
Helping Hands: An Object-Aware Ego-Centric Video Recognition Model

Chuhan Zhang
VGG, University of Oxford
czhang@robots.ox.ac.uk

Ankush Gupta
Google DeepMind, London
ankushgupta@google.com

Andrew Zisserman
VGG, University of Oxford

az@robots.ox.ac.uk

Abstract

We introduce an object-aware decoder for improving
the performance of spatio-temporal representations on ego-
centric videos. The key idea is to enhance object-awareness
during training by tasking the model to predict hand posi-
tions, object positions, and the semantic label of the objects
using paired captions when available. At inference time the
model only requires RGB frames as inputs, and is able to
track and ground objects (although it has not been trained
explicitly for this).

We demonstrate the performance of the object-aware
representations learnt by our model, by: (i) evaluating it for
strong transfer, i.e. through zero-shot testing, on a number
of downstream video-text retrieval and classification bench-
marks; and (ii) by using the representations learned as in-
put for long-term video understanding tasks (e.g. Episodic
Memory in Ego4D). In all cases the performance improves
over the state of the art—even compared to networks trained
with far larger batch sizes. We also show that by using
noisy image-level detection as pseudo-labels in training, the
model learns to provide better bounding boxes using video
consistency, as well as grounding the words in the associ-
ated text descriptions.

Overall, we show that the model can act as a drop-in
replacement for an ego-centric video model to improve per-
formance through visual-text grounding1.

1. Introduction

In visual-language models there has been a recent move
to explicitly build object awareness into the vision mod-
ule by adding specialized and bespoke components, or us-
ing entirely object-centric architectures. The motivation
for this partly comes from the attractive compositional na-
ture of objects and their inter-relationships in language,
which enables inexhaustible novel combinations [10, 45],
and partly from infant cognitive studies that stress the im-

1Code and models available at: https://github.com/
Chuhanxx/helping_hand_for_egocentric_videos

portance of objects in early visual development [29, 56, 60].
Examples in the video domain include explicit internal ob-
ject representations [2], e.g., through RoI-align [17] pooled
features either from a pre-trained region-proposal network
(RPN) [2, 52, 57, 62], or from bounding-box coordinates
taken as input [19, 42, 48, 71]. This contrasts with the
large body of work where standard representations are
learnt end-to-end without any explicit factorization into ob-
jects/entities, such as dual-encoder vision-language models
in the image [21, 49] and video domains [4, 64].

In this paper, we take a different (middle) path and in-
stead use a vanilla video transformer architecture and in-
duce object-awareness into the video representation by task-
ing the model to predict object-level properties, such as their
localization and semantic categories, only during training.

Our target domain is ego-centric video [11, 16], and
we tailor the object properties used to this. In ego-centric
videos the actor [57] is often present through their hands,
and we therefore task the network to predict both the hands
and the principal objects they interact with. As will be
seen, this simple object-aware training boosts the perfor-
mance of pre-trained video-language architectures signifi-
cantly, and leads to state-of-art performance across multi-
ple ego-centric benchmarks. During inference, the model
requires only RGB frames as input, and operates as a stan-
dard video-language network.

In more detail, our model is built on top of a pre-trained
video-language dual encoder architecture (where there are
separate encoders for the video and text data). We add an
additional, but vanilla, transformer decoder head [61], and
train with DETR/Mask2former [7, 9] query vectors and ob-
ject loss for hands and other objects. The intuition is that
these additional query vectors help the model to attend to
and track the hands and salient objects in the scene (these
are the ‘helping hands’ of the paper title). Importantly,
we do not require dense frame level ground truth for this
training. Rather, we obtain somewhat noisy and temporally
sparse annotations automatically from a hand object detec-
tor [53], and use these to provide prediction targets for the
frames where they are available. This opportunistic use of
annotations is pragmatic as object detectors trained on third-
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person datasets (such as COCO) do not perform so well on
the ego-centric domain, where the scenes are more crowded
and objects are often small and can be motion blurred. By
only requiring annotations for a subset of frames, where
they can be reliably produced automatically, we are able
to train on large-scale data without requiring expensive
manual supervision.

Although we train with noisy and sparse image-level ob-
ject localization, our model can learn to predict better and
denser bounding-box trajectories through large-scale train-
ing due to the spatio-temporal consistency which naturally
presents in videos. Also, it is able to predict semantic
grounding by learning to map the object appearance to the
nouns in the video captions.

It is worth noting that we are using hand detectors be-
cause hands are a common and important object in ego-
centric videos. However, the object-centric method we are
proposing has greater scope than ego-centric videos and can
be applied to other scenarios with other object types provid-
ing the ‘helping-hand’.

