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Abstract

Learning with noisy labels (LNL) is one of the most
important and challenging problems in weakly-supervised
learning. Recent advances adopt the sample selection strat-
egy to mitigate the interference of noisy labels and use
small-loss criteria to select clean samples. However, the
one-dimensional loss is an over-simplified metric that fails
to accommodate the complex feature landscape of various
samples, and, hence, is prone to introduce classification er-
rors during sample selection. In this paper, we propose
RankMatch, a novel LNL framework that investigates ad-
ditional dimensions of confidence and consistency in or-
der to combat noisy labels. Confidence-wise, we propose a
novel sample selection strategy based on confidence repre-
sentation voting instead of the widely-used small-loss cri-
terion. This new strategy is capable of increasing sam-
ple selection quantity without sacrificing labeling accuracy.
Consistency-wise, instead of the widely adopted feature dis-
tance metric for measuring the consistency of inner-class
samples, we advocate that the rank of principal features is
a much more robust indicator. Based on this metric, we
propose rank contrastive loss, which strengthens the con-
sistency of similar samples regardless of their labels and
facilitates feature representation learning. Experimental
results on noisy versions of CIFAR-10, CIFAR-100, Cloth-
ing1M and WebVision have validated the superiority of our
approach over existing state-of-the-art methods.

1. Introduction

The remarkable success of DNNs stems from the avail-
ability of large-scale datasets. However, it is highly labo-
rious to obtain massive data with high-quality annotations.
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Figure 1: Motivation of RankMatch. After being trained
with noisy labels, the model is validated by the augmented
images. Noisy labels leads to high-entropy outputs, which
lack confidence. We advocate for the use of confidence cri-
terion for sample selection, as the confident samples are
more likely to have clean labels. Moreover, The weakly
augmented image is similar to training Image 1 (classi-
fied as ‘dog’), while the strongly augmented one is simi-
lar to training Image 2 (classified as ‘deer’). Considering
the model tends to produce similar predictions for similar
images, the two views of the same image have inconsis-
tent predictions. Consequently, we introduce the rank con-
trastive loss to enhance the semantic consistency.

Hence, training DNNs using inexpensive samples from the
search engine or machine annotation [27, 33, 11] has be-
come an attractive alternative. However, these methods in-
evitably introduce erroneous labels, which cause poor per-
formance as DNNs can easily overfit to noises [58]. Hence,
learning with noisy labels (LNL) has become an important
yet challenging task.

Sample selection is a widely adopted strategy in LNL
that identifies clean samples from the dataset to alleviate
the negative impact of noisy labels. The small-loss crite-
rion is a popular sample selection strategy, which regards
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samples with lower loss as clean ones. However, such a
one-dimensional loss is too simplified to accommodate the
sophisticated distribution of high-dimensional data, such as
the image features. As a result, a plethora of easy-but-noisy
samples with small loss are often wrongly grouped into the
clean set by using the loss-based strategy. This confirmation
bias would be gradually amplified in the subsequent loss
minimization training and severely impact the final perfor-
mance [24, 44].

Another challenge of LNL lies in the difficulty of obtain-
ing robust and consistent representation for samples across
categories and subjects [24, 26, 19]. In semi-supervised
learning, this issue can be largely addressed by enforcing
consistent predictions given different views of the same
sample [21]. However, in LNL, due to the existence of
wrong labels, different views of the same object could be
clustered into different categories, leading to inconsistent
estimations (see Figure 1). Though the sample selection
mechanism can identify a part of clean samples, the consis-
tent representation learned from this set of clean data only
work on simple samples with high confidence. Hence, how
to achieve consistent prediction on difficult samples with
low confidence remains an open question.

In this work, we follow the line of sample selection to
avoid the adverse impact of noisy labels. However, instead
of relying on an over-simplified 1D loss function, we pro-
pose to combat the noises by incorporating new perspec-
tives from confidence and consistency. Confidence-wise,
to ensure robust selection of clean samples, we leverage the
advances of confidence learning (CL) [37] while avoiding
its vulnerability to noisy network predictions. In particular,
we investigate the performance of clean sample selection
using fixed confidence thresholds at different noise levels.
The results (Figure 4) show that a fixed high threshold leads
to a much more accurate sample selection even at the pres-
ence of strong noises. Therefore, we leverage one fixed high
confidence threshold for all classes to ensure the purity of
confident samples. To address the lack of clean data by us-
ing a high threshold, we further propose sample selection
via confidence voting (SCV) to ensure an ample collection
of clean labels. Specifically, we generate K clusters from
confident samples for each class and treat the cluster center
as confident prototype. Each sample is considered clean if
the label is consistent with the results voted by its k near-
est confident prototypes. We empirically find that the pro-
posed confidence voting mechanism can generate reliable
and clean samples in sufficient amounts, ensuring both the
quality and quantity of clean samples.

