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Abstract

Event-based motion deblurring has shown promising re-
sults by exploiting low-latency events. However, current
approaches are limited in their practical usage, as they as-
sume the same spatial resolution of inputs and specific blur-
riness distributions. This work addresses these limitations
and aims to generalize the performance of event-based de-
blurring in real-world scenarios. We propose a scale-aware
network that allows flexible input spatial scales and en-
ables learning from different temporal scales of motion blur.
A two-stage self-supervised learning scheme is then devel-
oped to fit real-world data distribution. By utilizing the rel-
ativity of blurriness, our approach efficiently ensures the re-
stored brightness and structure of latent images and further
generalizes deblurring performance to handle varying spa-
tial and temporal scales of motion blur in a self-distillation
manner. Our method is extensively evaluated, demonstrat-
ing remarkable performance, and we also introduce a real-
world dataset consisting of multi-scale blurry frames and
events to facilitate research in event-based deblurring.

Multimedia Material
The Multi-Scale Real-world Blurry Dataset (MS-RBD)

and our Pytorch implementation are available at: https:
//github.com/XiangZ-0/GEM.

1. Introduction
Due to the fixed exposure time of frame-based cam-

eras, motion blur often occurs in scenes with dynamic tar-
gets or camera ego-motion, degrading the quality of the ac-
quired images [15, 33]. Conventional motion deblurring ap-
proaches attempt to resolve this by exploiting deconvolution
and blur kernel estimation techniques [30, 16], and recent
research further improves the deblurring performance with
the advanced deep-learning methods [12, 36]. However, tra-
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Figure 1: An illustrative example of motion deblurring via
the state-of-the-art algorithm Motion-ETR [36] and our pro-
posed method, which is trained on HR blurry frames and LR
events in a self-supervised manner and can generalize to the
inputs at different temporal and spatial scales.

ditional frame-based methods usually assume specific mo-
tion patterns, e.g., linear or quadratic motion trajectory, for
blurry images and thus often face challenges in real-world
scenarios with complex non-uniform motions. In addition,
due to the motion ambiguity and texture erasure issues in
blurry images [29, 35], frame-based approaches often strug-
gle to extract the precise motion and restore the accurate
latent images from severely blurred frames.

The advent of event cameras poses a paradigm shift in
visual perception and information acquisition, benefiting a
wide variety of applications [17, 6, 22, 34, 10, 37, 32, 7,
31]. For motion deblurring tasks, the microsecond-level
low latency of events enables almost continuous observa-
tion of dynamic scenes and alleviates the motion ambigu-
ity in blurry frames [21, 26]. Moreover, the brightness
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changes recorded in event streams inherently correspond to
high-contrast edges, compensating for the intensity texture
erased by motion blur [29, 35, 24, 13]. However, the per-
formance of current event-based deblurring methods is usu-
ally confined to the distribution of training data, e.g., frames
with a certain range of blurriness and the same spatial reso-
lution as events, posing limitations in real-world scenarios.

• Temporal Limitation: Most previous approaches
synthesize or collect blurry frames in a fixed range
of exposure time for training [26, 29], which implic-
itly assumes motion blur with a specific distribution
of blurriness. However, real-world motion blur often
violates this assumption in highly dynamic scenes, re-
sulting in a performance drop of pre-trained models.

• Spatial Limitation: Existing methods mainly take
frames and events of the same spatial resolution as in-
put, ignoring that frame-based cameras usually have
larger spatial resolution than event-based ones in prac-
tice [6]. Besides, due to the varying distributions of
events at different spatial scales [9], how to effec-
tively deblur High-Resolution (HR) frames with Low-
Resolution (LR) events remains an open problem.

In this paper, we propose to address the above issues
and generalize the performance of event-based motion de-
blurring in both spatial and temporal domains, as shown in
Fig. 1. In detail, a Scale-Aware Network (SAN) is first
designed to extract high frame-rate HR sequences from a
single HR blurry frame and its concurrent LR events. In-
spired by implicit neural representation [3], we implement
a Multi-Scale Feature Fusion (MSFF) module to represent
frame and event features in a spatially continuous manner,
which allows flexible setups of input spatial resolutions. In
the temporal dimension, an Exposure-Guided Event Repre-
sentation (EGER) is presented to enable the arbitrary selec-
tion of target latent images without requiring model mod-
ification or re-training. To fit real-world data distribution,
a two-stage self-supervised learning framework is further
proposed. In the first stage, we efficiently supervise the re-
stored brightness and structure of latent images by utilizing
the relativity of blurriness. Following that, a self-distillation
strategy is applied to generalize the deblurring performance
to handle varying spatial and temporal scales of motion blur.
Overall, our contributions are three-fold:

• A scale-aware network is presented to allow flexible
setups of input spatial resolutions and output tempo-
ral scales, which is able to restore high frame-rate HR
sequences from HR blurry frames and LR events.