In summary, we make the following contributions:
(i) We propose a method to induce object-awareness in
video-language models for an architecture composed of
standard neural modules. The model only requires RGB
frames as inputs, and thus is a drop-in replacement for any
ego-centric video model.

(ii) The model can be trained opportunistically using
available and sparse frame-level and noisy annotations, pro-
duced automatically.

(iii) We demonstrate state-of-the-art strong (zero-shot)
transfer for cross-modal retrieval to other ego-centric
datasets namely, EpicKitchens-MIR and EGTEA improv-
ing prior art by 2-4%.

(iv) We evaluate the grounding quantitatively using the
EpicKitchens-VISOR dataset [11, 12] and find that the
model outperforms the base hand-object detector used for
training supervision.

(v) Finally, we also demonstrate that the representations
learned can be used as input in long-term video understand-
ing tasks like EgoNLQ and EgoMQ. The objectiveness in
the representation helps the model outperform other models
trained on the same training set on these two tasks.

2. Related Work

Vision and Language Representation Learning. Differ-
ent from transferring representations learned for classifi-
cation on a fixed set of object categories [27, 54], recent
vision-language pre-training (VLP) works leverage large-
scale supervision from free-from text descriptions of im-
ages and videos. These methods use image captions [49]
or video sub-titles [44, 64] with either independent dual en-
coders for the visual and text modalities [4, 21, 41], or via

joint encoders with cross-attention across modalities [1, 30,
31, 69]. We also use dual-encoders which are kept frozen
due to compute limitations. To explicitly build-in object-
awareness into image representations, object-level features
extracted from pre-trained object-detectors are aligned with
the text descriptions [8, 33, 40, 58, 75, 78] The object-level
text alignment is further augmented with the object-box pre-
diction task for grounding in [13, 23, 70, 73]. VLP for ego-
centric videos has recently been explored [35, 77] to bridge
the domain gap between representations learned from third-
person videos found commonly [44], and first-person ego-
centric videos. We further extend image based object-aware
VLP methods to ego-centric videos by training to predict
the auto-generated hand-object boxes extracted from pre-
trained detectors [53], while requiring only RGB input dur-
ing inference, making our model a drop-in replacement
for ego-centric VLP models albeit with enhanced object-
awareness.

Weakly Supervised Video Text Grounding. A key chal-
lenge for grounding in videos is the lack of large-scale
object-level annotations for videos. While such annotations
are readily available for synthetic datasets [68], expensive
manual annotation is required for real videos.

Hence, weakly supervised method have been developed
which leverage the video sub-titles/descriptions to map
nouns/verbs to regions in frames. This is typically achieved
by first extracting bounding-box/segmentation regions from
pre-trained detectors for objects and humans, and align-
ing them with keywords using max-margin [79] or con-
strastive [32] objectives. Similarly, [43] also align words
in the video captions to regions from pre-trained RPN by
modelling the region-word associations as latent variables
of a conditional generative variational auto-encoder. More
recently, [59] use cross-attention across text and candi-
date regions, and find (soft-) associations based on atten-
tion weights. While our model similarly absorbs object
bounding-boxes and category information obtained from
pre-trained object and hand detectors during training to in-
duce object-aware representations, these detectors are not
required during inference.

Object-Oriented Learning in Videos. Most vision tasks
for images involve objects [22, 24, 25, 36]. In videos,
there are also a broad range of object-oriented tasks: some
works treat learning object-level information as an end task,
they design models to predict object bounding-boxes and
masks [5, 26, 37, 38, 65, 67, 74]; other works use object
knowledge to achieve some other high-level tasks, for in-
stance, object-centric scene generation [28, 66] and decom-
position [14, 18, 55], and action recognition [3, 19, 20, 47,
62, 71, 80]. Our method uses object information to as-
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Figure 1. The object-aware vision-language model architecture. The architecture is made up of three parts: A video backbone, a text
backbone and a object-aware decoder. The decoder is a cross-attention transformer, it takes the visual feature map F ′ as keys and values,
which are attended by a set of learnable queries. In these permutation-invariant query vectors, the hand and object queries Qh, Qo are
trained to be object-aware and predict the localization and class of hands and objects. The video query qv attends to both the visual
feature map through cross-attention layers, and the object feature map through self-attention layers in the Transformer decoder and output
a video-level embedding v to be matched with the text embedding t.

sist vision-language alignment in egocentric videos, so that
the model learns grounded video representations that can
generalize better. SViT [3] uses object queries shared be-
tween images and videos in order to predict hand-object
bounding boxes in videos, whilst only requiring image-level
supervision during training. However, the object queries
are not used for vision-language alignment. Our previous
work [71] showed that encoding object-level information in
the model helps transfer learning in various video under-
standing tasks, but the model required GT bounding boxes
as input during inference. In contrast, in this work we model
does not require this information during training, and we
show box prediction and vision-language alignment can be
combined and benefit both in-domain and out-of-domain
tasks.

