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  Black denim mid-rise 
  straight leg trousers.

 Dark blue cotton-denim cropped 
 jeans with straight leg and high  
 waist featuring belt loops and  
 front button fastening. 

 Blue/black dress with long   
 sleeves and tied waist featuring 
 all-over floral print, band 
 collar and front button fastening.

 Light multicolour  knit jumper 
 featuring round neck and fitted- 
 cuff sleeves.

Tight fuchsia turtleneck 
wool long-sleeved 
sweater.

 Tight gray crewneck  
 wool long-sleeved 
 sweater.

 Tight black zip half-
 height neck wool 
 long-sleeved sweater.

 Black denim mid-rise 
 bell bottoms trousers.

 Black denim mid-rise 
 wide leg trousers.

(a) Garment Synthesis (b) Garment Manipulation

Figure 1. Results of our proposed DiffCloth. DiffCloth is able to produce garments with part-level semantics well-aligned to the prompt
and allows for precise manipulation of the generated results by simply modifying the text description.

Abstract

Cross-modal garment synthesis and manipulation will
significantly benefit the way fashion designers generate gar-
ments and modify their designs via flexible linguistic inter-
faces. However, despite the significant progress that has
been made in generic image synthesis using diffusion mod-
els, producing garment images with garment part level se-
mantics that are well aligned with input text prompts and
then flexibly manipulating the generated results still re-
mains a problem. Current approaches follow the general
text-to-image paradigm and mine cross-modal relations via
simple cross-attention modules, neglecting the structural
correspondence between visual and textual representations
in the fashion design domain. In this work, we instead intro-
duce DiffCloth, a diffusion-based pipeline for cross-modal

*Equal contribution. †Corresponding author.

garment synthesis and manipulation, which empowers dif-
fusion models with flexible compositionality in the fashion
domain by structurally aligning the cross-modal semantics.
Specifically, we formulate the part-level cross-modal align-
ment as a bipartite matching problem between the linguistic
Attribute-Phrases (AP) and the visual garment parts which
are obtained via constituency parsing and semantic seg-
mentation, respectively. To mitigate the issue of attribute
confusion, we further propose a semantic-bundled cross-
attention to preserve the spatial structure similarities be-
tween the attention maps of attribute adjectives and part
nouns in each AP. Moreover, DiffCloth allows for manipu-
lation of the generated results by simply replacing APs in
the text prompts. The manipulation-irrelevant regions are
recognized by blended masks obtained from the bundled at-
tention maps of the APs and kept unchanged. Extensive ex-
periments on the CM-Fashion benchmark demonstrate that
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DiffCloth both yields state-of-the-art garment synthesis re-
sults by leveraging the inherent structural information and
supports flexible manipulation with region consistency.

1. Introduction
Leveraging artificial intelligence to generate and alter

garment images based on control signals from a variety
of modalities has the potential to revolutionize the fashion
design process. Particularly, cross-modal garment synthe-
sis [6, 13, 14, 18, 19, 28, 39] and manipulation by linguis-
tic interfaces have gradually attracted increasing attention
from the academic community. Unfortunately, the visual
semantics in the fashion domain are different from those
in generic image generation tasks due to its inherent struc-
tural property, e.g. each type of garment has a distinct shape
and can be partitioned into several garment parts. However,
existing work [6, 13, 14, 18, 19, 28, 39] on cross-modal
garment synthesis are primarily built on two-stage pipelines
of generic generative transformers and ignore the structural
correspondences between the garment images and the input
text prompts. This leads to imprecise cross-modal semantic
alignment and poor semantic compositionality.