• A two-stage self-supervised learning framework is
proposed to efficiently fit real-world data distributions
and generalize deblurring performance to handle vary-
ing spatial and temporal scales of motion blur.

• A real-world dataset MS-RBD containing HR blurry
frames and LR events is built to facilitate deblurring
research. Extensive experiments on both synthetic and
real datasets validate the effectiveness of our approach.

2. Related Work
Motion Deblurring. How to recover sharp images from
motion-blurred frames has been investigated for decades
[5, 20, 30, 16, 12, 36, 15, 33]. Conventional deblurring
methods often model the blurred image as a latent sharp
image convolved with a blur kernel in the presence of addi-
tive noise [5], and several techniques have been adopted for
motion deblurring, including deconvolution [16], kernel es-
timation [30], and dark channel prior [20]. Recently, deep-
learning approaches are also employed to achieve better de-
blurring results and extract video sequences from blurry
frames [12, 36]. By exploiting an ordering-invariant con-
straint, LEVS gradually resumes the temporal ordering em-
bedded in motion blur and recovers sharp sequences from a
blurry input [12]. Motion-ETR further improves deblurring
performance by utilizing Deformable Convolutional Net-
works (DCNs) [38] to predict the motion trajectory within
blurry frames, which tackles temporal disorder and enables
the recovery of non-linear exposure trajectories [36].

However, traditional frame-based methods usually as-
sume specific motion patterns of blurry frames and thus of-
ten fail in real-world scenarios with complex non-uniform
motion. Besides, large motion blur will eliminate the in-
tensity texture in the acquired frames, posing challenges to
recovering satisfied latent images from blurry inputs.
Event-based Motion Deblurring. Recent works have
revealed the advantages of events in motion deblurring
[21, 26, 29, 23, 35, 24, 13, 31]. With the low latency and
high temporal resolution of event cameras [6], events nat-
urally encode the information of high-contrast texture and
precise motion of dynamic scenes, facilitating the recon-
struction of sharp latent images under complex motion. Pre-
vious work of [21] first establishes the Event-based Double
Integral (EDI) model for motion deblurring, which bridges
the blurry frames and latent sharp images with events.
Following that, learning-based methods are developed to
achieve better results by adopting techniques like sparse
coding [26, 31], parametric polynomial [23], and cross-
modal attention [24]. To fit real-world data distribution, re-
cent works also focus on learning from real blurry frames
and events by semi-/self-supervised methods [29, 35].

Although event-based methods have made significant
progress in motion deblurring, the aforementioned ap-
proaches generally focus on deblurring frames with specific
temporal scales of motion blur and the same spatial resolu-
tions as events, showing limitations in real-world applica-
tions. In our approach, a scale-aware network is designed
to deblur HR frames with LR events and simultaneously en-
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able flexible setups of input spatial resolutions. Moreover,
a self-supervised learning framework is proposed to effi-
ciently fit real-world data distribution and generalize the de-
blurring performance in both spatial and temporal domains.

3. Method
In this section, we first formulate event-based deblurring

and our goal in Sec. 3.1. Based on this, we then introduce
the scale-aware network in Sec. 3.2 and finally propose our
self-supervised learning method in Sec. 3.3.