3. Object-Aware Vision-Language Learning
We first describe the task of object-aware vision-

language learning and the architecture of our model. These
are followed by the training objectives for vision-language
matching and weakly-supervised text grounding.

3.1. Overview

In vision-language representation learning the training
data consists of short video clips (RGB frames) and an

associated free-form text string containing words that de-
scribe the visual content. Typically, dual encoders are
trained on this paired data, with a visual-encoder that in-
gests the video clip and a language-encoder that ingests the
text [4, 35, 41, 49, 64]. The dual encoders are trained with
a contrastive objective [46] such that the cosine similar-
ity for matching vision-text pairs is optimized to be higher
than the similarity of negative/not-matching pairs. This pre-
training objective enables evaluation on downstream vision-
language tasks like video-text retrieval and action classifica-
tion in a zero-shot manner [49].

Our object-aware model follows the data, training and
evaluation pipeline as above, except that the model is also
tasked to output object-level information (e.g., bounding
boxes and object categories) during training. By tasking the
model to predict object bounding boxes and names which
can be matched to the nouns in the narration, the model
learns grounded and fine-grained correspondence between
the modalities. The object-level prediction is used as an
auxiliary objective in training but not used at inference time.

In more detail, as shown in figure 2, there are two types
of object-level prediction: (a) hand and object bounding
boxes; and (b) object names. Since ground truth of boxes
and object names are not available, and most traditional de-
tectors [7, 81] fail to identify objects well in ego-centric
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videos, we cannot rely on strong supervision for the pre-
dictions. Instead, we generate bounding box targets (for the
hands and other objects) using a robust off-the-shelf hand-
object detector [53], though these targets will only be avail-
able for some of the frames and are noisy. While for ob-
ject name prediction, we use a weakly supervised method
to align the predicted names with nouns in the paired narra-
tion (detailed in section 3.3). In both cases, the supervision
is opportunistic and only applied when available.

3.2. Architecture

Dual Encoder. We use dual encoders as our visual and
text backbone for efficiency. The visual encoder ingests a
video clip F of RGB frames F = (f1, f2, . . . , fT ), where
fi ∈ RH×W×3 and T is the number of frames. The
clip F is encoded by a Video Transformer [6] which to-
kenizes the frames by 3D patches to produce a spatially
downsampled feature map F ′ = (f ′

1, f
′
2, . . . , f

′
T ), where

f ′
i ∈ RH′×W ′×C . It outputs a visual embedding v ∈ RC .

The text encoder is a Transformer [61] that inputs words
tokenized by a BPE tokenizer [15]. It encodes two type of
inputs: (a) a narration sentence which describe the contents
of a clip; and (b) a noun set which contains noun phrases
from the narration sentence. At the output, the embedding
corresponding to the EOS token is taken to be the embed-
ding for the full sentence t ∈ RC , and multiple noun em-
beddings n ∈ RC .

Object-Aware Module. The object-aware module is a
cross-attention Transformer which has a permutation-
invariant set of learnable vectors as queries (similar to
DETR [7] and Mask2former [9]). The queries are at video-
level, shared between frames. They consist of three sets:
two hand queries Qh = (qh1, qh2) for the left and right
hands; K object queries Qo = (qo1, qo2 . . . , qok); and a
video-level query qv . These queries are learned, and attend
to the visual feature map F ′ from the visual backbone and
output a set of summary vectors S = (sh1, sh2; so1, . . . sok)
corresponding to each input query.

The object-aware module operates on the visual content
without any interaction with the text information. It con-
sists of six cross-attention blocks. As in a traditional Trans-
former decoder [61], in each block, there is a multi-head
self-attention layer and a multi-head cross-attention layer.
The self-attention layer enables interactions between hand,
object and video queries, and the cross-attention layer al-
lows the query to extract object-oriented information from
the visual content.

Bounding Box Head. The hand query vectors Qh and ob-
ject query vectors Qo are trained to predict the bounding
box of the hands and objects respectively in each frame.

Note these query vectors and summary vectors are at the
video level; to predict boxes at frame level, we condition a
summary vector sj of object j on a learnable frame index
vector xi by concatenation of sj and xi, and use a multi-
layer perceptron Fbox to project them onto a bounding box
b̂j,1, where i is the frame number:

b̂ji = Fbox(sj ;xi) (1)

As a result, we will have a time series of bounding boxes
(b̂j,1, b̂j,2, . . . b̂j,T ) from each jth summary vector.

