), the ratio of

label-noisy support samples is set to 30%.

tive evidence for this problem are discussed in Section 4.3

and demonstrated in Figure 4.

4.2. Ablation Studies

Here, we conduct ablative analysis to investigate the de-

signed components of DETA in Table 4. We also study the

impact of data augmentation caused by cropped regions on

model performance in Table 3. Unless stated otherwise, the

baseline is MoCo (w/ RN-50), the ratio of label-noisy sup-

port samples is 30%, and the average results on the ten MD

datasets are reported.

Influence of Data Augmentation. DETA leverages both

the images and cropped regions of support samples to per-

form test-time task adaptation. It is important to answer the

question: are the performance improvements are mostly at-

tributed to data augmentation? To this end, we remove all

the designed components of DETA, and jointly use the im-

ages and cropped regions for task adaptation. The results

are reported in Table 3. Not surprisingly, without filtering

out task-irrelevant, noisy representations, the joint utiliza-

tion of images and regions for task adaptation does not re-

sult in significant performance gains.

Effectiveness of the Designed Components. DETA con-

tains three key components, including a CoRA module,

a local compactness loss Ll and a global dispersion loss

Lg . We conduct component-wise analysis by alternatively

adding one of them to understand the influence of each com-

ponent in Table 4. We take the random crop data augmenta-

tion as baseline (A). B or C: only leverage CoRA to weight

the support images at inference. CoRA∗: CoRA w/o out-of-

class relevance aggregation. G: Our DETA. “+ MA”: Infer-

ence with the momentum accumulator. As seen, each com-

ponent in DETA contributes to the performance. In particu-

lar, the results in F suggest that Lg and Ll complement each

other to improve the denoising performance. The results in

B&C and G verify the effectiveness of the out-of-class rel-

evance information for CoRA, and the momentum accumu-

lator for building noise-robust classifier, respectively.

Analysis of the Number of Region, Region Size, β, ζ(·).
In Sup. Mat. (C), we study the impacts of the number of

region, region size, β and ζ(·) on performance. We show

that 1) a too larger number of regions or a too small region

size does not result in significant performance gains, and 2)

the DETA framework is in general not sensitive to β and the

choice of ζ(·) within a certain range.
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Method (w/ RN-18) ♣ In-Domain Out-of-Domain
Avg

ImN-MD Omglot Acraft CUB DTD QkDraw Fungi Flower COCO Sign

Finetune [51] 45.8 ± 1.1 60.9 ± 1.6 68.7 ± 1.3 57.3 ± 1.3 69.0 ± 0.9 42.6 ± 1.2 38.2 ± 1.0 85.5 ± 0.7 34.9 ± 1.0 66.8 ± 1.3 57.0

ProtoNet [51] 50.5 ± 1.1 60.0 ± 1.4 53.1 ± 1.0 68.8 ± 1.0 66.6 ± 0.8 49.0 ± 1.1 39.7 ± 1.1 85.3 ± 0.8 41.0 ± 1.1 47.1 ± 1.1 56.1

FoProMA [51] 49.5 ± 1.1 63.4 ± 1.3 56.0 ± 1.0 68.7 ± 1.0 66.5 ± 0.8 51.5 ± 1.0 40.0 ± 1.1 87.2 ± 0.7 43.7 ± 1.1 48.8 ± 1.1 57.5

Alfa-FoProMA [51] 52.8 ± 1.1 61.9 ± 1.5 63.4 ± 1.1 69.8 ± 1.1 70.8 ± 0.9 59.2 ± 1.2 41.5 ± 1.2 86.0 ± 0.8 48.1 ± 1.1 60.8 ± 1.3 61.4

BOHB [43] 51.9 ± 1.1 67.6 ± 1.2 54.1 ± 0.9 70.7 ± 0.9 68.3 ± 0.8 50.3 ± 1.0 41.4 ± 1.1 87.3 ± 0.6 48.0 ± 1.0 51.8 ± 1.0 59.1

FLUTE [50] 46.9 ± 1.1 61.6 ± 1.4 48.5 ± 1.0 47.9 ± 1.0 63.8 ± 0.8 57.5 ± 1.0 31.8 ± 1.0 80.1 ± 0.9 41.4 ± 1.0 46.5 ± 1.1 52.6

eTT♯ [55] 56.4 ± 1.1 72.5 ± 1.4 72.8 ± 1.0 73.8 ± 1.1 77.6 ± 0.8 68.0 ± 0.9 51.2 ± 1.1 93.3 ± 0.6 55.7 ± 1.0 84.1 ± 1.0 70.5

URL (Base Model) [24] 56.8 ± 1.0 79.5 ± 0.8 49.4 ± 0.8 71.8 ± 0.9 72.7 ± 0.7 53.4 ± 1.0 40.9 ± 0.9 85.3 ± 0.7 52.6 ± 0.9 47.3 ± 1.0 61.1

+ Beta [24] 58.4 ± 1.1 81.1 ± 0.8 51.9 ± 0.9 73.6 ± 1.0 74.0 ± 0.7 55.6 ± 1.0 42.2 ± 0.9 86.2 ± 0.8 55.1 ± 1.0 59.0 ± 1.1 63.7

+ TSA [25] 59.5 ± 1.1 78.2 ± 1.2 72.2 ± 1.0 74.9 ± 0.9 77.3 ± 0.7 67.6 ± 0.9 44.7 ± 1.0 90.9 ± 0.6 59.0 ± 1.0 82.5 ± 0.8 70.7

+ TSA + DETA 60.7 ± 1.0 81.6 ± 1.2 73.0 ± 1.0 77.0 ± 0.9 78.3 ± 0.7 69.5 ± 0.9 47.6 ± 1.0 92.6 ± 0.6 60.3 ± 1.0 86.8 ± 0.8 72.8