3.1. Problem Formulation

We first review the basic model of event-based motion
deblurring, which aims to restore sharp latent images from
blurry frames and the corresponding events. According to
the event generation model [17, 6], each event is emitted
asynchronously whenever the log-scale brightness change
reaches the event threshold c > 0,

log(I(t,x))− log(I(f,x)) = p · c, (1)

where log(I(t,x)), log(I(f,x)) correspond to the log-scale
intensity of pixel x at time t and f , and p ∈ {+1,−1}
denotes the polarity showing the direction of brightness
change. On the other hand, blurry frames can be formu-
lated as the average of the latent images within the exposure
period T [2] (pixel position x is omitted for readability),

BT =
1

T

∫
t∈T

I(t)dt, (2)

where BT indicates the blurry frame captured with expo-
sure time T . Combining Eq. (1) and (2), one can bridge
blurry frames and sharp images by the EDI model [21],

I(t) =
BT

E(t, T )
, with (3)

E(t, T ) =
1

T

∫
f∈T

exp(c

∫ f

t

e(s)ds)df, (4)

where e(τ) ≜ p · δ(τ − t) indicates the continuous event
representation and δ(·) denotes the Dirac function. Since
directly restoring I(t) via Eq. (3) often suffers from the in-
stability of event threshold c in practice [6, 29], learning-
based approaches are employed to better fit the statistics of
events [26, 29], which are generally in the form of

I(t) = Deblur(t;BT , ET ), ∀t ∈ T , (5)

where Deblur(·) denotes a motion deblurring network and
ET indicates the events triggered within T .

Define the spatial resolution ratio of frames to events as
R(BT , ET ), e.g., R(BT , ET ) = 4 means the resolution of

frame BT is four times that of events ET , previous learning-
based approaches are commonly trained on the dataset

D(T,R) ≜ {BT , ET |T ∈ T, R(BT , ET ) ∈ R} (6)

with R = {1} indicating the same spatial resolution of
frames and events, and T = {Tk}Kk=1 denoting a set com-
posed of K exposure parameters. Once trained, it is dif-
ficult to directly apply previous methods to process real-
world inputs with R(BT , ET ) > 1, i.e., HR blurry frames
and LR events. Besides, the set T implicitly assumes a spe-
cific distribution of blurriness, which often results in a per-
formance drop of pre-trained models when inferring more
blurred frames.

To foster the application of event-based motion deblur-
ring in real-world scenarios, it is necessary to enlarge the
sets of T and R. However, collecting sufficient datasets to
cover a wide range of T, R is time-consuming and imprac-
tical. Also, sharp ground-truth images are difficult to col-
lect when recording real-world blurry datasets and thus are
usually unavailable for training. Therefore, the goal of our
work is to design a fully self-supervised deblurring algo-
rithm that only needs to train on a dataset D(T, {R̄}) with
∀R̄ ≥ 1 to fit real-world setups, but is able to generalize on
a larger set D(T∗(M),R∗(R̄)) as shown in Fig. 1, where

T∗(M) ≜
M∑

m=1

{mTk}Kk=1,

R∗(R̄) ≜ {R|1 ≤ R ≤ R̄, R ∈ R},

(7)

with M ∈ N+ denoting a parameter that can be chosen to
determine the temporal scale of motion blur.

3.2. Scale-Aware Network

Unlike previous methods that focus on fitting Eq. (3), our
Scale-Aware Network (SAN) aims to approximate a more
general function to allow flexible input spatial scales and
enable learning from different temporal scales of motion
blur. Due to the different spatial scales of frames and events
in our task, we first modify Eq. (3) to

I(t) =
BT

E↑(t, T )
, (8)

with E↑(t, T ) indicating the upsampled version of E(t, T )
to match the spatial resolution of BT . Next we con-
sider a more blurred frame BT̃ and similarly get I(t) =

BT̃ /E
↑(t, T̃ ) with T < T̃ and T ⊂ T̃ . For the same target

image I(t), one can then derive

BT =
E↑(t, T )

E↑(t, T̃ )
BT̃ , (9)

which converts the more blurred frame BT̃ into its less
blurred latent image BT . Inspired by this, we design our
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(a) Event representation (b) Scale-aware network

Figure 2: (a) An example of our Exposure-Guided Event Representation (EGER). The event stream ET̃ contains 10 negative
events in T̃ = [0, 1]. We show two cases of E(T̂ ; ET̃ ) under N = 5 with T̂ = [0.3, 0.6] and T̂ = [0.5, 0.5], and the operation
is the same for positive events. (b) Structure of our proposed network with the Multi-Scale Feature Fusion (MSFF) module.