Semantic Head. We assign semantic meanings to object
summary vectors, standing for the object name/class. To
achieve this, we project sj onto a word embedding n̂ with a
multi-layer perception Fsemantic :

n̂ = Fsemantic(sj) (2)

3.3. Training Objectives

Vision-Text Matching. We follow EgoVLP [35] and use
EgoNCE loss as the objective for matching between video-
level embedding v and sentence-level embedding t of the
narration. In one batch B, the positive sample set Pm is
made up of a sample i and other samples that share at least
one noun and one verb with it: Pm = {n ∈ B | noun(n) ∩
noun(m) ̸= ∅, verb(n) ∩ verb(m) ̸= ∅}. And for each
sample i, there is a hard negative sample i′ sampled from
the same video. Hence, the samples in the original batch B
and their hard negative counterparts together form the new
batch B̃.

The objective matching video-to-text (v2t) for a video
embedding v is formulated as below; in practice the sym-
metric text-to-video (t2v) matching objective is also used
(omitted for brevity):

Lego
v2t =

1

|Pm|
∑

k∈Pm

log
exp(vT tk/τ)∑

n∈B̂ (exp(vT tn/τ) + exp(vT tn′/τ))
.

(3)

Bounding Box Prediction. We use the 100DOH off-the-
shelf hand object detector [53] to produce bounding boxes
of two classes on each frame as supervision: hand and ob-
jects that are in contact with hands.

There are two challenges in using the detections for
training supervision: 1) the image detector acts at the im-
age level independently and does not provide box-ID asso-
ciation over different frames in a clip; 2) many hands and
objects are missed due to motion blur and domain gap in
ego-centric videos. Therefore, we apply Hungarian match-
ing between predicted boxes b̂ and ground-truth boxes bi on
single frames independently, so that for each bi, we find the
matched prediction b̂σ(i) to minimize the global matching
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cost. The final loss on bounding boxes is computed as the
sum of the ℓ1 loss and the Generalized IoU loss Liou [51]
on paired boxes:

Lbox(bi, b̂σ(i)) = Liou(bi, b̂σ(i)) + ||bi − b̂σ(i)||1 (4)

and, to tackle the problem of missing objects, we do not pe-
nalize boxes that are not matched to nouns unlike traditional
detection tasks.

Object Class Prediction. We have noun embeddings
from the video description and a set of predicted object
name embeddings from the summary vectors, the task is
to find the correspondence between them so that we can use
the ground-truth nouns from the description as supervision
for the predicted object names. As shown in figure 2, we
align the nouns in the narrations and the names of object-
boxes in two steps:
(1) Object-noun alignment: We score the predicted object
name embeddings n̂ against the ground-truth noun embed-
dings n to construct a similarity matrix C ∈ RK×N , where
K is the number of object queries and N is the number of
noun phrases in the description as following:

C(n, n̂) =
n · n̂

||n||||n̂||
(5)

Cost matrix −C is used in Hungarian matching to select the
matched summary vector for each noun phrase.
(2) Word-level contrastive training: We apply InfoNCE
loss on the matched embeddings n̂j and nj against the em-
beddings of all the nouns n′

k in Ego4D taxonomy dictionary
D [16]:

Lword = − 1

N

N∑
j=1

log
exp(n̂T

j nj/τ)∑
k∈D exp(n̂T

j n
′
k/τ)

(6)

Training Loss. The total training objective is the sum of
the vision-text matching loss and the auxiliary losses on ob-
ject vectors:

Ltotal = Lego
v2t + Lego

t2v + Lbox + λwordLword (7)

3.4. Inference

Once trained, the model acts as a standard ego-centric
vision-language video model which operates just on video
frames and text descriptions, without requiring further ac-
cess to object boxes or detectors. However, if desired, hand
and object box detections and names can be read out for
each frame at inference using the summary vectors, which
can be used for grounding the input text description.

Predicted 
Object 

Embedding

Noun
Embedding

✓

✓

Similarity 
Matrix

Step 1. Object-noun alignment Step 2. Word-level contrastive training

Matched 
Object

Embedding

Dictionary

phone,
table,
box,

apple,
dog,
cat,
wall,
card,

…

table phone

InfoNCE

Figure 2. Training the model to predict object classes. Left:
Object-noun alignment. First, the nouns in the video descrip-
tions are matched against the predicted classes using Hungarian
matching, to choose the most matched summary vectors. Right:
Word-level contrastive training. Next, we supervise the matched
predicted classes using a contrastive objective [46] against all the
nouns in Ego4D taxonomy, to have similar embeddings as the cor-
responding nouns.

4. Implementation

In section 4.1, details of extracting the hand and object
detections from 100DOH pre-trained detector are summa-
rized, followed by the architectural details in section 4.2.
Finally, in section 4.3 the training pipeline, model and input
specification, and optimization details are provided. More
details can be found in the supplementary materials.