Consistency-wise, in addition to the classic consistency
regularization, i.e. enforcing consistent outputs of differ-
ent views from the same sample, we propose to encourage
consistent predictions between similar hard samples of the
same category. To achieve this goal, we introduce rank con-

trastive loss (RCL), a novel metric that fully leverages the
rank of principal image features for robust measurement of
similar samples. Empirical experiments show that the con-
ventional l2 distance cannot exploit the inner structure of
feature representation, and, hence, fails to foster consistent
clustering in the complex feature space corrupted by noisy
samples. Our key observation is that while similar hard
samples (with low confidence) of the same class may have
a large l2 distance in the feature space, the underlying rank
of their principal features still remains consistent (see Fig-
ure 2). Therefore, our proposed RCL loss is able to promote
feature consistency by encouraging correct and discrimina-
tive clustering of similar samples with low confidence.

We code our method as RankMatch as the two per-
spectives of the proposed framework can mutually benefit
each other. While more reliable data segmentation based
on high confidence can benefit the subsequent represen-
tation learning, the consistent representations further im-
prove the confidence of uncertain data samples, and, in turn,
strengthen our proposed confidence-based sample-selection
mechanism. We validate the superiority of our method
over the state-of-the-art approaches on several challenging
benchmarks, including CIFAR, Clothing1M, and WebVi-
sion. Our contributions can be summarized as follows.

• A method with new state-of-the-art performance that is
specially tailored for LNL problems by fostering both
confidence and consistency.

• A novel sample-selection via confidence voting (SCV)
strategy that generates reliable and ample clean sam-
ples for the subsequent training.

• Rank contrastive loss (RCL) based on the rank statis-
tics of principal features that encourages consistency
between hard samples of the same category. RCL can
further benefit clean sample selection by promoting
more discriminative features (see Fig. 1 in the supple-
mentary material) for constructing intra-category clus-
ters.

2. Related Work
Most existing methods on LNL can be categorized into

two directions: 1) loss correction and 2) sample selection.

Loss Correction. For loss correction, mainstream tech-
niques [51, 46, 29, 47, 22] estimate noise transition matrix
with a small set of clean samples as prior knowledge. How-
ever, estimating the noise transition matrix is challenging,
and their assumptions may be too ideal to fit real-world sce-
narios. To rectify the noisy labels, another line of research
proposes self-training architectures where noisy labels are
replaced by network predictions [43, 56]. Some methods
focus on the design of noisy-tolerant loss functions. For ex-
ample, [2, 48, 13, 12] leverage bounded loss functions to
improve their robustness to noisy labels. Besides, there are
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Figure 2: The training strategy of RankMatch. We use strong and weak augmentation to achieve consistency regularization
in LNL. For the clean set, the given labels are used to regularize the network predictions on strongly augmented images via
the supervised training loss Lc. For the noisy set, we first generate pseudo labels from the predictions on weakly augmented
images and then use them to regularize the predictions on strongly augmented images via training loss Ln. Rank contrastive
loss pulls similar samples together and pushes others away. The similarity matrix is defined by ranking feature channels
instead of Euclidean distance. The final objective function is a joint loss, including a class diversity regularization term in
addition.

some proposed unbiased loss function [35], information-
based loss function called LDMI [54], punishment regu-
larization [32], confidence regularization [8], early learn-
ing regularization [30], contrastive representation regular-
ization [28] and over-parameterized term [31]. However,
it is arduous for loss-correction-based methods to play an
advantage in practical scenarios facing high noise ratios.

