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Abstract

Conventional multi-label classification (MLC) methods
assume that all samples are fully labeled and identically
distributed. Unfortunately, this assumption is unrealistic in
large-scale MLC data that has long-tailed (LT) distribution
and partial labels (PL). To address the problem, we introduce
a novel task, Partial labeling and Long-Tailed Multi-Label
Classification (PLT-MLC), to jointly consider the above two
imperfect learning environments. Not surprisingly, we find
that most LT-MLC and PL-MLC approaches fail to solve the
PLT-MLC, resulting in significant performance degradation
on the two proposed PLT-MLC benchmarks. Therefore, we
propose an end-to-end learning framework: COrrection →
ModificatIon → balanCe, abbreviated as COMIC. Our boot-
strapping philosophy is to simultaneously correct the miss-
ing labels (Correction) with convinced prediction confidence
over a class-aware threshold and to learn from these recall
labels during training. We next propose a novel multi-focal
modifier loss that simultaneously addresses head-tail imbal-
ance and positive-negative imbalance to adaptively modify
the attention to different samples (Modification) under the LT
class distribution. In addition, we develop a balanced train-
ing strategy by distilling the model’s learning effect from
head and tail samples, and thus design a balanced classifier
(Balance) conditioned on the head and tail learning effect
to maintain stable performance for all samples. Our experi-
mental study shows that the proposed COMIC significantly
outperforms general MLC, LT-MLC and PL-MLC methods
in terms of effectiveness and robustness on our newly created
PLT-MLC datasets. Codes and benchmarks are available on
the link https://https://github.com/wannature/COMIC

1. Introduction
In recent years, the development of deep learning prosper-

ity to the field of computer vision [20, 17, 19, 16, 23, 22, 25,

24, 43, 42, 18]. Images typically contain multiple objects
and concepts, highlighting the importance of multi-label clas-
sification (MLC) [34] for real-world tasks. Along with the
wide adoption of deep learning, recent MLC approaches have
made remarkable progress in visual recognition [36, 38], but
the performance is limited by two common assumptions:
all categories have comparable numbers of instances and
each training instance has been fully annotated with all the
relevant labels. While this conventional setting provides a
perfect training environment for various studies, it conceals
a number of complexities that typically arise in real-world
applications: i) Long-Tailed (LT) Class Distribution. With
the growth of digital data, the crux of making a large-scale
dataset is no longer about where to collect, but how to bal-
ance it [33]. However, the cost of expanding the dataset to
a larger class vocabulary with balanced data is not linear —
but exponential — since the data is inevitably long-tailed
following Zipf’s distribution [30]. ii) Partial Labels (PL)
of Instances. In the case of a large number of categories, it
is difficult and even impractical to fully annotate all relevant
labels for each image [39, 46]. Intuitively, humans tend to
focus on different aspects of image contents due to human
bias, i.e.,, their preference, personality and sentiment [41],
which indirectly affects how and what we annotate. In fact,
LT and PL are often co-occurring, and therefore, the MLC
model must be sufficiently robust to handle different data
distributions and imperfect datasets.

In this paper, we present a new challenge for MLC at
scale, Partial labeling and Long-Tailed Multi-Label Classifi-
cation (PLT-MLC), with concomitant existence of both PL
setting [39] and LT distribution [33] problems. As captured
in the overview of PLT-MLC in Figure 1 (a), it has the fol-
lowing three challenges: i) False Negative Training. Under
the PL setting, the MLC model treats the un-annotated la-
bels ( ) as negatives ( ), which may produce sub-optimal
decision boundary as it adds noise of false negative labels
(Figure 1 (b)). The situation is further exacerbated in the
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LT class distribution as some tail categories are prone to
missing annotations in practice. For instance, in Figure 1
(a), “person” is the head class in the PLT-MLC dataset
and is often notable in an image to labeling for annotators.
In contrast, the “tie” often occupies a tiny region in the
scene compared with the “person”. The annotator may
miss the “tie” object, which will aggravate the LT distri-
bution and further increase the difficulty of learning from
tail classes. ii) Head-Tail and Positive-Negative Imbal-
ance. There are two imbalance issues in a PLT-MLC task:
inter-instance head-tail imbalance and intra-instance posi-
tive-negative imbalance. As shown in Figure 1 (b), the inter-
instance ratio of head positive ( ) “person” ( ) : tail
positive ( ) “tie” ( ) ≈ 32 under the LT data distribution,
and the intra-instance ratio of tail negative ( ) categories
: tail positive ( )“tie” ( ) = 78 as an image only con-
tains a small fraction of the positive labels. Consequently,
a robust PLT-MLC model should address the co-occurring
imbalances simultaneously. iii) Head Overfitting and Tail
Underfitting. Different from the general LT distribution, the
classification model downplays the minor tail and overplays
the major head. The PLT-MLC has an extreme LT distribu-
tion and Figure 1(c) illustrates an interesting phenomenon
of MLC model learning: the general classification model is
prone to overfitting to head class with extensive samples and
underfitting to tail classes with a few samples. This figure
also indicates that only the medium class shows a steady
growth in performance, which means that existing LT meth-
ods focusing on lifting up the tail performance may not solve
the PLT-MLC problem satisfactorily.