Given the recent success of diffusion models [23, 26, 29,
31], which provide flexible control of the generative pro-
cess through guidance mechanisms, departing from prior
approaches and leveraging diffusion models appears a nat-
ural approach. However, we observe the following two se-
mantic issues when applying state-of-the-art text-based im-
age generation models to the fashion domain: 1) Garment
Part Leakage, where one or more of the garment parts de-
scribed in the prompt are not actually generated in the im-
age; and 2) Attribute Confusion, where the attributes and
the garment parts are wrongly paired or some attributes are
ignored in the generated image. Examples of the aforemen-
tioned issues are provided in Fig. 2. In Fig. 2(a), examples
of garment part leakage are provided, where the model fails
to generate the pockets in the dusty rose jacket and the but-
ton fastening in the blue shirt. In Fig. 2(b), examples of
attribute confusion are provided, where the color attributes
‘blue’ and ‘brown’ bind to the incorrect garment parts and
the ‘plain white’ attribute is missing in the striped shirt.

To solve the above issues, we propose DiffCloth, a dif-
fusion model with structural semantic consensus guidance
to achieve accurate fine-grained part-level semantic align-
ment. To be specific, a semantic segmentor is trained
to explore the visual structure and divide the visual gar-
ment into part-level images, e.g., sleeves, body piece, hood,
etc. Additionally, a constituency parsing tree is lever-
aged as a linguistic structural parser to extract the col-
lection of Attribute-Phrases. By formulating the cross-
modal semantic alignment as a bipartite matching prob-
lem between these two sets of semantic components, we

A dusty rose jacket 
with front zip fastening 
and two side pockets.

A blue shirts with 
classic collar and 
front button fastening.

(a) Garment Part Leakage

A black and white 
striped shirt with 
plain white pocket.

(b) Attribute Confusion

A blue shirt with 
brown collar and 
long sleeve.

(c) Region Inconsistency in Manipulation

A navy blue jacket with 
straight-point collar and blue 
belted waist.

A navy blue jacket with red 
straight-point collar and blue 
belted waist.

Manipulate
unexpected region 
inconsistency

Garment Synthesis

Garment Manipulation

Figure 2. Three typical issues of garment synthesis and manipula-
tion. (a) Garment Part Leakage: one or more of the garment parts
described in the prompt are not accurately generated; (b) Attribute
Confusion: the attributes and garment parts are wrongly paired or
some attributes are ignored; (c) Region Inconsistency in Manipu-
lation: the manipulation-irrelevant regions are carelessly modified.

introduce a Hungarian matching loss as the summation of
CLIP-similarities [24] between the part-level images and
the Attribute-Phrases. This Hungarian matching loss can be
used to guide the diffusion model to achieve structural con-
sensus across images and text. Furthermore, we propose a
semantic-bundled cross-attention module to avoid the afore-
mentioned attribute confusion issue. Specifically, we ob-
serve that the attention maps of the attribute adjective and
the garment part nouns are different when attribute confu-
sion occurs while they share similar spatial structures when
attributes are matched to the correct garment parts. Hence,
we propose to preserve the spatial structure similarity be-
tween the attribute adjective and the garment part subject
in the cross-attention module by a semantic-bundled loss,
which aims to minimize the Jensen-Shannon divergence [8]
between these two maps. This semantic-bundle loss is also
utilized to guide the sampling process of DiffCloth.

In order to further allow easy manipulation of the gen-
erated images, DiffCloth introduces a mechanism to ma-
nipulate input images based solely on changes in the in-
put text prompt and, unlike prior approaches [1, 21], does
not require explicit masking of the areas that should be
changed. By injecting the cross-attention maps during the
diffusion steps, DiffCloth can automatically find which pix-
els should be attended to and should be modified. When
for instance changing the attribute, e.g. “long sleeve” →
“short sleeve”, only the cross-attention maps of the bundled
Attribute-Phrase need to be changed and the attention maps
of other textual tokens can be frozen. Moreover, we pro-
pose a consistency loss to prevent irrelevant content from
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being carelessly edited. An example of unexpected region
inconsistency is given in Fig.2 (c), where the blue belt is
wrongly modified to a red one. The consistency loss is fur-
ther designed to preserve the pixel-level consistency of the
exclusive area indicated by the attention map of the changed
tokens. Comprehensive experiments on the CM-Fashion
benchmark demonstrate that DiffCloth yields state-of-the-
art generation results in garment synthesis and further sup-
ports flexible manipulation by editing the text prompt in a
user-friendly manner.