Sample selection. Sample selection-based methods strive
to reweight training samples and identify clean data to re-
duce the interference of noisy labels. Many existing meth-
ods propose introducing improved selection criteria to make
the selected samples cleaner [23, 59, 3, 36, 24, 1]. Mem-
orization effect [4] illuminates that DNNs learn clean and
simple patterns faster than noisy labels, leading to a trend
to consider small loss as a criterion for sample selection,
which means that samples with smaller loss values are more
likely to have clean labels. For instance, [3, 36, 24, 1] lever-
age clean data distribution as selection criterion by lower-
loss component in mixture model fitted by per-sample loss.
[55, 19] introduces JS-divergence between network predic-
tion and labels as a selection criterion. [38] leverages the
cross-entropy loss between disagreement distribution and
labels as selection criterion. However, the loss value is just
a scalar, contains limited information, and is prone to er-
rors. For example, it is hard to distinguish between hard-
to-learn clean samples and noisy samples after the warm-up
stage since both have relatively large loss values. Besides,
confirmation bias [44] is a common issue often encoun-
tered with the small-loss criterion. Once the noisy sam-
ples are wrongly grouped into the clean set by the small-
loss criterion, their losses will keep small in the later train-

ing. It remains challenging to rectify the sample selection
errors. Many methods mitigate this issue by training two
networks [18, 34, 14, 57, 49, 24, 55]. But it is still a prob-
lem to get more accurate labels through the small-loss crite-
rion. More recently, Confident Learning (CL) [37] proposes
confident criterion as an alternative for sample selection. It
computes a set of thresholds for every class and chooses
confident samples whose network predicted highest proba-
bilities are greater than the corresponding thresholds. How-
ever, CL directly estimates the noise transition matrix by
confident samples, which is vulnerable to the network pre-
dictions and threshold setting. And it is prone to fail to per-
form well in large-scale cases and real-world scenarios with
a high noise ratio.

Semi-supervised Learning. The Semi-supervised Learn-
ing (SSL) has seen fast progress by leveraging consistency
regularization [41, 53, 5, 21, 39, 40, 45], which is used to
minimize the difference in network prediction between two
views of the same image. FixMatch [21] simply but ef-
fectively combines strong and weak augmentation in con-
sistency regularization with confidently pseudo-labeling to
achieve great success in semi-supervised learning setting.
Most recently, [39] propose an uncertainty-aware pseudo-
labels selection (UPS) framework to improve pseudo la-
beling accuracy. RankingMatch [45] introduces a triplet
loss, where the similarity between samples is measured by
the L2-norm outputs. Furthermore, it is worth noting that
the rank statistics of principal features can serve as a met-
ric to measure the pairwise similarity among samples [15].
There are similarities between Learning with Noisy La-
bels (LNL) problems and semi-supervised learning setting.
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In semi-supervised learning settings, confident predictions
have strong connection with true labels as labeled data reg-
ularizing the unlabeled data, which are not easy to over-
confident confused by noisy label. And leveraging confi-
dent predictions inevitably lacks sample diversity to make
pseudo labels more reliable, while difficult samples always
have uncertain predictions. Our approach finds a good bal-
ance of confidence, sample diversity and consistency.

3. Method
Our method is introduced in three parts: the sample se-

lection mechanism (Figure. 3), the consistency regulariza-
tion and rank contrastive loss. Figure 2 shows the overview
of RankMatch. The algorithm is included in the supplemen-
tary material.

Preliminaries. For the C-way image classification task
with noisy labels, denoted by D = (X , Ỹ) the training
data, where X is training images, and Ỹ is labels which
may be wrongly annotated. We denote the DNNs in train-
ing stage as P (F (x, θ)), where x ∈ RI is the input im-
age, F : RI → RL is the feature extractor where I and
L stand for the dimension of input space and embedding
space respectively, and P : RL → RC represents the clas-
sifier. θ denotes the network parameters of the feature ex-
tractor. We use fi and pi as simplified forms of F (xi, θ) and
P (F (xi, θ)) respectively.

3.1. Sample Selection via Confidence Voting

For the sample selection, we leverage the advantage of
confident learning [37] rather than the widely used small-
loss criterion. We explore using a fixed confidence thresh-
old to avoid the vulnerability of inaccurate network predic-
tions. Figure 4 illustrates that confident predictions selected
by a fixed high threshold are reliable but of a limited num-
ber. Hence, we propose a new sample selection strategy
based on the confidence criterion that maintains reliabil-
ity while ensuring sufficient confident samples across cat-
egories.