4.1. Weak Supervision from Pre-trained Detector

We uniformly sample four frame from each clip in the
EgoClip dataset [35] as the input to the 100DOH hand-
object detector [53]. The short side of the frame is resized to
640 pixels. There are 16 million frames in total, and the av-
erage number of boxes detected per frame is 1.96 for hand
and 1.67 for object. Among all the frames, about 15.8%
frames have no hands detected and 17.9% frames have no
object detected. The average size of hand boxes is 2.8%
of the frame size, while the average size of object boxes is
19.4% of the frame size. We use the top 2 hands and top 4
objects detected in the scene as supervision.

4.2. Architecture

The object-aware module is a 6-layer cross-attention
transformer with 8 attention-heads in each layer. The hid-
den dimension in cross-attention layers is 768, and the video
embedding, object embeddings and text embeddings are
projected to 256 dimensions before computing the cosine
similarity score. We set the number of hand queries to 2,
number of object queries to 12, which is designed to be
larger than the maximum number of objects in the super-
vision. We use TimeSformer-L (TSF-L) [6] as the visual
encoder, and a 12-layer Transformer [61] from LaViLa [77]
as the text encoder.
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Figure 3. Visualization of text grounding on EgoClip. We show the comparison between detections from off-the-shelf 100DOH hand-
object detector [53] (used for training supervision) and the predicted boxes from our model respectively. (a) The detections are noisy,
objects are missed, and there is no temporal association of the detected boxes across frames. (b) The trained model learns temporally
consistent tracks as well as object categorization using only noisy frame-level box-supervision and weak supervision from the texts.

4.3. Training Details

In training, we uniformly sample 4×224×224 RGB
frames from each clip. Hand and object boxes are pre-
extracted from these 4 frames using off-the-shelf detector
and used as supervision. We keep the visual and text en-
coder frozen in training. Only the object-aware decoder,
query vectors, and the MLP projection layer on text em-
bedding parameters are learned during training. We train
the model for 5 epochs on one A6000 GPU, with batch size
128. We use AdamW [39] as the optimizer and set the learn-
ing rate to 3e−5. λword is set to 0.5 to balance the scale of
the four losses.

5. Experiments
Section 5.1 introduces all the datasets we used for train-

ing and evaluation, followed by the evaluation protocols
in section 5.2. Finally, we discuss the ablation studies (sec-
tion 5.3) and compare to prior SOTA methods on different
benchmarks (section 5.4).

5.1. Datasets

Ego4D/EgoNLQ/EgoMQ/EgoClip/EgoMCQ [16, 35].
Ego4D is a massive-scale dataset focusing on ego-centric
videos. It contains 3670 hours video for many different
tasks, including action anticipation, AV diarization, etc.
EgoNLQ and EgoMQ is a subset for natural language
queries and moment query, designed for testing the models’
episodic memory and long-term video understanding.
[35] proposes a new subset EgoClip for vision-language
pre-training, comprising 3.8M clip-text pairs. They also
introduce EgoMCQ (i.e., Egocentric Multiple-Choices-
Question) as a downstream evaluation dataset for the
pre-training. Given a text query, the model tasked to

choose the paired video clip from 5 candidates. The
evaluation metrics is ‘intra-video’ and ‘inter-video’ ac-
curacy, depending on where the candidates are chosen from.

Epic-Kitchens-MIR [11]. Epic-Kitchens is a large-scale
ego-centric dataset with 100-hour activities recorded in
kitchens. Epic-Kitchens-MIR is a subset with about 9881
clip-text pairs for vision-language retrieval. It is designed
for multi-instance retrieval. The model is evaluated on
retrieving the paired text/video given a query text/video.
The evaluation metrics are mean average Precision (mAP)
and normalized Discounted Cumulative Gain (nDCG).

VISOR [12] is a benchmark built on Epic-Kitchens for
segmenting hands and active objects in egocentric video. It
has pixel-level annotations covering 36 hours of untrimmed
video and 257 object classes. We utilize this annotations in
its val split for evaluations on vision-text grounding.

EGTEA [34] contains 28 hours of cooking activities from
86 unique sessions of 32 subjects. Fine-grained actions are
classified into 106 classes. We retrieve the text-descriptions
of action classes to evaluate the model for action classifi-
cation on the test set of all three splits. We measure the
performance using mean-class accuracy and top1 accuracy.

5.2. Evaluation Protocol

We evaluate the performance of our model in the follow-
ing three aspects:
Zero-shot transfer. To test the transferability and general-
ization ability, we conduct zero-shot evaluation on multiple-
choice questions (EgoMCQ), multi-instance retrieval (Epic-
Kitchens-MIR), action classification (EGTEA). Among
these datasets, videos in EgoMCQ are from the same data
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source as our pre-training dataset Ego4D. Other datasets
demonstrate a domain gap, hence, evaluate for transferable
representations.

