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Abstract

We present a novel differentiable rendering framework
for joint geometry, material, and lighting estimation from
multi-view images. In contrast to previous methods which
assume a simplified environment map or co-located flash-
lights, in this work, we formulate the lighting of a static
scene as one neural incident light field (NeILF) and one
outgoing neural radiance field (NeRF). The key insight of
the proposed method is the union of the incident and out-
going light fields through physically-based rendering and
inter-reflections between surfaces, making it possible to dis-
entangle the scene geometry, material, and lighting from
image observations in a physically-based manner. The pro-
posed incident light and inter-reflection framework can be
easily applied to other NeRF systems. We show that our
method can not only decompose the outgoing radiance into
incident lights and surface materials, but also serve as a
surface refinement module that further improves the recon-
struction detail of the neural surface. We demonstrate on
several datasets that the proposed method is able to achieve
state-of-the-art results in terms of geometry reconstruction
quality, material estimation accuracy, and the fidelity of
novel view rendering.

1. Introduction
Reconstructing 3D scene information from multi-view

images is a persistent challenge in the field of computer vi-
sion and computer graphics. The Neural Radiance Field
(NeRF) approach [13], which uses differentiable volume
rendering to jointly optimize scene geometry and appear-
ance, offers a novel solution and has demonstrated great re-
sults in novel view synthesis and neural surface reconstruc-
tion. While NeRF successfully models the outgoing radi-
ance of a scene, it fails to disentangle the incident lighting
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Figure 1. Compared with the baseline that simply runs NeILF [28]
following VolSDF [29], the proposed approach is able to jointly
optimize the scene geometry and material. The neural surface,
material, and final rendering quality are improved.

and surface properties from the radiance, preventing its use
in downstream applications such as object relighting and
material property editing.

Recent works have acknowledged the problem and pro-
posed to further decompose the outgoing radiance into the
material and environmental lighting. Some of them adopt
simplified lighting models to reduce the computational
complexity, including co-located flash light [16, 3, 2, 20]
and environment map [34, 36, 4, 15, 5]. These models are
insufficient to model all kinds of lighting configurations,
such as non-distant light sources and inter-reflections be-
tween surfaces. Recently, the Neural Incident Light Field
(NeILF) [28] instead models arbitrary static lighting con-
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ditions by encoding spatially-varying incident lighting in a
neural network. However, it only provides the modeling ca-
pability of, but does not introduce an explicit constraint on
the inter-reflection issue. Moreover, NeILF requires an ob-
ject mesh as input, whose quality has a strong influence on
the estimated material.

In this work, we demonstrate that suitable lighting rep-
resentation is the key to joint geometry and material esti-
mation from multi-view images. Without loss of generality,
the lighting of a typical scene can be represented by the in-
cident light to the object surface and the outgoing radiance
from the surface. Based on the observation, we propose to
model the light fields, geometry, and materials of the scene
as four separated fields, namely 1) one outgoing radiance
field [13], 2) one incident light field [28], 3) one signed dis-
tance field as the scene geometry, and 4) one field of bidi-
rectional reflectance distribution function (BRDF) parame-
ters as the surface material. The key insight of the proposed
method is that the incident light and the outgoing radiance
can be naturally unified through physically-based render-
ing and inter-reflections between surfaces. We demonstrate
that with the union of the outgoing radiance and the inci-
dent light field, the proposed method not only can generate
high-quality BRDF estimation for object relighting, but also
improves the reconstruction detail of the surface geometry.
The proposed approach can be easily applied to different
NeRF systems for material decomposition and surface de-
tail refinement.

To better evaluate the quality of estimated material from
physically-based rendering, we construct a real-world lin-
ear high-dynamic range (HDR) dataset called NeILF-HDR.
With this, we can avoid adding an HDR-LDR conversion
module and directly train in HDR color space. We have ex-
tensively studied our approach on the DTU dataset [8], the
NeILF synthetic dataset [28], and the NeILF-HDR dataset.
We show that the proposed method is able to achieve state-
of-the-art results in geometry reconstruction quality, mate-
rial estimation accuracy, and novel view rendering quality.
To summarize, major contributions of this paper include:

• A general light field representation by marrying one
incident light field and one outgoing radiance field via
PBR and inter-reflections between surfaces.