Confident Samples. In the setting of LNL, it is hard to se-
lect confident samples just by a single threshold when fac-
ing different levels of noise rates. Some classes are easy-
to-learn, and one threshold for all classes is likely to result
in class-unbalanced selection. In order to avoid data imbal-
ance among classes, we select the the top B basic confident
samples Ib in each class to ensure each class at least has B
samples:

Ic
b = argmax

|X̂ |=B,X̂⊆X

∑
x∈X̂

p[c], (1)

where p[c] is the c-th element of p (= P (F (x, θ))), namely
the probability value of the c-th class. And additional sam-
ples with prediction probability greater than a threshold as

Dataset

Model

Reliable confident

!

Basic confident

K-means

Confident Samples

Confident Prototypes as Voting Candidates

Vote
k nearest prototypes

Noisy Clean Clean

Figure 3: Sample-selection via Confidence Voting (SCV)
module. We first select the most representative confident
samples. Then, the selected confident samples generate pro-
totypes as voting candidates. For each sample, its k nearest
prototypes are regarded as voters to identify whether the la-
bel is clean.

the reliable confident samples:

Ic
r = {xi|pi[c] > τ, xi ∈ X}, (2)

The final selected confident samples is the union of the two
sets Ic = Ic

b ∪ Ic
r .

Confident Prototype Generation. To guarantee the qual-
ity of the confident samples, we set high threshold τ and
small portion B, but face the problem of low sample quan-
tity. Although with a small number, the reliable representa-
tions of confident samples reflect some common intra-class
patterns. Thus, we generate representation prototypes us-
ing the selected samples for further selection. Straightfor-
wardly, a representative feature can be generated by averag-
ing features of confident samples for each class:

ϕc =
1

|Ic|
∑
x∈Ic

F (x, θ). (3)

Even if the confident samples include some noise during the
early training stage, the prototype generation process will
predominantly rely on the most clean samples, rendering it
robust to noisy labels. However, the mean vector is unable
to represent a class with large intra-class variations. We
further diversify the intra-class patterns by generating more
prototypes of each class. Specifically, we split the confident
samples into K clusters for each class by K-means. For
the c-th class, we define the average centers of the obtained
clusters features as Φc = {ϕc

j}Kj=1. Our sample-selection
module is based on the generated confident prototypes Φ
(=

⋃C
c=1 Φ

c).
Data Segmentation by Confidence Voting. After obtain-
ing C×K prototypes, we first find the k nearest prototypes
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of xi measured by the cosine similarity:

Vi = argmax
|Φ̂|=k,Φ̂⊆Φ

∑
ϕ∈Φ̂

cos(fi, ϕ). (4)

The class label to which the most prototypes belong in Vi

is considered as the voting result y′i. Clean samples Dcln
are identified by checking whether y′i is consistent with the
provided label ỹi:

Dcln = {(xi, ỹi)|ỹi = y′
i,∀(xi, ỹi) ∈ D}, (5)

The remaining noisy set is Dnsy = D \ Dcln.

3.2. Consistency Regularization

This paper argues that noisy labels lead to inconsistent
predictions (Figure 1). To enhance the consistency of the
predictions augmented from the same image, we apply two
different augmentation methods to generate two views for
training images, including “weak” augmentation (Aw) and
“strong” augmentation (As). Weak augmentation refers to
random cropping and flipping, while strong augmentation
refers to AutoAugment [9], which uses reinforcement learn-
ing to find augmentation strategies automatically and re-
quires labeled data to learn. Note that our sample selection
mechanism provides cleaner supervision signals, benefiting
AutoAugment to accept a more effective augmentation pol-
icy.

Following [21], we transfer the training image x with
the two augmentation strategies, resulting in two views:
vw = Aw(x), and vs = As(x). The corresponding network
predictions are denoted as pw and ps, respectively. Given
that the semantic information of the augmented images is
not modified, we assume the two network predictions to be
consistent.