Method (w/ RN-18) ♠ In-Domain Out-of-Domain
Avg

ImN-MD Omglot Acraft CUB DTD QkDraw Fungi Flower COCO Sign

CNAPS [42] 50.8 ± 1.1 91.7 ± 0.5 83.7 ± 0.6 73.6 ± 0.9 59.5 ± 0.7 74.7 ± 0.8 50.2 ± 1.1 88.9 ± 0.5 39.4 ± 1.0 56.5 ± 1.1 66.9

SimpCNAPS [3] 58.4 ± 1.1 91.6 ± 0.6 82.0 ± 0.7 74.8 ± 0.9 68.8 ± 0.9 76.5 ± 0.8 46.6 ± 1.0 90.5 ± 0.5 48.9 ± 1.1 57.2 ± 1.0 69.5

TransCNAPS [2] 57.9 ± 1.1 94.3 ± 0.4 84.7 ± 0.5 78.8 ± 0.7 66.2 ± 0.8 77.9 ± 0.6 48.9 ± 1.2 92.3 ± 0.4 42.5 ± 1.1 59.7 ± 1.1 70.3

SUR [8] 56.2 ± 1.0 94.1 ± 0.4 85.5 ± 0.5 71.0 ± 1.0 71.0 ± 0.8 81.8 ± 0.6 64.3 ± 0.9 82.9 ± 0.8 52.0 ± 1.1 51.0 ± 1.1 71.0

URT [29] 56.8 ± 1.1 94.2 ± 0.4 85.8 ± 0.5 76.2 ± 0.8 71.6 ± 0.7 82.4 ± 0.6 64.0 ± 1.0 87.9 ± 0.6 48.2 ± 1.1 51.5 ± 1.1 71.9

FLUTE [50] 58.6 ± 1.0 92.0 ± 0.6 82.8 ± 0.7 75.3 ± 0.8 71.2 ± 0.8 77.3 ± 0.7 48.5 ± 1.0 90.5 ± 0.5 52.8 ± 1.1 63.0 ± 1.0 71.2

Tri-M [32] 51.8 ± 1.1 93.2 ± 0.5 87.2 ± 0.5 79.2 ± 0.8 68.8 ± 0.8 79.5 ± 0.7 58.1 ± 1.1 91.6 ± 0.6 50.0 ± 1.0 58.4 ± 1.1 71.8

URL (Base Model) [24] 57.0 ± 1.0 94.4 ± 0.4 88.0 ± 0.5 80.3 ± 0.7 74.6 ± 0.7 81.8 ± 0.6 66.2 ± 0.9 91.5 ± 0.5 54.1 ± 1.0 49.8 ± 1.0 73.8

+ Beta [24] 58.8 ± 1.1 94.5 ± 0.4 89.4 ± 0.4 80.7 ± 0.8 77.2 ± 0.7 82.5 ± 0.6 68.1 ± 0.9 92.0 ± 0.5 57.3 ± 1.0 63.3 ± 1.1 76.4

+ TSA [25] 59.5 ± 1.0 94.9 ± 0.4 89.9 ± 0.4 81.1 ± 0.8 77.5 ± 0.7 81.7 ± 0.6 66.3 ± 0.8 92.2 ± 0.5 57.6 ± 1.0 82.8 ± 1.0 78.3

+ TSA + DETA 61.0 ± 1.0 95.6 ± 0.4 91.4 ± 0.4 82.7 ± 0.7 78.9 ± 0.7 83.4 ± 0.6 68.2 ± 0.8 93.4 ± 0.5 58.5 ± 1.0 86.9 ± 1.0 80.1

Table 5. Comparison with state-of-the-arts on ten MD datasets (84× 84). ♣ and ♠ indicate the single-domain (trained on ImN-MD only)

and multi-domain (trained on 8 datasets) settings in MD, respectively. ♯ means the feature backbone is ViT-T, with results copied from [55].
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Figure 4. Visualizations of the cropped regions and calculated weights for ten 5-way 10-shot tasks sampled from the 10 MD datasets. We

record the region weights after the last iteration. To facilitate comparison, the weights in each class are divided by their maximum value.

4.3. Qualitative Results

Here, we provide some visualization results to qualita-

tively see how our method works. In Figure 4, we present

the visualization of the cropped regions and the calculated

weights of CoRA for few-shot tasks from MD. As observed,

CoRA successfully assigns larger (resp. smaller) weights to

task-specific clean (resp. task-irrelevant noisy) regions for

each task. In Figure 5, we show the CAM [44] visualiza-

tion of the activation maps for two tasks from the represen-

tative ImgN-MD and CUB. As shown, our method helps

the baseline method accurately locate the task-specific dis-

criminative regions in label-clean but image-noisy samples.

For example, on CUB, our method yields more attention on

birds rather than cluttered backgrounds.

5. Conclusions

In this work, we propose DETA, a first, unified and plug-

and-play framework to tackle the joint (image, label)-noise

issue in test-time task adaptation. Without extra supervi-

sion, DETA filters out task-irrelevant, noisy representations

by taking advantage of both global visual information and

local region details of support sample. We evaluate DETA

on the challenging Meta-Dataset and demonstrate that it

consistently improves the performance of a wide range of

baseline methods applied to various pre-trained models. We

also uncover the overlooked image noise in Meta-Dataset,

by tackling this issue DETA establishes new state-of-the-

art results. We hope this work can bring new inspiration to

few-shot learning as well as other related fields.
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Figure 5. CAM visualizations on two 5-way 10-shot tasks sampled

from ImgN-MD and CUB, respectively. Two images per class are

listed for each task. Please zoom in for details.
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