Suppose a trained model is used to correct the missing
labels and then an LT classifier is trained using the updated
labels, we might not be able to obtain a satisfying PLT-MLC
performance, either. While machine learning methods can
easily detect the head samples, they may have difficulty in
identifying the tail samples. As a result, the corrected labels

may still exhibit an LT distribution that inevitably hurts bal-
anced learning. Moreover, even when a general LT classifier
affords the trade-off to improve the tail performance condi-
tioned on the head performance drop, it is still incapable of
simultaneously addressing the issue of head overfitting and
tail underfitting problem. Further, the decoupled learning
paradigm is impractical since it needs the “stop” training
and human “re-start” training, i.e., an end-to-end learning
scheme is more desirable. Thus, these limitations motivate
us to reconsider the solution for the PLT-MLC task.

To this end, we propose an end-to-end PLT-MLC frame-
work: COrrection → ModificatIon → balanCe (Figure 1),
called COMIC, which progressively addresses the three key
PLT-MLC challenges. Step 1: The Correction module aims
to gradually correct the missing labels according to the pre-
dicted confidence and dynamically adjusts the classified loss
of the corrected samples under the real-time estimated class
distribution. Step 2: After the label correction, the Mod-
ification module introduces a novel Multi-Focal Modifier
(MFM) Loss, which contains two focal factors to address
the two imbalance issues in PLT-MLC independently. Moti-
vated by [3], the first is an intra-instance positive-negative
factor that determines the concentration of learning on hard
negatives and positives with different exponential decay fac-
tors. The second is an inter-instance head-tail factor that
increases the impact of rare categories, ensuring that the loss
contribution of rare samples will not be overwhelmed by fre-
quent ones. Step 3: Finally, the Balance module measures
the model’s optimization direction with a calculated moving
average vector of the gradient over all past samples. And
thus, we devise a head model and a tail model by subtracting
or adding this moving vector, which can respectively im-
prove head and tail performance. Subsequently, a balanced
classifier deduces a balanced learning effect under the super-
vision of the head classifier and tail classifier. It protects the
model training from being too medium biased, and hence
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the balanced classifier is able to achieve the balanced learn-
ing schema. Notably, our solution is an end-to-end learning
framework, which is re-training-free and effectively enables
balanced prediction.

Our contributions are three-fold: (1) We present a new
challenging task: Partial labeling and Long-Tailed Multi-
Label Classification (PLT-MLC), together with two newly
designed benchmarks: PLT-COCO and PLT-VOC. (2) We
propose an end-to-end PLT-MLC learning framework, called
COMIC, to effectively perform the PLT-MLC task as a pro-
gressive learning paradigm, i.e., Correction → Modification
→ Balance. (3) Through an extensive experimental study,
we show that our method improves all the prevalent LT and
ML line-ups on PLT-MLC benchmarks by a large margin.