• An optimization scheme for joint geometry, material,
and lighting estimation. The proposed method can be
easily applied to the prevalent NeRF family for mate-
rial decomposition and neural surface refinement.

• A real-world linear HDR dataset for the evaluation of
material estimation and other neural rendering tasks.

2. Related Works

The Rendering Equation. With the given BRDF prop-
erties of a surface point x, the outgoing light modeled by
physically-based rendering LP

o from x can be computed via
the incident light to the surface [9]:

LP
o (ωo,x) =

∫
Ω

f(ωo,ωi,x)Li(ωi,x)(ωi · n)dωi,

(1)
where ωo is the viewing direction of the outgoing light, n
is the surface normal, Li is the incident light from direction
ωi, and f is the BRDF properties of the surface point.

The goal of joint geometry, material, and lighting estima-
tion is to recover the surface location x, the scene lighting
Li and the BRDF function f in the above equation. Below
we give a brief review of the physically-based optimization
approaches with the multi-view image inputs.
Lighting Modeling for Material Estimation. Due to the
high-dimensional nature of lighting and material, it is rather
difficult to jointly recover both from multi-view image
observations. Previous methods usually apply controlled
lighting to simplify the problem. For example, point/co-
located flash lights [16, 3, 2, 20, 10], turn-table mod-
els [6, 26] and the environment map assumption [34, 36, 4]
are applied to reduce the complexity of the problem. Also,
some works apply additional sensors [7, 1, 19] to facilitate
the optimization process. However, such mitigations will
inevitably limit these methods to real-world applications.

Other works instead adopt more complex lighting mod-
els for material and lighting estimation. NeRV [22] pro-
poses to use reflectance and visibility fields to model the in-
direct light. However, it requires the environment map to be
given in advance and its pipeline is computationally expen-
sive. ShadowNeuS [11] and NeRFactor [36] exploit light
visibility for material and incoming light decomposition,
but it fails to model the inter-reflections between surfaces.
A joint illumination and material estimation approach is
proposed by Nimier-David et al. [18], but requires the given
geometry and costly multi-bounce raytracing. Recently,
NeILF [28] is proposed to model arbitrary static lighting
by using a spatially-varying incident light field. However,
NeILF also requires the geometry to be given and its inci-
dent light setting does not explicitly take inter-reflections
into account. In this work, we propose to model both inci-
dent and outgoing lights of the surface, where the two light
fields are further unified through PBR and inter-reflections.
Surface Optimization by Differentiable Rendering. Re-
cent neural rendering methods have shown promising re-
sults in scene geometry recovery. The scene geometry is
usually represented by an implicit function, such as a den-
sity field [13, 35, 36, 23, 4], an occupancy field [17], or
a signed distance field [30, 29, 25, 33, 31]. During the dif-
ferentiable rendering optimization, both the scene geometry
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Figure 2. Illustration on the proposed light field representation. The incident light and the outgoing light are constrained by physically-
based rendering (as in NeILF) and inter-reflection between surfaces. The inter-reflection constraint ensures the consistency between the
two lighting representations during the joint optimization of the four fields. The losses Lphys, Lvol and Lref are for the physically rendered
image, the volume rendered image, and the inter-reflection constraint respectively, which will be elaborated in Sec. 4.

and appearance will be recovered by minimizing the differ-
ence between rendered images and input images.