SAN to approximate a general function

L =
E↑(t, T̂ )

E↑(t, T̃ )
BT̃ ≈ SAN(T̂ ;BT̃ , ET̃ ), (10)

where T̂ ⊂ T̃ controls the output temporal scale of the
target latent image L. Thus, our SAN is able to restore both
sharp and blurry latent images by setting different T̂ , i.e.,

• Blur2sharp conversion: If T̂ = [t, t], E↑(t, T̂ ) = 1
holds since no event is integrated, and thus L = I(t).

• Blur2blur conversion: If T̂ = T , the target function
in Eq. (10) becomes Eq. (9), and thus L = BT .

This enables SAN to learn from blur2blur conversion with-
out requiring sharp ground-truth images. Moreover, our
SAN does not assume the same spatial resolution of inputs.
To fulfill the temporal and spatial flexibility, an Exposure-
Guided Event Representation (EGER) and a Multi-Scale
Feature Fusion (MSFF) module are respectively proposed.
Exposure-Guided Event Representation. The goal of
EGER is to explicitly model the conversion relationship
between the input blurry frame and the latent image with
events, which can be regarded as preparing events for com-
puting E↑(t, T̂ )/E↑(t, T̃ ) in Eq. (10). Given an event
stream ET̃ with T̃ ≜ [ts, te] and the target exposure pe-
riod T̂ ≜ [t̂s, t̂e], we first evenly divide T̃ into N tem-
poral bins and generate three 2N × H × W event ten-
sors E1,E2, and E3 with 2, H,W indicating event polarity,
height, and width. The three tensors E1,E2, and E3 accu-
mulate the events split based on the intervals [ts, t̂s], [t̂s, t̂e],
and [t̂e, te], respectively. By simple event splitting, E2 con-
tains events ET̂ in the target exposure period for comput-

ing E↑(t, T̂ ), and the combination of E1,E2, and E3 cor-
responds to events ET̃ for E↑(t, T̃ ). Then our EGER is
formed by concatenating the three event tensors, i.e.,

E(T̂ ; ET̃ ) = Concat(E1,E2,E3), (11)

where E(T̂ ; ET̃ ) is the EGER of target exposure period T̂
conditioned on the input events ET̃ .

As the toy example shown in Fig. 2a, the input event
stream can be represented as different E(T̂ ; ET̃ ) according
to the chosen T̂ . This allows SAN to determine the out-
put temporal scales and recover both blurry (e.g., case 1 in
Fig. 2a) and sharp (e.g., case 2 in Fig. 2a) latent images
from the same input. Also, EGER enables flexible selection
of T̂ ⊂ T̃ for arbitrarily high frame-rate video generation.
Multi-Scale Feature Fusion. Another challenge for SAN
is the different spatial resolutions between HR blurry frames
and LR events. Inspired by the Local Implicit Image Func-
tion (LIIF) [3] that represents images in a spatially con-
tinuous manner, we propose to fuse frames and events
by learning a continuous feature representation. As de-
picted in Fig. 2b, we first extract multi-scale blur and event
features FB = {FB

i },FE = {FE
i } with FB

i , FE
i de-

noting the features at the i-th scale by two encoder net-
works (our encoder and decoder networks are split from
an hourglass network, detailed in the supplementary ma-
terial). Considering the cross-sensor gap between frame-
based and event-based cameras, we use the blur features
to provide brightness reference and guide the upsampling
of event features in our MSFF module. Specifically, a
Multi-Layer Perceptron (MLP) is employed to predict the
fused feature value from cross-modal local features, i.e.,
fi(z) = MLPi(z, s;F

B
i , FE

i ), where z indicates a 2D co-
ordinate in the continuous spatial domain, fi(z) is the pre-
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dicted feature at z, and s = [sh, sw] is the size of the target
feature pixel. Afterward, the coarsely fused feature is re-
fined by a DCN with a larger receptive field, generating the
final feature of latent image FL

i = DCNi(fi). We finally
pass the features FL through a decoder network and restore
the latent image L.

By utilizing the MSFF module, our SAN is able to ef-
fectively fuse the information of frames and events at dif-
ferent spatial resolutions. In addition, since the coordinates
are continuous, MSFF enables flexible setups of input spa-
tial scales, e.g., our SAN can simultaneously take inputs of
R(BT , ET ) = 4 and R(BT , ET ) = 2.5 without network
modification or re-training, facilitating practical usage.