2. Related Works

Long-Tailed MLC. [37] is the first work that addresses the
LT-MLC by extending the re-balanced sampling and cost-
sensitive re-weighting methods. It proposes an optimized
DB Focal method, which does improve the recognition per-
formance of tail classes. Later work, [10] performs uniform
and re-balanced samplings from the same training set. Then
a two-branch network is developed to enforce the consistency
between two branches for collaborative learning on both uni-
form and re-balanced samplings. However, the above works
require careful data initialization, i.e., re-sampling, which
is undesirable in practice. Moreover, these methods have
not yet considered the missing labeling case, which may not
sufficiently deal with the PLT-MLC.
MLC with Partial Labels. Multi-label tasks often involve
incomplete training data, hence several methods have been
proposed to solve the problem of multi-label learning with
missing labels. A simple solution is to treat the missing
labels as negative labels [31, 21, 4]. However, performance
will drop because a lot of ground-truth positive labels are
initialized as negative labels [12]. Current works on PL-
MLC mainly focus on the design of networks and training
schemes. The common practice is to utilize the customized
networks to learn label correlations or classification confi-
dence to realize correct recognition of missing labels [7, 44].
However, the corrected labels learned from a trained model
are imbalanced due to the previous training dataset having
an LT distribution. Using such recall labels will aggravate
the LT distribution in the PLT-MLC dataset and result in an
imbalanced performance.
Other Works. [40] learns to generate concept-invariant
samples in the environment with semantic gap, which en-
ables the model to classify the samples through causal inter-
vention, yielding improved generalization guarantees; [18]
collaborates a cascade of foundation models, thus learning
superior interleaved multi-modal instruction-following abil-
ity from imperfect supervision.

3. Methodology
This section describes the proposed PLT-MLC framework.

We will present each module and its training strategy.

3.1. Problem Formulation

Before presenting our method, we first introduce some
basic notions and terminologies. We consider a partially an-
notated MLC dataset contains C classes and N i.i.d training
samples S = {(I(1), y(1)), · · · , (I(N), y(N))}, where I(i)

denote ith image and label y(i)= [y(i)1 , · · · , y(i)c ] ∈ {0, 1}C .
For a given ith example and category c, y(i)c = 0, 1 respec-
tively means the category is unknown and present. Our
proposed COMIC solves the PLT-MLC problem in an end-
to-end learning manner: Correction → Modification → Bal-
ance, with Reflective Label Corrector (RLC, in Sec.3.2),
Multi-Focal Modifier (MFM, in Sec.3.3) and Head-Tail Bal-
ancer (HTB, in Sec.3.3), as illustrated in Figure 2.

These three modules are designed to seek a balanced
model Mb(·; Θb), parameterized by Θb, to predict the pres-
ence or absence of each class given an input image. We
denote p = [p1, · · · , pc] as the class prediction, computed
by the model: pc = σ(zc) where σ is the sigmoid function,
and zc is the output logit corresponding to class c. The
optimized goal of COMIC can be defined as follows:

L((S); Θb)︸ ︷︷ ︸
COMIC Loss

= λc · Lrlc︸ ︷︷ ︸
RLC Loss

+λm · Lmfm︸ ︷︷ ︸
MFM Loss

+λb · Lhtb︸ ︷︷ ︸
HTB Loss

(1)

where Lrlc, Lmfm and Lhtb denote the loss of RLC, MFM
and HTB, respectively. λc, λm and λb are hyperparameters.

3.2. Reflective Label Corrector

Reflective Label Corrector (RLC) presents a real-time
label correction method for missing labels to alleviate the ef-
fect of partially labeled samples. The core idea is to examine
the label likelihood p of each training image and recall the
labels with convinced prediction confidence during training.
Interestingly, we found that the model can distinguish a large
number of missing labels with high prediction confidence
in the early training stage, which implies that we can re-
call these missing labels during training to boost PTL-MLC
learning. Here, we first define a threshold τ and then check
the input sample’s label likelihood p to check whether it
is greater than τ and then calculate the average category
possibility Pc of past trained data with class c. If predicted
probabilities pc are highly confident, i.e., pc > max{τ, Pc},
we regard that the sample misses the label of class c and set
a pseudo-label ŷc.

ŷc =

{
1, if pc > max{τ, Pc}, yc = 0

0, otherwise
(2)

Thus, the loss of RLC module, i.e., Lrlc utilizes the MFM
loss (refer the details in Sec. 3.3) with these corrected label
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Figure 2: Overview of COMIC. RLC module (Correction) corrects the missing labels along with the training and dynamically
re-weights the sample weight according to the estimated class distribution. MFM module (Modification) adjusts the focal of
different instances according to head-tail and positive-negative imbalance under the extreme LT distribution. HTB module
(Balance) measures the model’s optimization direction and correspondingly develops a balanced learning scheme to produce
stable PLT-MLC performance.