Recent neural surface reconstruction methods can be cat-
egorized into 1) differentiable surface rendering and 2) dif-
ferentiable volume rendering approaches. To render a pixel,
differentiable surface rendering will first find the surface in-
tersection using root-finding algorithms and then query the
color of the intersection. To make the process differentiable,
the first-order approximation of the surface intersection is
usually applied [17, 30]. The method is fast, however, can
only refine the geometry near the surface, and often re-
quires additional geometric priors (e.g., silhouette [30, 34],
depth [33] or point cloud [31]) for robust estimation. The
second type of method uses volume rendering to accumu-
late all the radiance along the ray weighted by the density
and visibility of matter [13, 25, 29]. The method is good
at recovering the topology and has gained much popularity
recently due to its simplicity. In this work, we show that
the surface detail from a volume rendering system can be
further refined by combining the differentiable physically-
based rendering system (i.e., NeILF).

3. Inter-reflectable Light Fields
3.1. Recap on Incident Light and BRDF Modeling

Neural Incident Light Field. As proposed by NeILF [28],
the incoming lights in the scene can be formulated as a neu-
ral incident light field, which is recorded by a multi-layer
perceptron (MLP). The MLP takes a point location x and a
direction ω as inputs, and returns an incident light L:

L : {x,ωi} → L. (2)

Compared with environment maps, the spatially-varying
illumination given by incident light fields is capable of
modeling direct/indirect light and occlusions of any static
scenes, and thus facilitates the material estimation in scenes
with such complex geometry and lighting condition.

BRDF parameterization. We use a simplified Disney prin-
cipled BRDF parameterization as in [28]. For a surface
point x, the BRDF field B : x → {b, r,m} stores a base
color b ∈ [0, 1]3, a roughness r ∈ [0, 1] and a metallic
m ∈ [0, 1]. The BRDF f in Eq. 1 is the summation of a dif-
fuse term fd and a specular term fs. The diffuse term can
be calculated as fd = 1−m

π · b, and the specular term can
be computed as:

fs(ωo,ωi) =
D(h; r) · F (ωo,h;b,m) ·G(ωi,ωo,h; r)

4 · (n · ωi) · (n · ωo)
,

(3)
where h is the half vector between the incident direction
ωi and the viewing direction ωo. D, F, and G refer to the
normal distribution function, the Fresnel term, and the ge-
ometry term respectively. We adopt similar implementation
of D, F, and G as in previous works [24, 34, 28] and details
are provided in the supplementary material.

3.2. Unifying Incident and Outgoing Lights with
Inter-reflection

NeILF represents the incoming light to the surface but
does not explicitly model the outgoing light. On the other
hand, as reported in previous works, the outgoing light can
be efficiently recovered in differentiable rendering frame-
works. For example, NeRF [12] recovers the radiance in
space, while the implicit differentiable renderer (IDR [30])
optimizes the surface light field of an object. To model a
complete light field, we propose to additionally add one out-
going radiance field to the NeILF framework.

A straightforward solution to recover the proposed light
fields is to optimize a NeILF [28] system and an IDR [30]
system independently. However, such an optimization strat-
egy would lead to inconsistent incident and outgoing lights.
In fact, the two light fields can be unified through inter-
reflections between surfaces. As illustrated in Fig. 2, as-
suming that the space between object surfaces is empty, the
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outgoing light from x2 in the helmet to x1 should be equal
to the incident light to x1 in the cube.

Implementation-wise, the incident and outgoing light is
constrained by a consistency loss Lref. As in NeILF, we
sample incident rays and query their intensity during PBR.
Then, we trace the reversed ray and check whether it hit
any surface. If a ray −ωi from x1 hit the surface at x2, we
query the intensity from the outgoing radiance field R and
encourage the two light to be the same.

Lref = ∥L(x1,ωi)− R(x2,ωi)∥1. (4)

Compared to a hard constraint that directly uses the queried
outgoing light as the incident light, we do not need to trace
a large amount of all incident rays. This can greatly reduce
the computational cost as ray tracing is time-consuming es-
pecially when volume rendering is applied (Sec. 4).

4. Joint Geometry Optimization
In this section, we describe how the proposed inter-

reflectable light fields can be used for geometry and material
estimation. We first discuss our geometry representation in
Sec. 4.1, and then describe details of the proposed optimiza-
tion scheme in Sec. 4.2.