3.3. Self-Supervised Learning

Our self-supervised learning approach consists of two
stages: we first constrain the restored brightness and struc-
ture of latent images by utilizing the relativity of blurriness,
and then generalize the deblurring performance in both tem-
poral and spatial dimensions via self-distillation techniques.
Brightness and Structure Consistency. Based on Eq. (10),
we propose to constrain the reconstruction brightness by
learning blur2blur conversion. Given BT from a blurry
video, we synthesize a more blurred image BT̃ by averag-
ing M adjacent blurry frames of BT (M = 2 in our experi-
ments) and formulate the constraint as

LBC = ∥BT − SAN(T ;BT̃ , ET̃ )∥1, (12)

which efficiently ensures brightness consistency by learning
to restore BT from BT̃ .

According to Eq. (8), recovering the structure of sharp
latent images is equivalent to estimating accurate E↑(t, T )
for each I(t). To achieve this, we first breakdown our SAN
into SAN(T̂ ;BT̃ , ET̃ ) = SANE(T̂ ;BT̃ , ET̃ ) · BT̃ , where
SANE(·) estimates the event ratio based on Eq. (10) and
Fig. 2b,

E↑(t, T̂ )

E↑(t, T̃ )
≈ SANE(T̂ ;BT̃ , ET̃ ). (13)

By setting T̂ = [t, t], SANE(·) is able to estimate E↑(t, T̃ )
for restoring sharp latent image I(t), i.e.,

1

E↑(t, T̃ )
≈ SANE([t, t];BT̃ , ET̃ ). (14)

Then, we constrain the structure of the restored I(t) by

LSC =

∥∥∥∥∥SANE(T ;BT̃ , ET̃ )−
SANE([t, t];BT̃ , ET̃ )
SANE([t, t];BT , ET )

∥∥∥∥∥
1

,

(15)
where SANE(T ;BT̃ , ET̃ ) provides strong supervision to
avoid collapsing solutions as it is constrained in LBC . LSC

guarantees structure recovery by transferring the knowledge
learned from blur2blur to the blur2sharp case. With LBC

and LSC , SAN efficiently achieves motion deblurring by
ensuring the brightness and structure of sharp latent images.
Temporal and Spatial Generalization. The second stage
of training aims to generalize the deblurring performance of
SAN in both temporal and spatial dimensions. For temporal
generalization, we propose a self-distillation loss

LTG = ∥SAN([t, t];BT , ET )− SAN([t, t];BT̃ , ET̃ )∥1,
(16)

where SAN indicates a fixed teacher model pre-trained us-
ing LBC and LSC , and SAN is the student network loaded
from SAN and continuing to train. Since SAN can recover
relatively more reliable latent images from the less blurred
frame BT , we treat the output of SAN as pseudo-ground-
truth images and teach SAN to deblur the more blurred
frame BT̃ , which improves the deblurring ability of SAN
and generalizes its performance to handle different tempo-
ral scales of motion blur.

With the above constraints, our SAN learns to de-
blur HR frames with LR events at a fixed spatial ratio
R(BT , ET ) = R̄, but its performance in handling different
spatial scales of motion blur, i.e., R(BT , ET ) ∈ R∗(R̄), is
not guaranteed. To generalize the deblurring performance
in the spatial domain, we encourage SAN to adaptively
project event features according to the input spatial scale
R(BT , ET ). Specifically, we first form inputs with varying
spatial scales by randomly down-sampling BT̃ to B↓

T̃
with

∀R(B↓
T̃
, ET̃ ) ∈ [1, R̄), and then formulate the constraint

based on the idea of self-distillation,

LSG = ∥SAN
↓
([t, t];BT , ET )− SAN([t, t];B↓

T̃
, ET̃ )∥1,

(17)
where SAN

↓
means SAN followed by a down-sampling op-

eration. With LSG, our SAN is able to propagate the deblur-
ring performance under R(BT , ET ) = R̄ to different input
spatial scales R(BT , ET ) ∈ R∗(R̄).