ŷ for model training:

Lrlc(p)=

{
L+
mfm(p), if ŷ = 1

1(y=1) L+
mfm(p)+1(ŷ=0) L−

mfm(p), otherwise
(3)

where L+
mfm(p) and L−

mfm(p) refer to the generalized
MFM loss function for positives and negatives. Notably,
we find that most of the corrected labels belong to head
class, which may aggravate the LT distribution. To address
this issue, we dynamically adjust the inter-sample head-tail
factor γ(i)ht (details of this factor are explained in Sec. 3.3)
according to the dynamic class distribution Dt, which can
increase the focal weight for tail samples. In addition, we
also multiply Lrlc(p) by a coefficient Bs

Nt
in each training

batch to constrain the loss value, where Bs is the batch size
and Nt is the number of corrected labels.

Through this, RLC can gradually and dynamically correct
the potential missing labels during training, which efficiently
improves the classifier’s performance with recalled labels.

3.3. Multi-Focal Modifier

We first revisit the focal loss [26], which is a widely-
used solution in the positive-negative imbalance problem. It
redistributes the loss contribution of easy samples and hard
samples, which greatly weakens the influence of the majority

of negative samples.

Lfl(p) =

{
L+
fl = (1− p)γ log(p), if y = 1

L−
fl = pγ log(1− p), if y = 0

(4)

where γ is the focusing parameter, γ= 0 yields binary cross-
entropy. By setting γ> 0, the contribution of easy negatives
(with low probability, p ≪ 0.5) can be down-weighted in the
loss, enabling the model to focus on harder samples.

However, the focal loss may not satisfactorily resolve the
PLT-MLC problem due to two key aspects:

• Tail Positive Gradient Elimination. When using focal
loss for multi-label training, there is an inner trade-off:
high γ sufficiently down-weights the contribution from
easy negatives, but may eliminate the gradients from
the tail positive samples [3].

• Head-Tail Imbalance. Imbalance among the positive
categories also exists in MLC, i.e., head positive-tail
positive imbalance. Rare categories suffer more from
severe imbalance issues than frequent ones.

Thus, we propose a Multi-Focal Modifier (MFM) loss
that decouples γ at two granularities of focal factors, i.e.,
an intra-sample positive-negative (P-N) factor γpn and an
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inter-sample head-tail (H-T) factor γht.

γ(i) =

{
γ(i)+ = γ+pn + w+ · γ(i)ht , if y = 1

γ(i)− = γ−pn + w− · γ(i)ht , if y = 0
(5)

where γ(i)+ and γ(i)− control the focal of samples with ith

class. Similar to [3], γ+pn and γ−pn decouple the original decay
rate γ as two factors, which respectively control the focal of
the positive and negative samples. Since we are interested
in emphasizing the contribution of positive samples, we set
γ−pn ≥ γ+pn. We achieve better control over the contribution
of positive and negative samples through the designed loss
function, which assists the network to learn meaningful fea-
tures from positive samples, despite their rarity. Another
focal factor γ(i)ht is a variable parameter (≥ 1) associated
with the imbalance degree of the ith class. A bigger value of
γ
(i)
ht will increase the weight of tail samples to encourage the

model to pay more attention to the positive tail samples, and
vice versa. w+ and w− are the coefficients that adjust the
weight at a fine-grained level. The γ(i)ht is the static class dis-
tribution D of training set with max normalization function
ψ(·) [29] to adjust the head-tail focal.

After applying the decoupled γ(i)+ and γ(i)− into our
MFM loss, we obtain the loss function as follows (more
discussions in the Appendix.):

Lmfm(p) =

{
L+
mfm =

∑C
i=1(1− p)γ

(i)+

log(p), if y = 1

L−
mfm =

∑C
i=1 p

γ(i)−
log(1− p), if y = 0

(6)
By doing so, the MFM module utilizes the multi-grained

focal to alleviate the two imbalance problems in the PLT-
MLC task, yielding better classification results.