Episodic memory. To evaluate the richness of the represen-
tations learned by our model, we use the video representa-
tions to solve Episodic memory tasks in Ego4D. Following
[35, 77], we pre-extract the video features from our model
first. Using these pre-computed features as input, we train a
VSLNet [72] for temporal localization in NLQ, and train a
VSGN [76] for moment retrieval in MQ.
Vision-language grounding. Due to the lack of ground-
truth for object-grounding in EgoClip, we evaluate the
grounding ability of the model on VISOR instead. VISOR
is an egocentric dataset with scenes in the kitchens, where
frames are annotated sparsely with segmentation masks and
object names. We re-propose the manually annotated seg-
mentation masks in it to extract ground-truth bounding-
boxes for hands and in-contact objects. To carry out the
zero-shot evaluation, we take the annotated frames in the val
split, filter out the not-in-contact objects in each frame, and
convert all the segmentation masks to bounding boxes as
ground truth. The predicted object boxes are matched with
ground-truth object boxes using noun alignment as during
training (eq. (5)), while the left/right hands are predicted
from the first and the second hand queries respectively. We
repeat a single frame 4 times temporally, and resize it to
224 × 224 pixels to be consistent with the pre-training res-
olution. The predicted bounding-boxes are evaluated to be
correct if their centers lie inside the ground-truth bounding-
boxes.

5.3. Ablations

Losses. We ablate the combination of losses on three
downstream benchmarks in table 1. Results showing that
having both Lbox and Lword leads to the best performance.
With the same architecture, when training the model us-
ing only LEgo without introducing any object-awareness,
the performance is 2% lower on EK100-MIR and EGTEA
compared to the object-aware one.

Losses
EgoMCQ EK100-MIR EGTEA

Inter Intra
Avg
mAP

Avg
nDCG

Top1 Mean

LEgo 93.7 61.8 35.9 36.6 44.9 37.6
LEgo + Lbox 94.2 62.7 36.7 37.4 45.3 38.5
LEgo + Lword 93.7 61.9 36.7 37.4 45.8 38.1

LEgo + Lbox +Lword 94.5 63.0 37.5 37.8 46.6 39.1

Table 1. Ablation on training objectives for zero-shot transfer
tasks. Introducing the object-awareness by having box and word
supervision helps the model to achieve better transfer results on
EK100-MIR and EGTEA.

Detector
input res

EgoMCQ EK EGTEA VISOR

Inter Intra
Avg

mAP

Avg

nDCG
Top1 Mean Loc Acc

256p 94.2 63.2 35.7 34.6 42.0 36.0 -

256p 94.5 63.0 36.9 37.0 44.3 38.9 68.2

640p 94.5 63.0 37.5 37.8 39.1 46.6 78.7

Table 2. Ablation on box quality for zero-shot transfer tasks.
We extract boxes using 256p and 640p images as input to the de-
tector respectively, resulting in boxes of different qualities as su-
pervision in training.

# Obj Queries
EgoMCQ EK100-MIR EGTEA

Inter Intra
Avg
mAP

Avg
nDCG

Top1 Mean

4 94.1 62.8 37.8 37.6 45.9 38.1
8 94.5 62.7 37.7 38.0 45.5 37.9

12 94.5 63.0 37.5 37.8 46.6 39.1

Table 3. Ablation on the number of object queries for zero-shot
transfer tasks. The number of queries do not have a big impact
on EK100. Larger number of queries shows a boost on mean-class
accuracy on EGTEA, and smaller number of queries is better on
intra-video accuracy.

Quality of detected boxes. The extent to which a model
can acquire object-level information is constrained by the
quality of the bounding boxes from the off-the-shelf detec-
tor. To investigate how much the quality of boxes affects
our training, we detect hand and object boxes on EgoClip
training set using 100DOH [53] with 256p and 640p im-
ages as input – with larger image size, the objects should
be more precisely delineated. We use the two sets of boxes
as supervision in our training and show results in table 2.
Even when training with noisy boxes from 256p, our model
is better than the previous SOTA model. When boxes from
640p are used, the averaged zero-shot transfer performance
is furthur improved by 1% on Epic-Kitchens and EGTEA,
showing that our method can bring larger improvement over
the non-object-aware method when given better boxes. Fur-
thermore, a significant boost on the grounding results is also
observed on VISOR when using boxes with better quality.