4.1. Recap on Geometry Representation

Signed Distance Field. Following recent neural surface
reconstruction approaches [30, 25, 29, 33, 31], we repre-
sent the scene geometry as a signed distance field (SDF)
in space. The surface S is the zero level set of the SDF
G represented by a neural network with parameters θ. Let
Ω ⊂ R3 be the domain of 3D space, the network takes a
point location x as input and outputs its distance to the near-
est surface point: G : Ω → R. The surface S is defined as:

S = {x ∈ Ω | G(x; θ) = 0}. (5)

Volume Rendering. The volume rendering technique from
NeRF can globally optimize the scene geometry as the alpha
composition process is dependent on points in the whole
space rather than only on the surface. Let the outgoing ra-
diance field be R(xi,ωo), we render LR

o by alpha-blending
the samples {xi}Ni=1 along the ray with direction −ωo:

LR
o =

N∑
i=1

Ti(1− exp(−σiδi))R(xi,ωo),

where Ti = exp(−
i−1∑
j=1

σjδj),

(6)

In addition, recent works [25, 29] proposed to further trans-
form an SDF to a density field. In this paper, we adopt the
transformation from VolSDF [29] for its simplicity:

σi = αΨβ(−G(xi)), (7)

Stage Joint Geometry Material
Lref Lvol LEik LHess Lsurf Lpcd Lphys Lsmth LLam

SDF Init. ✗ ✓ ✓ ✓ ✓ ■ ✗ ✗ ✗
Mat. Init. ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Joint ✓ ✓ ✓ ↓ ↓ ✗ ✓ ✓ ✓

Table 1. Used losses in each training stage. ■: The point cloud
supervision is optional. ↓: The weight of this loss is downscaled
than the previous stage.

where Ψβ is the cumulative distribution function of the
Laplace distribution with zero mean and β scale.

4.2. Joint Shape, Material and Lighting Estimation

As discussed in previous sections, a 3D scene is pa-
rameterized by a SDF field G(x) as the scene geometry,
a BRDF field B(x) as the surface material, an incident light
field L(x,ωi) and a outgoing radiance field R(x,ωo) as the
scene lighting. In each iteration of joint training, the losses
for joint training (shown in Fig. 2) are calculated by the fol-
lowing steps:

1. Perform volume rendering to get the color for a ray
from the outgoing radiance field, and supervise it with
ground truth (Lvol).

2. Find the position and normal of the intersection point
between the ray and the surface by alpha blending.

3. Feed the position into the BRDF field to get the mate-
rial parameters.

4. Sample incident light directions from the upper hemi-
sphere and query the incident light from the incident
light field.

5. Feed the BRDF parameters, the surface normal and the
incident lights into the rendering equation to get the
PBR color, and supervise it with ground truth (Lphys).

6. Back trace the incident directions, get the color by vol-
ume rendering from the outgoing radiance field, and
minimize its difference with the incident light (Lref).

In this procedure, we do not require any specific design
from the geometry and the outgoing radiance field. Ab-
stractly, the PBR requires the following outputs from these
two fields for a ray: 1) volume rendered color and 2) posi-
tion and normal of the intersection point with the surface.
These requirements can be fulfilled by most NeRF-like sys-
tems, which guarantees the generalization of our system and
the capability for future upgrades.

4.3. Training Scheme

To facilitate convergence, we propose the following 3-
stage scheme to joint optimize the four fields:
SDF Initialization. First we initialize the SDF so that it re-
covers the basic topology of the object. The training strat-
egy is similar to common NeRF frameworks. We only do
step 1 described in Sec. 4.2. In addition, we use Eikonal loss
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Figure 3. Qualitative ablation study on the inter-reflection constraint. The incident light map of x1 on the cube successfully matches the
outgoing radiance from the helmet. And reflections are not baked into the base color.

LEik [30], Hessian loss LHess and minimal surface loss Lsurf
[31] to regularize the surface. Optionally, an oriented point
cloud can be used to directly supervise the surface (Lpcd)
[31], which further enhances the stability of the optimiza-
tion. In this stage, the material estimation module does not
participate in the calculation, and thus is not optimized.