3.4. Head-Tail Balancer

As discussed in the introduction, the extreme LT dataset
with numerous head samples and a small number of tail sam-
ples result in a head overfitting and tail underfitting learning
effect. Only the medium samples present a superior perfor-
mance during training, which fails to obtain the balanced
performance for the overall samples. To address this issue,
we develop a balanced strategy that measures the balanced
learning effect under the supervision of the head classifier
and tail classifier to achieve balanced results. Before we
delve into the balanced learning, we first measure the mov-
ing average of the gradient in the SGD-based optimizer [32]:

et = µ · et−1 + sum(gt),∀t = 1, · · · , T. (7)

where sum(gt) is the accumulated gradient at iteration t, µ is
the momentum decay. The average moving vector et records
the model’s optimization tendency by et−1 and sum(gt).

In our empirical study, we observe that only the medium
samples obtain a stable learning effect from the early to late

training stage, mainly due to the extreme LT distribution. To
simulate the learning effect towards head/tail samples, as
depicted in Figure 2(c), we reduce/add the moving vector et
at each step in head model Mh and tail model Mt respec-
tively, to assist the balanced model Mb for balanced learning.
Notably, we set different learning rate decays for each model
to further explore the balanced learning effect. The three
models are parallel-trained with their own backbone and
classifier. In the feature learning stage, we develop an ad-
ditive attention [1] that computes the relevance of balanced
features f̂b, and head features fh, tail features ft extracted
from corresponding backbones.

fb = Attn(̂fb, [fh, ft])) + f̂b (8)

where Attn(·) is the additive attention mechanism.
Then updated fb, fh, ft are input to their classifiers to

obtain their logits. We develop the multi-head classifier with
normalization [9, 28, 33], which has already been embraced
by various methods of empirical practice. The multi-head
strategy [35] equally divides the channel of weights and
features into Ng groups, which can be considered as Ng

times of fine-grained sampling.

zx =
ρ

Ng

Ng∑
k=1

w⊤
k fx

(||wk||+ η)||fx||
, x ∈ {h, t, b} (9)

where ρ is a scaling factor akin to the inverse temperature in
Gibbs distribution, η is a class-agnostic baseline energy. wk

is the kth learned parameter matrix.
Subsequently, we measure the head and tail learning

effect by subtracting and adding the average moving vector
et to the logits of head model and tail model, respectively:

ẑx = zx ± ρ

Ng

Ng∑
k=1

sim(zx, et) · (wj)
⊤et

||wk||+ η
, x ∈ {h, t} (10)

where sim(·, ·) measures the cosine similarity of vectors.
After obtaining the logits of ẑh, ẑt and zb, the balanced

learning effect needs to distill the head and tail knowledge
from ẑh and ẑt to enable the stable learning for all samples.
Hence, we develop the head-tail loss:

Lhtb = κh · L(ϕ(ẑh) · ϕ(zb)) + κt · L(ϕ(ẑt) · ϕ(zb)) (11)

where L is Lmfm and ϕ(·) is softmax function. κh and κt
are adaptive weights for head and tail learning that calculated
by κh = (L(ẑh))

α

(L(ẑt))
α+(L(ẑh))

α and κt =
(L(ẑt))

α

(L(ẑt))
α+(L(ẑh))

α , re-
spectively. α is a scaling factor and we study its effect in
Sec. 4.3. Such loss can be regarded as the empirical risk mini-
mization (ERM) [6], which adaptively distills the knowledge
from the head and tail models, enabling the balanced model
is not biased to medium samples and produces a balanced
learning effect for the PLT-MLC task.
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Table 1: Performance comparison of the proposed method and baselines on PLT-MLC datasets (PLT-COCO and
PLT-VOC). E2E∗ indicates that the PLT model is learned in an end-to-end manner. A larger score has better performance.
Improv. indicates performance improvement. Acronym notations of baselines can be found in Sec. 4.1. We color each row as
the best , second best and lowest score .

Category Methods E2E∗ PLT-COCO Dataset PLT-VOC Dataset

Many Shot Medium Shot Few Shot Total Shot Many Shot Medium Shot Few Shot Total Shot

MLC

BCE [45]  42.57±0.11 56.67±0.19 46.40±0.60 48.92±0.23 67.37±0.18 88.27±0.39 83.79 ±0.41 78.79±0.14

Focal [26]  41.05±0.07 58.33±0.12 53.58±0.31 51.39±0.15 67.02±0.11 87.49±0.18 82.82±0.78 78.13±0.23