Finally, our self-supervised learning framework can be
summarized as

L = βBCLBC + βSCLSC + βTGLTG + βSGLSG, (18)

where βBC , βSC , βTG, βSG indicate the balancing param-
eters. Compared with the previous self-supervised EVDI
[35], our method generalizes the deblurring performance
to handle the varying blurriness levels and different spa-
tial scales of real motion blur. Furthermore, our approach
shows better efficiency by design. For example, EVDI su-
pervises brightness consistency via reblurring techniques,
which require restoring a large number (49 in EVDI) of la-
tent images per input during training, while ours efficiently
fulfills this by learning blur2blur conversion (please see the
supplementary material for detailed comparisons).
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Figure 3: Qualitative comparisons under real-world HR frames and LR events on our MS-RBD.
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Figure 4: Qualitative comparisons under different spatial scales R(BT , ET ) = 1 (LR blur, top row) and R(BT , ET ) = 4
(HR blur, bottom row) on the Ev-REDS dataset. GT indicates ground-truth images.

4. Experiments and Analysis

4.1. Experimental Setup

Datasets. Three different datasets containing synthetic,
semi-synthetic, and real-world blurry frames and events are
employed in our experiments for evaluation.

Ev-REDS: We build a synthetic dataset upon REDS [19]
for evaluation on different spatial scales. We first crop the

sharp images to size 1280 × 640 and down-sample them
to 320 × 160 to form HR and LR sequences. For each se-
quence, we generate high frame-rate videos by interpolating
7 images between consecutive frames using RIFE [11], and
then synthesize blurry frames by averaging 49 sharp im-
ages of the high frame-rate videos. Events are generated
via VID2E [8] on the LR sequences to form two sets with
different spatial scales R(BT , ET ) = 4 (HR frames and LR
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Table 1: Quantitative comparisons under different spatial scales (R(BT , ET ) = 1 and R(BT , ET ) = 4) on the Ev-REDS
dataset. Image (DASR), video (RealBasicVSR), and event (EventZoom) super-resolution techniques are employed to assist
event-based deblurring methods in the case of R(BT , ET ) = 4. Symbol / denotes unavailable metrics as some methods only
work with gray images. For those that work with color images (LEVS, Motion-ETR, EVDI, and ours), their results are also
converted to gray-scale for computing gray metrics. Best and second-best results are bolded and underlined, respectively.

Method
Comparison under R(BT , ET ) = 1 Comparison under R(BT , ET ) = 4

Color metric Gray metric Color metric Gray metric
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

LEVS [12] 18.24 0.4665 18.36 0.4680 18.62 0.4612 18.75 0.4644
Motion-ETR [36] 17.79 0.4376 17.90 0.4388 18.23 0.4292 18.34 0.4320
EDI [21] (+DASR [27]) / / 20.41 0.6067 / / 18.81 0.4553
eSL-Net [26] / / 19.41 0.7119 / / 18.96 0.5604
RED [29] (+DASR [27]) / / 23.21 0.7959 / / 22.60 0.6350
EVDI [35] (+EventZoom [4]) 23.88 0.7789 24.37 0.7917 18.93 0.4815 19.07 0.4848
EVDI [35] (+RealBasicVSR [1]) 23.88 0.7789 24.37 0.7917 23.33 0.6441 23.79 0.6568
EVDI [35] (+DASR [27]) 23.88 0.7789 24.37 0.7917 23.35 0.6368 23.83 0.6477

Ours 24.12 0.7898 24.63 0.8022 23.95 0.6647 24.43 0.6749

Image with normal blur

GT

Normal blur

LEVS

EVDI

Motion-ETR

Ours Image with normal blur

GT

Normal blur

LEVS

EVDI

Motion-ETR

Ours

Image with large blur
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LEVS
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Motion-ETR

Ours Image with large blur

GT
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LEVS

EVDI

Motion-ETR

Ours

Figure 5: Qualitative comparisons under normal blur (top row) and large blur (bottom row) on the HS-ERGB dataset.

events, for training and testing) and R(BT , ET ) = 1 (LR
frames and events, only for testing).

HS-ERGB: HS-ERGB dataset [25] contains sharp
videos and real events at the same spatial resolution, and
thus we employ it for evaluation on different temporal
scales of motion blur. We first increase the frame rate of
the original videos by interpolating 7 images between con-
secutive frames with Time Lens [25], and then synthesize

two types of blurry videos by averaging 49 and 97 frames,
which we call normal and large blur, respectively. The set
with normal blur is used for training and testing, and the
one with large blur is only used for testing.