Material Initialization. In the second stage, we also ini-
tialize the material and the lighting to facilitate convergence
in the joint training stage. We do steps 2-6 in Sec. 4.2.
In this stage, the intersection point is treated as a constant
and the geometry is fixed. Regularization including bilat-
eral smoothness Lsmth and Lambertian regularization LLam
[28] are also added.

Joint Optimization with Inter-reflections. In this stage,
we jointly optimize all four fields. Now we require the in-
tersection points to be differentiable so that the PBR loss
can optimize the geometry through the normal fed into the
rendering equation and the position fed into the BRDF and
incident light field. The inter-reflection loss is also added as
the previous stage. Specially, we reduce some of the geom-
etry smoothness terms to facilitate the recovery of fine de-
tails. A comprehensive list of losses is presented in Tab. 1.

4.4. HDR Rendering

In this section, we claim that linear HDR input is nec-
essary for both the quality of the estimated material and
the correctness of the inter-reflection constraint. Because
the common LDR images are usually processed by un-
known non-linear tone-mapping, gamma correction, and
value clipping, it may result in inaccurate material and light-
ing estimation if we directly supervise the rendering value
with the LDR ground truth. For example, if the observed
intensity of a specular area is suppressed, the intensity of
light sources will be underestimated. Converting the raw
render to the same color space as the LDR images by either
fixed or learned [28] mapping is still problematic because
of potential information loss. For example, the saturated

Lref
Env Mix Meancity studio castel city studio castel

Base Color ✗ 18.09 17.75 16.33 17.93 17.26 18.69 17.68
✓ 18.23 19.29 17.47 17.38 17.13 18.19 17.95

Roughness ✗ 20.34 22.20 19.69 21.31 23.23 21.53 21.38
✓ 21.31 22.43 20.98 21.79 23.05 21.84 21.90

Metallic ✗ 18.56 17.13 17.09 20.52 18.18 18.50 18.33
✓ 19.42 18.59 17.26 20.58 20.67 17.96 19.08

Table 2. Quantitative ablation study on the effect of the inter-
reflection constraint on material estimation. The proposed inter-
reflection improves the overall quality of the estimated material.

pixels are never supervised because the clipping operation
eliminates the gradients. On the other hand, the outgoing
radiance field also needs to be trained in HDR because it
is used to regularize the incident light in the inter-reflection
constraint. Therefore, linear HDR images are necessary for
our method. In Sec. 5.4, we show that HDR supervision
results in a more robust estimation than LDR.

5. Experiments

Our method has been evaluated on 1) the DTU dataset,
2) an in-house synthetic dataset (NeILF-synthetic) [28] and
3) an in-house captured linear HDR dataset (NeILF-HDR).
In Sec. 5.2, we do an ablation study on the inter-reflection
handling mechanism, and in Sec. 5.3 we compare the ef-
fect of joint geometry and material estimation. In Sec. 5.4,
we report the geometry accuracy and fidelity of novel view
rendering for real-world datasets.

5.1. Implementation

Network Architecture. For the network architecture, we
test both the heavy MLP with sinusoidal positional encod-
ing (Ours (MLP)) [13] and the lightweight MLP with hash
grid encoding (Ours (NGP)) [14]. Because the hash grid
based network has weaker intrinsic smoothness, we addi-
tionally use a point cloud to facilitate the convergence in
the geometry initialization stage, where the point cloud can
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Figure 4. Qualitative ablation study on the joint optimization. For the baseline method, we use a modified VolSDF [30] to generate the
geometry and use NeILF [28] to generate the surface material. With the joint refinement, the geometry and material estimation and the
final rendering quality are improved.

be automatically generated from off-the-shelf multi-view
stereo methods [21, 32]. Note that point cloud supervision
is removed for all architecture in the joint training stage.