ASL [3]  41.60±0.17 58.15±0.15 52.67±0.17 51.20±0.08 67.67±0.10 87.79±0.13 82.23±0.55 78.35±0.11

LT-MLC

DB [37]  44.83±0.31 58.96±0.24 53.82±0.47 52.16±0.36 69.22±0.28 88.56±0.42 83.72±0.35 78.86±0.23
DB-Focal [37]  45.76±0.25 59.74±0.21 53.85±0.16 52.57±0.27 68.96±0.22 88.89±0.18 83.42±0.20 78.90±0.26

LWS [13] - 44.86±0.58 58.79±0.63 53.48±0.51 52.86±0.60 69.08±0.44 88.24±0.55 83.46±0.47 78.28±0.49

PL-MLC

Pseudo-Label [15] - 41.41±0.41 57.46±0.35 53.12±0.33 51.67±0.37 67.38±0.24 87.58±0.35 83.26±0.42 78.32±0.30
ML-GCN [5]  43.43±0.53 58.46±0.61 53.74±0.48 52.14±0.55 68.46±0.44 88.17±0.61 82.46±0.38 79.02±0.56

Hill [44]  42.50±0.16 56.89±0.19 47.31±0.37 49.28±0.09 68.79±0.15 86.70±0.17 78.15±0.99 77.40±0.22
P-ASL [2]  43.09±0.05 57.67±0.07 53.46±0.22 51.75±0.17 68.95±0.22 87.24±0.13 83.37±0.33 78.96±0.16

PLT-MLC
Head Model (Ours)  47.59±0.09 59.07±0.12 52.35±0.28 53.30±0.19 72.91±0.28 88.59±0.31 82.12±0.27 80.70±0.30
Tail Model (Ours)  46.30±0.25 58.76±0.29 53.38±0.14 53.09±0.27 71.65±0.34 88.68±0.41 83.51±0.24 80.58±0.36
COMIC (Ours)  49.21±0.22 60.08±0.13 55.36±0.21 55.08±0.14 73.10±0.35 89.18±0.45 84.53±0.48 81.53±0.35

Improv. ↑ - - 1.62 ∼ 8.16 0.34 ∼ 3.41 0.53 ∼ 8.96 1.78 ∼ 6.16 0.19 ∼ 6.08 0.29 ∼ 2.48 -0.3 ∼ 6.38 0.83 ∼ 4.13

Table 2: Ablation study of different modules. M,C,B
represent correction, modification and balance learning, re-
spectively.

Models
Setting PLT-COCO Dataset

M C B Total mAP Average mAP Recall

-RLC   54.70±0.13 54.42±0.15 85.26±0.08

-MFM   54.60±0.13 54.33±0.13 84.59±0.19

-HTB   53.65±0.31 53.36±0.31 84.19±0.23

COMIC    55.08±0.14 54.88±0.19 88.19±0.22

4. Experiments

4.1. Experimental Setup

Dataset Construction. The proposed method is analyzed
on the created LT versions of two MLC benchmarks
(COCO [27] and VOC [8]), called PLT-COCO and
PLT-VOC, respectively. The missing rate of PLT-COCO
is 40% and it contains 2,962 images from 80 classes. The
maximum training number for each class is 1,240 and the
minimum number is 6. We select 5000 images from the
test set of COCO2017 for evaluation. PLT-VOC has the
same missing rate setting and contains 2,569 images from
20 classes, in which the maximum training number for each
class is 1,117 and the minimum number is 7. We evaluate
the performance on VOC2007 test set with 4,952 images.
More details about the dataset construction can be found in
the Appendix.
Implementation Details. We employ the ResNet-50 [11] as
the backbone model to conduct the PLT-MLC task. We train

our model with a standard Adam [14] optimizer in all the
experiments. The images will be randomly cropped and re-
sized to 224 × 224 together with standard data augmentation.
Besides, we use an identical set of hyperparameters (B=32,
Mo=0.9, Emax=40 )1 across all the datasets. More details
of implementation are in Appendix.
Evaluation Metrics. Following [37], we split these classes
into three groups according to the number of their training
examples: each head class contains over 100 samples as a
many shot, each medium class has 20 to 100 samples as a
medium shot, and each tail class has less than 20 samples as
a low shot. The total shot indicates all the test samples. We
evaluate mean average precision (mAP) for all the classes
and recall for missing label settings.
Comparison of the Methods. To quantify the efficacy of
the proposed framework, we use several baselines for per-
formance comparison according to different aspects2. MLC
methods: BCE [45], Focal [26], ASL [3]. LT-MLC methods:
DB [37], DB-Focal [37] and LWS [13]. PL-MLC methods:
Hill [44], Pseudo-Label [15], ML-GCN [5] and P-ASL [2].