MS-RBD: Due to the lack of available real-world
datasets with HR blurry frames and LR events, we con-
struct a Multi-Scale Real-world Blurry Dataset (MS-RBD)
with a FLIR Blackfly S global shutter RGB camera and a
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Table 2: Quantitative comparisons under R(BT , ET ) = 1 and different temporal scales (normal and large blur) on the HS-
ERGB dataset. The symbol / denotes unavailable metrics as some algorithms only work with gray images. The results of
color models (LEVS, Motion-ETR, EVDI, and ours) are converted to gray-scale for computing gray metrics.

Method
Comparison under normal blur Comparison under large blur

Color metric Gray metric Color metric Gray metric
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

LEVS [12] 22.13 0.5548 22.70 0.5935 21.72 0.5429 22.06 0.5741
Motion-ETR [36] 23.79 0.6276 24.05 0.6464 22.73 0.5842 22.88 0.6010
EDI [21] / / 23.93 0.7043 / / 22.33 0.6517
eSL-Net [26] / / 24.10 0.6811 / / 22.76 0.6248
RED [29] / / 26.05 0.7234 / / 24.81 0.6676
EVDI [35] 25.13 0.7072 25.49 0.7312 24.08 0.6637 24.35 0.6856

Ours 26.22 0.7292 26.87 0.7529 25.41 0.6936 25.94 0.7168

DAVIS346 camera. A beam splitter is implemented in front
of the two cameras with 50% splitting. In total, we collect
32 sequences of data composed of 22 indoor and 10 outdoor
scenes, where the blur caused by camera ego-motion and
dynamic scenes are both considered. We also set the frame
rate of the FLIR camera to 30 and 15 FPS to imitate the
blur at different temporal scales. After spatial alignment,
each sequence contains 60 RGB frames at size 1152× 768
and the corresponding 288 × 192 events. More details can
be found in the supplementary material.
Implementation Details. Our SAN is implemented in the
Pytorch platform and trained on NVIDIA GeForce RTX
2080 Ti GPUs with batch size 3. We set the number of
temporal bins N = 16 and the temporal scale parameter
M = 2. The Adam optimizer [14] and the SGDR schedule
[18] are employed for training. We first train an SAN with
the parameters [βBC , βSC , βTG, βSG] = [50, 1, 0, 0] and
learning rate 1× 10−3 for 210 epochs. With the pre-trained
SAN as the teacher model, we continue training the SAN
with [βBC , βSC , βTG, βSG] = [50, 1, 50, 50] and learning
rate 5×10−4 for 15 cycles. Every cycle lasts for 30 epochs,
and we update the teacher model at the end of each cycle.

4.2. Benchmarking

We evaluate the proposed method by comparing with
the state-of-the-art deblurring approaches, including frame-
based algorithms LEVS [12], Motion-ETR [36], and event-
based methods EDI [21], eSL-Net [26], RED [29], and
EVDI [35]. Since we assume real-world scenarios with-
out available ground-truth images, only the self-supervised
EVDI can be trained under such circumstances, and we
use the official codes for re-training. In the case of
R(BT , ET ) > 1, we employ state-of-the-art image,
video, and event super-resolution techniques DASR [27],
RealBasicVSR [1], and EventZoom [4] to assist event-

based deblurring methods as they only accept inputs of
R(BT , ET ) = 1. Metrics PSNR and SSIM [28] are com-
puted based on sequence restoration, i.e., restoring 7 sharp
images from one blurry input, for quantitative evaluation.

Tab. 1 validates the robust performance of our proposed
approach under different spatial scales. Although frame-
based methods can directly process blurry frames at dif-
ferent spatial resolutions, they often fail in highly dynamic
scenes with complex motions because of motion ambiguity,
as depicted in Fig. 3. For event-based algorithms, eSL-Net
is able to produce HR results by simultaneously consider-
ing motion deblurring and image super-resolution. How-
ever, eSL-Net only receives blurry frames and events of the
same spatial resolution, which limits its performance due to
the information loss caused by image down-sampling. Sim-
ilar to eSL-Net, previous event-based methods generally as-
sume R(BT , ET ) = 1 for inputs, and thus super-resolution
techniques are necessary to restore HR results. As shown in
Tab. 1 and Fig. 4, such cascaded scheme often leads to sub-
optimal performance as the deblurring or super-resolution
errors will be propagated to the subsequent stage.