HDR Rendering. The dynamic range handling of the ma-
terial estimation module follows NeILF [28]. The raw ren-
dered color is directly supervised by the HDR ground truth.
If the input is in LDR, we clip the rendered color to [0, 1]
and convert to the sRGB color space. The incident field net-
work uses an exponential activation for the last layer for two
reasons: 1) It guarantees the non-negativity of light inten-
sity. 2) It regularizes the value distribution of pre-activated
output, given that usually the light sources in the environ-
ment have extremely large intensity compared with the light
from other directions. For the outgoing radiance field, we
scale up the output from the Sigmoid activation to support
the unbounded color. To preserve the magnitude of the gra-
dient, we scale down the loss of the outgoing radiance field
Lvol rendering accordingly.

Time and Memory. In each iteration, we sample 4096 rays
with 64 volume rendering samples. During PBR we sam-
ple 128 incident rays for each surface point. We conduct
all the experiments on a single Tesla V100 GPU. For the
heavy backbone, we train the system for 80000 steps which
takes 24 hours and 30GB of VRAM. For the lightweight

backbone, we train the system for 30000 steps which takes
4 hours and 10GB of VRAM.

5.2. Evaluation on Inter-reflectable Light Fields

We do an ablation study on the inter-reflection constraint.
The experiments are conducted on the NeILF-synthetic [27]
dataset that contains three objects placed on a plane and lit
by 6 different lighting conditions. The dataset provides raw
HDR images, geometry, and ground truth material for eval-
uation. In this experiment, we focus on material estimation
so we use the given geometry and keep it fixed. For each
scene, we split 9 from all 96 images as validation views and
report the accuracy of BDRF parameters and rendering of
these views in terms of peak signal-to-noise ratio (PSNR).

As is shown in Fig. 3, the incident light map at the
point x1 on the cube successfully captures the objects be-
side it. Because lights in the occlusion-severe region are
correctly constrained, colors reflected from other objects
are not baked into the base color anymore. Quantitative
results (Tab. 2) also show the overall improvements of the
estimated materials.

5.3. Evaluation on Joint Optimization

We do an ablation study on the effect of joint optimiza-
tion on geometry quality. The experiments are conducted
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DTU Scan 37 97 24 40 55 63 65 69 83 105 106 110 114 118 122 Mean

Novel View
Render

PSNR

Nerfactor [36] 21.91 20.45 23.24 23.33 26.86 22.70 24.71 27.59 22.56 25.08 26.30 25.14 21.35 26.44 26.53 24.28
PhySG [34] 15.11 17.31 17.38 20.65 18.71 18.89 18.47 18.08 21.98 20.67 18.75 17.55 21.20 18.78 23.16 19.11
Neural-PIL [5] 19.51 19.88 20.67 19.12 21.01 23.70 18.94 17.05 20.54 19.67 18.20 17.75 21.38 21.69 - 19.94
Ours (MLP-Sep.) 23.56 23.85 26.71 28.30 29.19 28.15 26.96 29.86 25.29 27.50 31.88 28.43 27.16 31.52 33.30 28.11
Ours (MLP) 24.17 24.60 26.40 27.24 29.85 28.16 27.39 29.82 25.50 28.19 31.84 30.20 27.71 30.87 33.62 28.37
Ours (NGP-Sep.) 26.00 24.27 27.14 28.09 30.22 27.54 26.78 30.72 24.44 29.19 31.63 30.48 26.88 31.58 32.86 28.52
Ours (NGP) 26.21 24.56 27.31 28.19 30.07 27.47 26.79 30.92 24.63 29.25 31.58 30.69 26.93 31.33 33.19 28.61

Geometry

Chamfer
Distance
(mm)