4.2. Overall Performance

Table 1 summarizes the quantitative PLT-MLC results of
our framework and baselines on PLT-COCO and PLT-VOC.
We make the following observations: 1) In general, irre-
spective of the different shot scenarios, compared to SoTAs,
COMIC achieves the best performance on almost all the
metrics across both datasets. In particular, COMIC out-
performs other baselines in terms of total shot’s mAP by

1B and Mo refer to the batch size and momentum in the Adam.
2We only compare with the approaches that have open source code.
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Table 3: Performance comparison under different missing
labeled settings. 0% indicates an LT dataset that is fully
labeled.

Missing
Ratio

PLT-COCO Dataset

Total Shot Many Shot Medium Shot Low Shot

0% 57.07±0.09 52.21±0.11 59.98±0.12 61.12±0.24

30% 55.80±0.17 49.97±0.11 62.59±0.15 54.56±0.17

40% 54.75±0.19 48.93±0.24 60.31±0.21 54.14±0.21

50% 54.69±0.15 48.74±0.12 56.68±0.16 57.25±0.24

(a) mAp of different α (b) mAp of different tau

Figure 3: Ablations with respect to coefficient α and τ .

(a) Performance Comparison of Losses (b) Loss Visualization

Δ2.32

Δ3.03

Figure 4: MLT-MLC results using different losses.

a large margin (PLT-COCO: 1.78% ∼ 6.16%, PLT-VOC:
0.83% ∼ 4.13% ) for PLT-MLC task. 2) Besides, we can
observe from Table 1 that the LT methods outperform PL
baselines in most X-shot situations. We believe the under-
lying reason behind this is that LT data distribution hurts
the classification capability for MLC models more seriously
than PL. Besides, the label correction may have aggravated
the LT issue and further result in performance reduction. 3)
Benefiting from the carefully designed HTB module, our
COMIC not only achieves the highest total mAP score but
also yields balanced results with a narrowed performance
gap in different shot metrics. These results demonstrate the
superiority of our proposed model.

4.3. Ablation Study

Effectiveness of Each Component. We conduct an ablation
study to illustrate the effectiveness of each component in
Table 2. Comparing COMIC and COMIC(-RLC) (Row 1 v.s

Epoch

C
la

ss
 In

de
x

(a) Number of TP and FP (b) Dynamic Distribution Heat Map

Figure 5: In-depth analysis of label correction.
Table 4: Ablation of MFM. ↓ indicates the mAP decay.

MFM Factor PLT-COCO Dataset

P-N H-T Total Shot Many Shot Medium Shot Low Shot

 54.44 (↓ 0.64) 48.65 ( ↓ 0.56) 60.00 (↓ 0.08 ) 53.81 (↓ 1.55 )
 53.70 (↓ 1.38) 48.38 (↓ 0.83 ) 58.99 (↓ 1.09 ) 52.91 (↓ 2.45)

  55.08 49.21 60.08 55.36

Row 4), the label (Correction) mechanism contributes 0.38%
improvement on total mAP. The results of Row 2 show the
mAP improvement of the MFM (Modification). Meanwhile,
Row 3 indicates that it suffers from noticeable performance
degradation without the (Balance) learning. To sum up,
we can observe that the improvement of each module is
distinguishable. Combining all the components, our COMIC
exhibits steady improvement over the baselines.
Ablation of Missing Rate. To study the effect of partial
labels that affect COMIC’s results, we evaluate the perfor-
mance under different missing rates (MR) of labels (from 0%
∼ 50%). Not surprisingly, when the MR decreases, the ac-
curacy of COMIC increases on all the metrics. We also find
that the performance gap between different shots is consis-
tently small in all MR settings. The results demonstrate the
generalizability of the proposed COMIC that it can produce
stable and balanced results under different MR settings.
Hyperparameter α and τ . We investigate the impact
of hyper-parameter α and τ for the PLT-MLC task. The
mAPs of different hyper-parameter settings on PLT-COCO
are shown in Figure 3. This figure suggests that the optimal
choices of α and τ are around 2 and 0.7, respectively. Either
increasing or decreasing these values results in performance
decay.