Our main contributions are summarized as follows:

• We propose a structural semantic consensus guidance
to address the structural semantic alignment across vi-
sual garments and linguistic attribute-phrases as a bi-
partite matching problem via the Hungarian algorithm.

• We propose a new semantic-bundled cross-attention,
which encourages spatial structure similarity between
the cross-attention maps of attributes and part subjects,
to alleviate attribute confusion issues.

• We introduce a region consistency mechanism to pre-
vent irrelevant content from being modified during gar-
ment manipulation.

• Extensive experiments on the CM-Fashion benchmark
verify the superiority of DiffCloth, particularly in
terms of accurate text-image alignment for both gar-
ment synthesis and manipulation.

2. Related work
Text-guided image synthesis. Early works explored text-
guided image synthesis in the context of GANs [32, 36,
37, 40, 42] or VQVAE [33]. However, more recent re-
search has demonstrated impressive results using large-
scale auto-regressive models [27, 38] and diffusion mod-
els [23, 26, 29, 31]. Stable Diffusion [29] proposes to
encode an image with an autoencoder and then leverage
a diffusion model to generate continuous feature maps in
the latent space. Imagen [31] addresses the importance
of language understanding by using a frozen T5 [25] en-
coder, a dedicated large language model. However, gen-
erating images that faithfully align with the input prompt
remains challenging. To enforce heavier reliance on the
text, classifier-free guidance [12, 23, 31] allows extrapo-
lating text-driven gradients to better guide the generation
by strengthening the reliance on the text. Despite this, the
semantic flaws of text-to-image models still exist. Recent
work has begun to address this issue, such as Composable
Diffusion models [20], which compose multiple outputs of a
pre-trained diffusion model. Each output is tasked with cap-
turing different image components which are then joined us-
ing compositional operators to attain a unified image. Struc-
tureDiffusion [7] and Attend-and-Excite [3] optimize the at-

tention map calculation for better image generation. How-
ever, these attempts still fall short of generating garment im-
ages with fine-grained compliance with the input prompts
as the structural correspondences between garment repre-
sentations of the two modalities are often ignored. In this
work, we strive to achieve part-level cross-modal semantic
alignment by aligning those visual and linguistic structured
representations in a fine-grained manner.
Image Manipulation with Generative Models. A number
of techniques [1, 15, 30, 34] have been developed based on
diffusion models to enable editing, personalization and in-
version to token space. Dreambooth [30] and Imagic [15]
involve fine-tuning of the generative models. ImagenEdi-
tor [34] frames editing as text-guided image inpainting, and
involves user specified masks. Blended diffusion [1] pro-
vides a clip-guided mask-based editing method. However,
the mask provided by the user is often not accurate enough,
and there will be disharmony in the editing boundary. More
recently, Prompt-to-Prompt [9] explored mask-free image
editing through the interaction of attention maps. However,
the manipulation results often affect content that is irrele-
vant to the modification, leading to unsatisfactory results.
In this paper, we explore an attention-based garment ma-
nipulation method by injecting the attention maps of the tar-
get Attribute-Phrase (AP) while keeping other regions un-
changed using a mask that blends the attention maps.

3. Methodology

Our proposed DiffCloth is built on Stable Diffusion [29],
which we briefly review in Sec. 3.1. We then introduce
our structural semantic consensus guidance in Sec. 3.2,
which addresses the problem of garment part leakage. Our
semantic-bundled cross-attention mechanism is then pre-
sented in Sec. 3.3 in order to avoid the confusion between
attributes before we present our garment manipulation in
Sec. 3.4. An overview of DiffCloth is provided in Fig. 3.