Number of object queries. We use different number of
query vectors in the object-aware decoder to see its impact
on both vision-language tasks and the grounding task. We
show zero-shot transfer results in table 3 and vision-text
grounding results in table 7. The number of queries has
relatively small impact on vision-language representation
learning, the performance gaps on zero-shot transfer tasks
are mostly small than 1%. However, a smaller number of
object queries leads to much better results for in-contact ob-
ject grounding on VISOR, 4 queries is better than 12 objects
by 3.6% in localization accuracy. The reason is that too
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Method Backbone Batch
size

Object
aware

Hard
neg

EgoMCQ EK100-MIR EGTEA

Inter-video Intra-video
mAP nDCG

Top1-Acc Mean-Acc
V-T T-V Avg V-T T-V Avg

EgoVLP TSF-B 512 ✗ ✓ 90.6 57.2 26.0 20.6 23.3 28.8 27.0 27.9 17.6 -
LaViLa TSF-B 1024 ✗ ✗ 93.8 59.9 35.1 26.6 30.9 33.7 30.4 32.0 - 28.9
LaViLa TSF-L 1024 ✗ ✗ 94.5 63.1 40.0 32.2 36.1 36.1 33.2 34.6 40.1 34.1
LaViLa* TSF-L 1024 ✗ ✗ 94.2 63.2 39.7 31.7 35.7 36.1 33.2 34.6 42.0 36.0
Ours*† TSF-L 128 ✗ ✗ 93.7 60.5 39.7 30.3 35.0 37.3 34.5 35.9 44.8 36.3
Ours*‡ TSF-L 128 ✗ ✓ 93.7 61.8 40.7 31.1 35.9 38.3 35.0 36.6 44.9 37.6
Ours* TSF-L 128 ✓ ✓ 94.5 63.0 42.3 32.7 37.5 39.3 36.2 37.8 46.6 39.1

Table 4. Comparison to SOTA results on zero-shot transfer to EgoMCQ, EK100-MIR and EGTEA. We compared to EgoVLP and
LaVILA, two previous SOTA models pre-trained on EgoClip. Our object-aware model has achieved comparable results on multiple-choice
questions on EgoMCQ, and SOTA results on multi-instance retrieval task on EpicKicthens and action classification on EGTEA. Model without
* use center cropping in evaluation, while * denotes the usage of resizing instead of cropping. Ours† and Ours‡ stands for different variants of our model depending on whether
object-aware losses and hard negative sampling is used in training.

Method Predicted
Boxes

EgoMCQ EK EGTEA

Inter Intra
Avg
mAP

Avg
nDCG

Mean Top1

Ours obj 94.0 62.1 36.8 37.1 45.1 37.6
hand+obj 94.5 63.0 37.5 37.8 46.6 39.1

Table 5. The impact of having hand boxes in the box predic-
tion. Having hand boxes in the prediction helps on all the zero-
shot evaluation benchmarks.

many queries result in a large number of predicted boxes,
which increases the probability of mis-matching.

Impact of hand boxes. We ablate the impact of hav-
ing hand boxes as supervision in our training. Results are
shown in table 5, training the model to predict hand as well
as objects help the model to get about 1% higher zero-shot
transfer performance on EK and EGTEA.

5.4. Comparison to the SOTA

Zero-shot transfer. We compare to previous SOTA in ta-
ble 4. Our model is comparable on EgoMCQ and better on
EK-MIR and EGTEA, showing its good zero-shot transfer-
ability. Due to limited compute resources, we are not able
to unfreeze the visual backbone to train end-to-end or in-
crease the batch size further. Despite these disadvantages,
our method outperforms the previous SOTA on two tasks
for models that have been trained end-to-end.

The main difference between LaViLa(L) and ours is the
object-aware training and hard negative sampling; Ours†
in table 4 is a LaViLa(L) model with an extra Transformer
decoder, which is trained with only InfoNCE loss on video
and sentence embeddings. Without object-awareness and
hard sampling, it gets better accuracy on EGTEA and bet-
ter nDCG on EK100 due to more parameters added, but
falls behind on EgoMCQ and mAP on EK100. Applying
hard negative sampling (Ours‡) and object-aware training
(Ours) brings improvement across the board. The most ob-
vious boost comes from inducing object-awareness, bring-
ing 1.5% improvement on average. And the results could be
further improved by obtaining better pseudo-boxes, as the

magnitude of boost from learning objects is closely related
to the box quality (as shown in table 2).

Episodic memory. Results on EgoNLQ and EgoMQ are
shown in table 6. The two tasks test the video understand-
ing on several-minutes long videos. In these experiments,
trained video and text backbones are used as feature extrac-
tor, and extra modules are trained on the long feature se-
quences for natural language querying and memory query-
ing. Therefore, the richer the information encoded in the
features, the better the results will be. We list the mod-
els trained on the same amount of video and text data in
black, results show that our model are better than the pre-
vious SOTA on all the metrics in the two tasks. This is be-
cause features from the object-aware model have captured
more object information, thus enabling better precision and
recall on localization and retrieval. InternVideo [63] and
NaQ [50] are trained on more video or text data, and are
included for completeness. Please note that our method is
compatible with any visual language backbones, using bet-
ter backbones might also lead to better results.