Regarding the case with different temporal scales, pre-
vious approaches are often limited by the blur distribution
of training data, resulting in a significant performance drop
when encountering large motion blur, as shown in Tab. 2
and Fig. 5. Benefiting from the temporal generalization
technique in our learning framework, the proposed method
can recover reliable latent images of the target scenes un-
der both normal and large blur as depicted in Fig. 5. Thus,
our method not only enables flexible setups of input spatial
resolution but also exhibits promising performance in han-
dling motion blur of different temporal scales, facilitating
applications in real-world scenarios.
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Table 3: Ablation study of our self-supervised learning
framework under different spatial scales R(BT , ET ) = 1
(LR) and R(BT , ET ) = 4 (HR) on the Ev-REDS dataset.

ID LBC LSC LTG LSG LR / HR PSNR ↑

#1 ✓ 19.20 / 19.95
#2 ✓ 18.94 / 18.95
#3 ✓ ✓ 21.77 / 23.39
#4 ✓ ✓ ✓ 21.73 / 24.00
#5 ✓ ✓ ✓ 23.46 / 23.23
#6 ✓ ✓ ✓ ✓ 24.12 / 23.95

4.3. Ablation Study

We study the contribution of each component in our self-
supervised learning method on the Ev-REDS dataset and
draw the following conclusions:

Combination of Brightness and Structure Consis-
tency. In Tab. 3 and Fig. 6a, model #1 trained only with
LBC effectively constrains the restored brightness by learn-
ing blur2blur conversion, but it suffers from missing struc-
ture and produces blurry results. By combining LBC and
LSC , model #3 successfully recovers the correct structure
with accurate brightness as shown in Fig. 6a, simultane-
ously guaranteeing brightness and structure consistency.
However, training solely with LSC will lead to collapsing
solutions as the results of model #2 depicted in Fig. 6a. This
is because the supervision signal in LSC is strongly depen-
dent on LBC as discussed in Sec. 3.3, and thus the structure
constraint LSC should be used together with the brightness
constraint LBC to achieve motion deblurring.

Effectiveness of Temporal and Spatial Generaliza-
tion. Although the first stage of training achieves promis-
ing performance in deblurring HR blurry frames with LR
events, i.e., R(BT , ET ) = 4, it struggles to handle differ-
ent temporal and spatial scales of motion blur as shown in
Fig. 6b and 6c. To improve the deblurring performance
in the temporal dimension, our LTG supervises the con-
sistency of latent images restored from blurry frames with
different levels of blurriness. Since it is generally easier
to deblur the frames with normal blur (BT ) than that with
large blur (BT̃ ), LTG encourages our model to produce sim-
ilar results when dealing with both cases and thus learns to
tackle more severe motion blur, leading to better deblurring
performance (models #3 and #4 in Tab. 3 and Fig. 6a) and
general improvements in large blur removal (Fig. 6b). In
the spatial domain, the performance inconsistency shown in
Tab. 3 and Fig. 6c is because model #3 only learns to project
events to fit HR frames but neglects the varying event distri-
butions at different spatial scales. With LSG, our SAN can
adaptively adjust the learned event distribution according to

LR blur

#1

#4

#2

#5

#3

#6

HR blur

#1

#4

#2

#5

#3

#6

(a) Qualitative comparisons

(b) Temporal comparisons (c) Spatial comparisons

Figure 6: Results of different models in Tab. 3 on the
Ev-REDS dataset. (a) Qualitative comparisons under
R(BT , ET ) = 1 (LR blur, top row) and R(BT , ET ) = 4
(HR blur, bottom row). (b, c) Comparisons of models using
one-stage and two-stage training, i.e., model #3 and #6, un-
der different temporal and spatial scales of motion blur. #S
denotes the number of sharp images used to synthesize one
blurry frame, and larger #S indicates more blurred frames.

R(BT , ET ) and propagate the deblurring performance un-
der R(BT , ET ) = 4 to other spatial scales, leading to con-
sistent performance as shown in Fig. 6a and 6c.

5. Conclusion

This paper proposes to generalize event-based motion
deblurring in real-world scenarios. We first present a scale-
aware network to allow flexible setups of input spatial res-
olutions and enable learning from different temporal scales
of motion blur. Following that, a two-stage self-supervised
learning framework is designed for model training with real
data and performance generalization in both spatial and
temporal domains. In addition, a real-world dataset contain-
ing high-resolution blurry frames and low-resolution events
is released to facilitate the evaluation of frame/event-based
deblurring approaches in real-world scenes.
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