3.1. Preparatory

Stable Diffusion. Our proposed DiffCloth is built on
Stable Diffusion [29], which consists of an autoencoder
model and a diffusion model. The autoencoder is trained
to encode an image x0 as lower-resolution latent maps z0
for efficient diffusion training:

LAE = ∥x0 − Dec(Enc(x0))∥2, (1)

where LAE is the reconstruction loss for training the en-
coder Enc and decoder Dec. z0 = Enc(x0) and x0 can
be approximately reconstructed by Dec(z0). The diffusion
model contains two stages: a diffusion and a denoising
stage. In the diffusion stage, z0 is gradually transformed
into a normal distribution by gradually adding noise for T
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Figure 3. Overview of DiffCloth. During the diffusion step, we leverage constituency parsing to extract the text structure and obtain a tree
of all attribute- phrases (APs). Given this structure information, the structural semantic consensus partitions the garment images using a
segmentor into multiple visual parts, which are then matched with the APs using a bipartite matching to get structural semantic alignment.
This generates the LHungarian loss. Similarly, to preserve structure similarity between the attention maps of the attribute adjectives and
the corresponding garment part subjects we introduce semantic-bundled cross-attention, which addresses the attribute confusion issue via
the Lbundle loss. More specifically, query Q is obtained from the visual representation Xt, while keys K are computed for each word.
Lbundle then aims to encouraging similar attention maps for each AP. Finally, the losses are used to refine the feature representation of the
diffusion model at each step.

steps following the Gaussian transition q(zt|zt−1):

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (2)

where β denotes the noise scale, I is the identity matrix, and
zt is the latent of the timestep t .

By optimizing a noise estimator ϵθ, the model is trained
to reverse the diffusion process and generate images from
random noise by optimizing the loss LDM:

LDM = Et,z0,ϵ

[
∥ϵθ(zt)− ϵ∥2

]
. (3)

A synthesized image x∗
0 is obtained by denosing noise

xT for T steps and decoding it using the decoder x∗
0 =

Dec(z∗0).
DiffCloth is trained on the garment images by optimizing

Eq. (3) and sampled using the guidance from our proposed
structure semantic consensus and semantic-bundled losses,
which will be detailed in the following sections.

3.2. Structural Semantic Consensus Guidance

Our structural semantic consensus guidance is based on
the intuition that there are structural similarities between
visual and textual representations in cross-modal garment
synthesis. As shown in Fig. 3, a segmentor trained on noisy
inputs can be used to partition garment images into multiple

visual parts that adhere to the standard structural patterns
used by humans in garment design.1 The visual structured
components can be denoted as:

V = [Vfull, V1, V2, ..., Vm], (4)

where Vfull denotes the full garment image and Vi is the ith

part image of Vfull indicated by the mask Mi, e.g., sleeves,
body piece, hood.

Similarly, we can obtain the text structure by leverag-
ing constituency parsing to extract a tree of all Attribute-
Phrases (APs), which are crucial for depicting the semantic
components of a garment image:

W = [Wfull,W1,W2, ...,Wm], (5)

where Wfull denotes the full prompt and Wi is the ith lin-
guistic AP in the tree structure e.g., ‘blue sweater’, ‘classic
hood’, ‘long sleeves’, where meaningless conjunctions, e.g.,
‘and’, ‘with’ are omitted.

Bipartite Matching. In order to generate garment im-
ages with part-level consensus between these two collec-
tions of visual and linguistic components, we formulate
the cross-modal semantic alignment as a set-to-set bipartite
matching problem. Our objective is to find a permutation,

1More details are provided in Sec. 4.
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Prompt: Navy blue jacket with straight-point red collar, front button and long sleeves.

Stable Diffusion DiffCloth

Attribute Confusion Bundled semantics 
in AP

navy blue jacket red collar navy blue jacket red collar

Figure 4. Visualization of the cross-attention of Stable Diffusion
and our DiffCloth.