4.4. In-Depth Analysis

We further validate several vital issues of the proposed
Correction → ModificatIon → Balance learning paradigm
by answering the three questions as follows.
Q1: Can the model trust the recalled labels distinguish-
ed by RLC? To build the insight on the effectiveness of the
label correction mechanism in COMIC, we visualize the true
positive (TP) and false positive (FP) in Figure 5(a)). This
figure suggests that the RLC module can distinguish a large
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(a) Separate  Training (b) Joint  Training (c) Head v.s Tail(c) Loss Visualization

Figure 6: Analysis of balanced learning of COMIC. (a) and (b) depict the total mAP of separate and joint training of
COMIC within the 40 epochs. (c) summarizes the loss visualization of head, balanced and tail models with joint training. (d)
demonstrates head and tail models respectively optimize the head and tail class’s performance.

number of missing labels with high prediction confidence in
the early training stage, meanwhile, sum(TP) ≫ sum(FP).
However, Figure 5(b) of corrected samples also reveals LT
class distribution with respect to the original training set. To
address this issue, we dynamically adjust the sample weight
conditioned on the real-time distribution to produce a stable
performance.

Q2: How does the MFM module affect the PLT-MLC
performance? Here, we evaluate the effectiveness of the
multi-focal modifier (MFM) loss compared with different
loss functions. Figure 4(a) shows the loss ablation results
using different losses in our COMIC. Our developed MFM
outperforms existing losses, as the designed loss considers
the key point of the head-tail and positive-negative imbal-
ance under the extreme LT distribution in the PLT-MLC
task. There are two components in MFM, which are the
positive-negative (P-N) factor and head-tail (H-T) factor.
To demonstrate the effect of each component, we train the
model with the individual factor in the proposed MFM. As
shown in Table. 4, both the P-N factor and the H-T factor play
significant roles in MFM. For the H-T factor, it achieves an
improvement from 53.7% mAP to 55.08% mAP. Meanwhile,
it brings a significant gain on tail categories with 2.45% mAP
improvement, indicating its effectiveness to alleviate the se-
vere positive-negative imbalance problems in the LT class
distribution. As for the P-N factor, it brings a steady boost on
all shot settings which means it can further alleviate the pos-
itive-negative issue. Additionally, Figure 4(b) indicates that
the MFM loss decreases faster and smoother than the two
variants of MFM without different factors, demonstrating its
superiority in the PLT-MLC task further.

Q3: How does the HTB module benefit the balanced le-
arning? We systematically present the explicit benefits of
the balanced learning strategy in multi-view. 1) Figure 6
(a) and (b) show the comparison between separate and
joint training of head, balanced and tail model with respect
to the total mAP on PLT-COCO dataset. An interesting
phenomenon is that the detached head and tail models
slightly outperform the joint head and tail models but suffer

from an unstable performance. In contrast, the accuracy
of the joint trained balanced model increases much faster
and smoother than the detached balanced model which also
yields a stable performance and faster convergence speed.
This phenomenon is reasonable as the main optimization
objective in joint training is to improve the balanced
model’s performance. It can be regarded as the knowledge
distillation effect that enables the balanced model to learn
from the head biased and tail biased model, and this in turn
facilitates the PLT-MLC learning. 2) During the competition
of head v.s tail, the head model’s loss drops faster (shown in
Figure 6 (c)) and is biased to optimizing the head samples,
while the tail model produces an opposite result. Such head
and tail biased results form a foundation that enables our
COMIC to be trained in a balanced and stable learning
effect. 3) We also perform the analysis of the different
balanced learning blocks in our COMIC. As presented in
Table 6 (in the Appendix), the DL, NC and AMV contribute
0.05%, 1.08% and 0.37% improvement on total shot mAP.
The observations and analysis verify the effectiveness of
balanced learning for being able to study from the head and
tail models, thereby achieving the PLT-MLC improvement.

5. Conclusions

We have presented a fire-new task called PLT-MLC
and correspondingly developed a novel framework, named
COMIC. COMIC simultaneously addresses the partial label-
ing and long-tailed environments in a Correction → Modifi-
cation → Balance learning manner. On two newly proposed
benchmarks, PLT-COCO and PLT-VOC, we demonstrate
that the proposed framework significantly outperforms exist-
ing MLC, LT-MLC and PL-MLC approaches.
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