Method
Batch

size
EgoNLQ EgoMQ

mIOU@0.3 mIOU@0.5
R1@0.5 R5@0.5 mAP

R1 R5 R1 R5

SlowFast - 5.5 10.7 3.1 6.6 25.2 46.2 6.0

EgoVLP 512 10.8 18.8 6.8 13.5 30.1 52.0 11.4

LaViLa(B) 1024 10.5 19.1 6.7 13.6 - - -

LaViLa(L) 1024 12.1 22.4 7.3 15.4 32.5 56.1 13.4

Ours 128 13.2 23.3 7.9 15.6 33.4 56.7 16.0

VideoIntern [63] 14k 16.5 23.0 10.1 16.1 - - 23.6

ReLER + NaQ [50] 2048 19.3 23.6 11.6 15.5 - - -

Table 6. Comparison to SOTA results of fine-tuning on Ego-
NLQ and EgoMQ. Our object-aware model encodes richer infor-
mation in the visual representations, hence obtaining better results
on all the metrics in NLQ and MQ task in Ego4D episodic mem-
ory benchmark. We list other SOTA models (in grey) trained with
more video and text data for completeness.
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Model Object Assignment # queries Loc Accuracy

Detector [53]
Random - 37.1

GT matching - 41.3

Ours Predicted
4 82.3
8 81.2

12 78.7

Table 7. In-contact object localization accuracy on VISOR. Our
model does better on in-contact object localization after weakly-
supervised training compared to the baseline (the Detector with
Random or GT object assignment), which is the source of super-
vision in our pre-training. The improvement is due to increased
recall of our model over the baseline.

5.5. Evaluating Object Grounding

Qualitative results on EgoClip. In fig. 3 we show the
grounding results on EgoClip after training as compared to
the supervision from the 100DOH detector. After training,
the predictions from our model find the missing objects be-
cause we do not penalize extra bounding boxes predicted,
but select the active object/object of interest through match-
ing noun embeddings. It also learns temporal association of
object bounding-boxes as the result of using the same ob-
ject summary vector to predict the boxes over all the frames
(as in eq. (1)); the summary vector attends to visually simi-
lar features corresponding to the same object across the clip
without any explicit supervision for temporal consistency.

Quantitative and qualitative results on VISOR. In ta-
ble 7 we show the text-grounding results on VISOR. We
take the predictions from the hand-object detector [53] as
our baseline. Since the predictions only detect hands and
objects without an object class name, we associate the pre-
dicted boxes with ground-truth boxes in VISOR in two
ways: (a) random: we assign predicted object boxes to GT
object boxes randomly, (b) GT matching: we use Hun-
garian matching to find the predicted boxes with highest
IoU against the GT object boxes. However, even when
matched using GT information, the baseline detector does
not achieve a high accuracy due to poor recall. Results show
grounding ability of our model is 40% better than the base-
line using only weak supervision from the video descrip-
tions. We also show the qualitative results on detecting dif-
ferent number of hands and objects in fig. 4, our model has
a much higher recall when compared to baseline detector
when operating at the same resolution.

6. Conclusion
In this paper, we introduce a method to learn object-

aware ego-centric video representations using noisy super-
vision from pre-trained hand-object detectors. The object-
representations so learned show strong zero-shot transfer
across various downstream tasks and datasets, mirroring
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Figure 4. Grounding visualization on the Epic-Kitchens-
VISOR val split. When operating at the same resolution, our
model shows better grounding ability on hands and objects com-
pared to the baseline 100DOH detector [53] (with GT matching)
used for training. Note that the low IoU on hands on the third col-
umn is a result of the GT ‘hand’ segmentation mask covering the
arm by definition, while the detector and our model are trained to
localize only palm and fingers.

the performance improvement from object-aware training
on images [70]. The model uses standard neural modules
(i.e., transformers), and does not require any object boxes
or detectors as input during inference, making it widely
applicable as a drop-in replacement for training video-
language models. Even though the model is trained with
sparse and noisy object supervision at the frame-level (with-
out temporal associations), during inference dense tempo-
ral bounding-box tracks and category predictions can be
obtained, which are superior to the predictions from the
base hand-object detector used for training. There are
several avenues for improvement. Our model uses the
pre-trained video encoder operates at a small resolution
224×224 which makes detecting small objects difficult.
Further, four frames are sampled uniformly from the clip
regardless of its length which can cause difficulties due to
temporal aliasing. Nevertheless, we hope our work will in-
spire further research in learning transferable object-aware
representations for videos.
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