σ, of the set of m semantic components, which minimizes
the pair-wise semantic matching loss Lmatch(Vi,Wσ̂(i)):

σ̂ = argmin
σ

m∑
i

Lmatch(Vi,Wσ̂(i)), (6)

where Lmatch(Vi,Wσ̂(i)) = CLIP(Vi,Wσ̂(i)) and
CLIP(·, ·) denotes the CLIP similarity [24]. The optimal
matching is obtained by using the Hungarian algo-
rithm [17]. Further, we define our Hungarian matching
loss to compute the hierarchical structure alignment score
on V and W by calculating the part-level and image-level
alignment scores:

LHungarian(V,W) =

m∑
i

CLIP(Vi,Wσ̂(i))+CLIP(Vfull,Wfull).

(7)
The latent code zt in the tth denoising step of the diffu-

sion model is then refined via the structural semantic con-
sensus guidance:

ẑt ← zt + α · ∇ztLHungarian(ϕ(zt),W), (8)

where ϕ(zt) denotes the collection of visual structured com-
ponents for the decoded image corresponding to zt.

3.3. Semantic-bundled Cross-attention

Current text-to-image diffusion models, such as Stable
Diffusion, have demonstrated that cross-attention between
prompt tokens and visual feature maps results in coarse se-
mantic alignment. However, for complex garment descrip-
tions, a phenomenon of ‘attribute confusion’ arises, which
can severely impact the reliability of fashion generators.
Specifically, attributes and garment parts may be wrongly
paired and some attributes may be ignored in the gener-
ated image, resulting in imprecise and unsatisfactory gen-
erated garments. An example of this is provided in Fig. 4,
where the output image is a ‘Red jacket with blue cuffs.’
while the input prompt is ‘Navy blue jacket with red col-
lar.’ To reveal the underlying reason for the incorrect attri-
bution of ‘red’, we visualize the cross-attention maps be-
tween the visual tokens and the linguistic tokens in Fig. 4.

Figure 5. Overview of the garment manipulation pipeline.

It can be observed from the results given by Stable Dif-
fusion that the attention map of ‘red’ is spatially similar
to that of ‘jacket’ rather than ‘collar’, which leads to the
unexpected mismatched attention regions for the Attribute-
Phrase pair ‘red collar’. To address this issue, we propose
a semantic-bundled cross-attention mechanism that lever-
ages a semantic-bundled loss Lbundle to preserve the spatial
structure similarity between the attention maps of the at-
tribute adjectives and the garment part subject. Formally,
given an input prompt Wfull, we first obtain the collection
of attribute-phrases {W1,W2, ...,Wm} using the aforemen-
tioned linguistic parsing tree. Our goal is to make the at-
tention maps of the Ni attribute adjectives for the AP Wi,
{W j

i }
Ni
j=1, and the part noun WNi+1

i , i.e., {M j
i }

Ni+1
j=1 share

similar spatial structures. We therefore regard an attention
map M j

i as a multi-dimensional probability distribution and
define the internal structural similarity for Wi as:

dIS(Vfull,Wi) =
∑

(j,k)∈(Ni+1
2 )

dJS(M
j
i ,M

k
i ), (9)

where
(
Ni+1

2

)
denotes the 2-combination set of the Ni +

1 indexes, dJS is the Jensen-Shannon Divergence [8], and
the attention mask M j

i is obtained from the cross-attention
between the text token W j

i and image Vfull. We then define
the semantic-bundled loss for {Wi}mi=1 as

Lbundle(Vfull,W) =

m∑
i=1

dIS(Vfull,Wi). (10)

Similarly to Eq. (8), we again shift the latent code ẑt to bun-
dle the semantics of attribute adjectives and the part noun in
the APs in the denosing stage:

z′t ← ẑt − β · ∇ztLbundle(zt,W). (11)

3.4. Region Consistency for Garment Manipulation

DiffCloth is inspired by Prompt-to-Prompt [9] and al-
lows manipulation of the generated images by simply mod-
ifying the input text prompt. Formally speaking, given an
original prompt input and its W , we can locally manipulate
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Black cotton women tops with 
jersey knit ,crew neck and short 
sleeves, featuring logo print at 
the chest.