NeRF [13] 1.920 1.730 1.920 0.800 3.410 1.390 1.510 5.440 2.040 1.100 1.010 2.880 0.910 1.000 0.790 1.857
VolSDF [29] 1.140 1.260 0.810 0.490 1.250 0.700 0.720 1.290 1.180 0.700 0.660 1.080 0.420 0.610 0.550 0.857
NeuS [25] 1.000 1.370 0.930 0.430 1.100 0.650 0.570 1.480 1.090 0.830 0.520 1.200 0.350 0.490 0.540 0.837
Ours (MLP-Sep.) 1.593 1.998 0.919 0.498 1.116 0.899 0.813 1.509 1.274 1.109 0.723 1.852 0.428 0.654 0.653 1.069
Ours (MLP) 1.303 1.911 0.954 0.595 1.271 0.881 0.860 1.529 1.242 1.125 0.723 2.096 0.488 0.838 0.654 1.098
Ours (NGP-Sep.) 0.608 1.017 0.470 0.466 0.701 0.777 0.784 1.266 1.117 0.841 0.606 0.926 0.388 0.552 0.506 0.735
Ours (NGP) 0.602 1.034 0.466 0.470 0.699 0.773 0.783 1.281 1.125 0.848 0.614 0.936 0.398 0.559 0.501 0.739

Normal

Angle (◦)

Ours (MLP-Sep.) 26.49 28.11 14.04 15.88 18.58 14.57 22.10 31.90 30.65 34.00 15.77 25.81 16.40 17.74 18.71 22.05
Ours (MLP) 24.55 26.79 13.82 15.67 18.21 14.08 21.94 31.62 29.36 34.07 15.96 25.64 16.90 19.80 18.85 21.82
Ours (NGP-Sep.) 19.98 24.27 12.10 13.31 15.50 13.82 18.98 29.87 31.23 32.55 14.47 21.66 16.01 14.66 15.88 19.62
Ours (NGP) 19.61 23.81 11.85 13.40 15.40 13.86 18.91 29.56 29.93 32.37 14.49 21.50 16.06 14.69 15.90 19.42

Table 3. Quantitative results of geometry accuracy and novel view rendering quality. The proposed method outperforms previous methods
in terms of novel view rendering quality and geometry accuracy. For the ablation study on the joint optimization, the full system achieves
better novel view rendering quality, and does not degrade geometry accuracy overall.

on the DTU dataset. Although the images are in LDR and
thus the estimated material is not reliable, we consider it a
suitable benchmarking dataset for geometry because it has
been extensively tested by previous methods. We report
the Chamfer distance between the exported mesh and the
ground truth. Additionally, we evaluate the normal differ-
ence of the nearest points during the calculation of Cham-
fer distance like [31]. The reason is that one of the main
contributions of surface refinement is the normal optimiza-
tion from the physically-based rendering, which is simi-
lar to Shape-from-Shading. However, the vanilla Chamfer
distance metric is not sufficient to detect the improvement
of surface normal because the point cloud sampled from a
bumpy surface can also have an overall small nearest neigh-
bor distance. The additional normal metric can indicate the
accuracy of geometry more comprehensively.

As shown in Fig. 4, the joint refinement improves both
the geometry and material estimation quality. Dumps and
dents resulted from the shape-radiance ambiguity can be
smoothed by joint refinement. And it can also mitigate
the case that the discontinuity of base color is wrongly
imprinted on geometry. Quantitative results are shown in
Tab. 3 (Ours (MLP-Sep.) v.s. Ours (MLP) and Ours (NGP-
Sep.) v.s. Ours (NGP)). Although the Chamfer distance of
the jointly trained system is slightly worse than the sepa-
rately trained one, the normal consistency is better, which is
as expected. As a result, the quality of novel view render-
ing is also better. In summary, the refinement effect can be
detected qualitatively, but is not significant enough in quan-
titative evaluations.

5.4. Geometry and Material Estimation

We compare our method with previous neural implicit
reconstruction methods and material estimation methods.
Quantitative results on DTU are shown in Tab. 3. Our

method (Ours (NGP)) outperforms previous methods on
both geometry accuracy and rendering fidelity. And the
qualitative geometry and material estimation results are il-
lustrated in Fig. 5. Our method can recover fine details of
the surfaces and generate reasonable material.
NeILF-HDR. We present the NeILF-HDR dataset contain-
ing 10 scenes with multi-view linear HDR images. We cap-
ture around 100 views for each scene with a handheld cam-
era, and the trajectory forms 3 loops with different altitudes.
The scene is lit by a circular lamp above the object as well
as dim ambient light. This setup is mainly for preventing the
cameraman from blocking the light sources. For the color
space processing, We first capture raw images, do basic de-
noising steps and exposure adjustment so that all images
have RGB channels, and store actual radiance intensity up
to a global scale.