Green women dresses with 
classic collar, long sleeves, 
and drawstring fastening waist, 
featuring painterly print.

Black cotton shirt with chest 
patch pocket, round neck and 
long sleeves, featuring logo 
patch at the chest.

Navy blue cotton men sweaters 
knitwear with drawstring hood and 
long sleeves, featuring front zip 
fastening and single patch pocket.
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Figure 6. Results of DiffCloth on the garment synthesis task for some difficult examples that require the precise generation of fine-grained
details. DiffCloth outperforms existing SOTA methods and is capable of generating semantically-correct results. The boxes are used to
highlight specific areas that should contain the elements highlighted in the text.

an output image I that is generated from W by simply mod-
ifying W to W ∗ which will result in the updated image I∗.
For example, we can change a text token W j

i to W j,∗
i and

replace its attention map M j
i with a new one M j,∗

i in each
diffusion step. However, we find that this simple applica-
tion of Prompt-to-Prompt [9] degrades our bundled seman-
tics for APs that were introduced in Sec. 3.3 and may lead
to attribute confusion problems in the editing phase.

To preserve the bundled semantics for attribute-phrases
during manipulation, as shown in Fig. 5, we propose to
replace the attention maps of all tokens {W j

i }
Ni+1
j=1 in an

Attribute-Phrase Wi rather than solely handling the token
we need to change. For example, if we want to change
the attribute of the sleeves, e.g., “long sleeves” → “short
sleeves”, we need to inject the attention maps of both “long”
and “sleeves”. Following Prompt-to-Prompt [9], we need to
run the diffusion step again by merging the new attention
maps {M j,∗

i }
Ni+1
j=1 with the fixed ones. In the tth denois-

ing step, we can then use the semantic-bundled guidance in
Eq. (11) again to preserve the internal structural similarity
for {M j,∗

i }
Ni+1
j=1 .

Another issue with garment manipulation is how to avoid
editing regions that are not relevant to the Attribute-Phrase
W ∗

i that is being modified. To address this, we select a dy-
namic threshold p as the first quartile of the pixel activations
in the attention map M j

i and use it to binarize M j
i to a mask

Bj
i by thresholding. In this way, we obtain binarized masks
{Bj

i }
Ni+1
j=1 and {Bj,∗

i }
Ni+1
j=1 according to Wi and W ∗

i , re-
spectively. The irrelevant region is then indicated by the
blended mask Bi:

Bi = (

Ni+1⊕
j=1

Bj
i )

⊕
(

Ni+1⊕
j=1

Bj,∗
i ), (12)

where
⊕

denotes boolean summation. Similarly, when
modifying multiple APs, e.g., {Wi}i∈Γ, we can compute a
global mask B across {Wi}i∈Γ as B =

⊕
i∈Γ Bi, where Γ

denotes the indexes of the APs that are being manipulated.
The region consistency is encouraged in each denoising

step by blending the two latent representations zt and z∗t
using B:

z∗t−1 ← Denoise(B · (zt − z∗t ) + z∗t ) (13)
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Figure 7. Human evaluation results for the garment synthesis and
garment manipulation tasks.

where Denoise(·) denotes a DiffCloth denoising process.

4. Experiments
Datasets:

Experiments are conducted on the CM-Fashion
dataset [41], which consists of garment images and their
mask at resolution 512×512. This high-resolution fashion
dataset contains 509,482 image-text pairs from various
garment categories and is split into 409,482/100,000
training/testing pairs. In addition, we used 100,000
image-mask pairs from the training set to train the seg-
mentor for segmenting noisy garment images into parts.
Implementation Details: The implementation closely
follows Stable Diffusion [29]. However, we finetuned the
model on the CM-Fashion dataset as the pre-trained Stable
Diffusion did not produce garments on a homogeneous
white background. Our models are trained on 8 Tesla V100
GPUs with a batch size of 32. During the generator training
phase, the model is trained for 80 epochs with learning rate
1e-6.

Our segmentor is Pointrend [16], which was trained us-
ing input images with added noise. The model was trained
for 150 epochs with a learning rate of 4e-5. Further details
are provided in the supplementary material.
Baselines and Evaluation Metrics. For the generation
step, we compare DiffCloth to the state-of-the-art methods
TediGAN [35], Cogview [5], VQGAN [4], ARMANI [41],
Stable Diffusion [29], Composable Diffusion [20], Struc-
tureDiffusion [7] and Attend-and-Excite [3]. To ensure fair
comparisons, all models use our generator that has been

Method FID ↓ IS ↑ CLIPScore ↑

TediGAN [35] 27.37 18.46 0.5587
Cogview [5] 12.198 23.99 0.6572
VQGAN [4] 13.249 20.33 0.6423

ARMANI [41] 12.336 24.32 0.6988
Stable Diffusion [29] 9.475 24.59 0.8169

Composable Diffusion [20] 9.499 25.91 0.8306
StructureDiffusion [7] 9.238 25.36 0.8459
Attend-and-Excite [3] 9.351 26.87 0.8241

DiffCloth(Ours) 9.201 26.95 0.8974
Comparison of DiffCloth to prior state-of-the-art approaches on
the CM-Fashion dataset. ↓ means the lower the better, while ↑

means the opposite.
Comparison of DiffCloth to prior state-of-the-art ap-

proaches on the CM-Fashion dataset. ↓ means the lower
the better, while ↑ means the opposite. Table 1.
Comparison of DiffCloth to prior state-of-the-art approaches on
the CM-Fashion dataset. ↓ means the lower the better, while ↑
means the opposite.

trained on the CM-fashion dataset and we use the official
inference code provided by the authors. For the manip-
ulation step, we leverage Blended Diffusion [1], Prompt-
to-Prompt [9], and Null-text Inversion [22] as our primary
points of comparison, as this allows us to use the same diffu-
sion model as for DiffCloth.2 We employ three widely used
metrics, namely the Fréchet Inception Distance (FID) [11],
the Inception Score (IS) [2] and the CLIPScore [10] to eval-
uate the quality of the generation results. Furthermore, we
conduct an Human Evaluation to evaluate different methods
according to the text-image similarity of their results as well
as their overall generation and manipulation quality. More
specifically, for the garment synthesis task, we requested
that participants assess the generated images based on two
criteria: the extent of garment part leakage and the amount
of attribute confusion. For the garment manipulation task,
we instructed them to evaluate the performance based on
whether a model preserves the consistency of the content in
regions that are not relevant to the manipulation.

4.1. Comparison With State-Of-The-Art Methods

Qualitative Result We provide a qualitative comparison of
DiffCloth’s garment generation ability compared to state-
of-the-art approaches [4, 5, 26, 29]. DiffCloth is able to
synthesize realistic fashion images that comply with the tex-
tual description, while prior approaches generate garment
images that match the overall content of the textual de-
scription, but tends to neglect fine-grained information in
the input text (red box in Fig. 6). In contrast, DiffCloth is
capable of generating semantically bound parts by utiliz-
ing our proposed semantic-bundled cross-attention module.
Specifically, words located within an AP generate separate

2Note, as Blended Diffusion [1] is not a mask-free approach, we pro-
vide it with a manually drawn mask that reflects the text description.
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Input 
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(simplified)
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Blended
Diffusion

change cap sleeve to 
short sleeve

change collar to red 
collar

change chest pocket to 
red chest pocket

Prompt

Brown/blue cotton 
ladies' top with floral 
print, keyhole collar and 
cap sleeves.

Navy blue jacket with 
straight-point collar , 
front button and belted 
waist. 

White long sleeve shirt 
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Figure 8. Results of DiffCloth for garment manipulation. The
boxes are used to highlight specific areas that should contain the
elements highlighted in the text.

attributes, which enhance DiffCloth’s ability to generate se-
mantically coherent images.

For the garment manipulation, the results in Fig. 8
demonstrate the superiority of our proposed approach. We
can locally manipulate an image and maintain the consis-
tency of the content of the manipulation-irrelevant regions
by using our region consistency strategy.