The qualitative geometry and material results on NeILF-
HDR dataset are also shown in Fig. 5. Additionally, we
compare the material estimated from LDR and HDR images
respectively and qualitative results are shown in Fig. 6. We
find that the material in the region with extreme base color
is often erroneous if supervised with LDR inputs, while
the system trained by HDR images shows better robustness,
which shows the necessity of HDR inputs.

6. Limitations and Future Works

Under-constrained inter-reflections. In Sec.3.2, we intro-
duce the inter-reflection (Lref ) to further constrain the in-
cident light to x1 using the reflected light from the traced
point x2. However, the outgoing light from x2 along the re-
flection direction cannot be directly supervised, which may
still leave x1 into light-albedo ambiguity. Two cases exist:
1) If x2 is visible from other input views, the mentioned
outgoing light can be obtained because of the generaliza-
tion of NeRF, and thus can still regularize the incident light
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Figure 5. Qualitative geometry and material estimation results on DTU [8] and NeILF-HDR. The proposed method can generate surface
with fine details and reasonable material.
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Figure 6. Comparisons of estimated material from LDR and HDR
images. The results from HDR inputs are more reasonable.

to x1. In this case, the ambiguity will be reduced, and the
baked shadow can be largely alleviated (e.g., the base color
of the white ball in Fig. 3). 2) If x2 is not visible from
any input views, the radiance from x2 cannot be recovered,
which will leave the incident light to x1 under-constrained.

In this case, the baked shadow is hard to be removed due to
the light-albedo ambiguity (e.g., the scissor case in Fig. 5).
In summary, although the system theoretically address the
inter-reflection problem, actual results are still subject to the
available ground truth. In practice, explicit shadow han-
dling mechanism may be helpful for this issue.

Input requirements. It still requires careful photo captur-
ing for our system to produce a decent estimation. For ex-
ample, we expect the views to be dense enough to properly
reconstruct the surface. Also in Sec. 4.4 we discuss the ne-
cessity of HDR inputs. Moreover, we need to guarantee
that the lighting condition remains fixed during the captur-
ing process. Although we already relax the requirement of
dedicated capturing devices as in some previous works, it is
still tedious for non-professional users.

Robustness. The solution space for the joint optimization
of 4 fields is very large. In this work, we facilitate the con-
vergence by pretraining each component and introducing
regularizations. The former costs extra time and the latter
may drive the solution to a suboptimal state. In the future,
we may use learned geometry and material prior to boot-
strap the optimization.

Model translucency. In this work we focus on opaque ob-
jects: we use SDF as geometry representation and BRDF as
surface material. However, light field estimation for translu-
cent objects is also worth investigating. In future work, the
proposed work can be extended to support non-opaque ge-
ometry and model transmittance distribution function.
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7. Conclusion
We have presented a joint geometry, material, and light-

ing estimation system from multi-view images, among
which the light field consists of both outgoing and incident
light fields. The two light fields can be unified by an inter-
reflection constraint that the outgoing radiance and the in-
cident light of the two ends of the line segments between
surfaces should be consistent. On the one hand, the intro-
duction of the outgoing radiance field and the inter-refection
constraint regularizes the incident light and thus improves
the estimated material. On the other hand, the geometry ob-
tained from outgoing light optimization is also refined dur-
ing the joint training with the incident light and material.
The proposed method has been extensively evaluated on our
in-house synthetic dataset, the real-world DTU dataset, and
an in-house captured linear HDR dataset NeILF-HDR. Our
method outperforms previous methods in terms of geometry
accuracy and novel view rendering quality.
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