Quantitative Result We apply FID [11] and IS [2] to
measure the quality of the synthesized images. Further,
we use the CLIPScore [10] to measure the relevance of
the text to a given image. A higher CLIPScore indicates
that the text is more relevant to the image. As reported in
Tab. 4, our proposed DiffCloth outperforms the baselines
Stable Diffusion [29], Composable diffusion [20], Struc-
tureDiffusion [7] and Attend-and-Excite [3] in all cases by a
large margin, obtaining the lowest FID score and the high-
est IS and CLIPScore for the garment synthesis. In addi-
tion, we designed two human evaluation studies to quan-

Method L1 L2 FID↓ IS ↑ CLIPScore ↑

DiffCloth† ✗ ✗ 9.475 24.59 0.8169
DiffCloth⋆ ✓ ✗ 9.381 25.45 0.8821
DiffCloth∗ ✗ ✓ 9.221 26.69 0.8423

DiffCloth ✓ ✓ 9.201 26.95 0.8974
Table 2. Quantitative results of our ablation studies. L1 and L2 de-
note the structural semantic consensus guidance and the semantic-
bundled cross-attention, respectively.

titatively compare the generation and manipulation results
with the baselines. For generation, we ask participants to
select the generated results that exhibit minimal attribute
confusion and Garment Part Leakage. For the manipulation
task, we evaluate the effectiveness of the method by ask-
ing participants to select the results that best preserves the
area that is irrelevant to the text modification. Aggregating
the scores per model in Fig. 7, we observe that DiffCloth’s
results are preferred for both the garment synthesis or ma-
nipulation tasks. Furthermore, it is also noticeable that the
human-based evaluation indicates a larger difference among
the models compared to the machine evaluation.

4.2. Ablation study

In the garment synthesis task, to validate the effective-
ness of the structural semantic consensus guidance and the
semantic-bundled cross-attention, we design three variants
of our proposed method and evaluate the performance of the
different variants according to their metric scores. We de-
note Stable Diffusion [29] as DiffCloth†, DiffCloth without
structural semantic consensus guidance as DiffCloth⋆, and
denote DiffCloth without semantic-bundled cross-attention
as DiffCloth∗. For the garment manipulation task, we con-
sider DiffCloth without region consistency as our ablated
model and denote it as DiffCloth£.

As reported in Tab. 2, incorporating either the struc-
tural semantic consensus guidance or the semantic-bundled
cross-attention (or both) leads to significant improvements
in FID, IS and CLIPScore. These results indicate that our
proposed mechanisms can produce more realistic and se-
mantically accurate results. Additionally, as illustrated in
Fig. 9, the incorporation of structural semantic consensus
guidance (as DiffCloth⋆) leads to the generation of more ac-
curate parts, whereas the exclusion of the semantic-bundled
cross-attention increases attribute confusion. Finally, re-
moving the region consistency strategy in garment manip-
ulation causes the model to affect parts that should not be
modified, as demonstrated in Fig. 9.

5. Conlusion
In this work, we propose DiffCloth, a diffusion-based

pipeline for garment synthesis and manipulation, which
aligns the structural cross-modal semantics between input
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Figure 9. Qualitative results of our ablation studies for garment
synthesis (top) and manipulation (bottom).

prompts and garment images to address the problem of gar-
ment part leakage and attribute confusion. Moreover, Dif-
fCloth provides a convenient way to manipulate its gener-
ated garments by replacing the Attribute-Phrase in the text
prompt, while ensuring that the content in regions unrelated
to the modification is preserved using a consistency loss.
Experiments on the CM-Fashion demonstrate DiffCloth’s
superior effectiveness compared to existing methods.
Limitation and future work: A limitation of our approach
is the sensitivity to noisy text, which may make accurate
correspondance matching more challenging. To address this
limitation, we aim to explore how the text information can
be leveraged to further strengthen the model’s robustness.
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