For clean samples, we direct use cross-entropy loss be-
tween predictions on strongly augmented images and the
original labels:

Lc = − 1

|Dcln|
∑

(x,̃y)∈Dcln

ỹ ◦ log(ps), (6)

where ◦ denotes the inner product.
For noisy samples with high prediction confidence, we

rectify their labels with predictions of weakly augmented
images:

D̂nsy = {(xi, ŷi)|∀xi ∈ Xnsy,max
c

{pw[c]} > ν, ŷi = c},
(7)

where ν is the confidence threshold, we set it the same
as that in Eq. 2 to avoid introducing another parame-
ter. Inspired by [21], the cross entropy losses between the
predictions of weakly and strongly augmented images are

employed as regularizing consistency for the CNN model
learning:

Ln = − 1

|D̂nsy|

∑
(x,ŷ)∈D̂nsy

ŷ ◦ log(ps). (8)

3.3. Rank Contrastive Loss

Robust representations can benefit our samples selection
strategy. However, some valuable information is excluded
by Eq. 7 and Eq. 8 since the hard-to-learn noisy samples
have less confident predictions and thus can not be opti-
mized. To obtain complete and robust representations, we
propose a rank contrastive loss (RCL) to strengthen the con-
sistency of the “similar” samples while pushing “dissimilar”
ones further.

The widely used L2 distance as the similarity metric is
less robust in LNL, as overfitting to noisy labels tends to
introduce spurious close euclidean distance. Every convo-
lution kernel filters out certain kinds of attributes in the in-
put image. Similar visual patterns are prone to activate the
same representation channel of response maps produced by
convolution layers. Hence, the indices of feature elements
rank ordered in accordance with their magnitudes, can serve
as a metric for assessing the pairwise representations simi-
larity [15]. Although noisy labels affect the feature value,
we leverage rank statistics of principal features to estimate
the similarity matrix. Specifically, we rank the values in
all channels of fi and regard the r channels with the largest
activation values as the principal feature dimensions,

Ri = argmax
|R̂|=r, R̂⊂{1,2,...,L}

∑
n∈R̂

fi[n], (9)

where fi[n] denote the n-th channel of feature fi. If two
samples xi and xj share the same principal feature dimen-
sions, we assume they are “similar”. The similarity sij be-
tween xi and xj is evaluated as follows,

sij =

{
1 if Ri = Rj ;

0 otherwise.
(10)

To achieve clustering in the feature space, we adopt the
following binary cross-entropy loss as:

LRCL = − 1

N2

N∑
i=1

N∑
j=1

[sij log(pi◦qj)+(1−sij)log(1−pi◦qj)],

(11)
where pi = P (F (vwi , θ)) and qi = P (F (vsi , θ)). The train-
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ing loss LRCL can be divided into two terms:

LRCL =

Consistency regularization︷ ︸︸ ︷
− 1

N2

N∑
i=1

[sii log(pi ◦ qi) + (1− sii) log(1− pi ◦ qi)]

− 1

N2

N∑
i=1

∑
j ̸=i

[sij log(pi ◦ qj) + (1− sij) log(1− pi ◦ qj)].

(12)
Since sii = 1 always holds, organize the first term as:

− 1

N2

N∑
i=1

log(pi ◦ qi) = − 1

N2

N∑
i=1

log(pw
i ◦ ps

i ). (13)

Minimizing this term is equal to max{pw
i ◦ ps

i}, which
pulls the outputs of strongly and weakly augmented images
closer. Thus, LRCL in the diagonal of S can be regarded as
consistency regularization. Even in the early training stage,
S is the identity matrix that removes the second term in
Eq. 12, improving the network representation ability.

3.4. Overall Loss Function

Following [43, 24, 3], we apply the fair class diversity-
promoting regularization Ldiv to prevent assigning most
samples into few classes:

Ldiv =

C∑
c=1

1

C
log(

1

C
/

∑N
i=1 pw

i [c]

N
). (14)

The overall loss function for network optimization is as fol-
lows:

L = Lc + λnLn + LRCL + Ldiv. (15)

We following [24, 14, 57, 36] to train two networks to
combat the confirmation bias, detailed algorithm is included
in supplementary material.

4. Experiments
4.1. Experimental Setup

We evaluate the proposed RankMatch on CIFAR-10,
CIFAR-100 [20], as well as the real-world datasets Cloth-
ing1M [52] and WebVision [27]. Both CIFAR-10 and
CIFAR-100 contain 50,000 training images and 10,000 test
images of size 32× 32. Following previous works [43, 25],
we conduct experiments requiring noise augmentation, ei-
ther symmetric or asymmetric [43, 25] label noise injection.
We follow the identical implementation of generating sym-
metric and asymmetric noises on CIFAR datasets with Di-
videMix [24]. Symmetric noise is generated by randomly
replacing the labels for a percentage of the training data
with all possible labels. Asymmetric noise is to mimic the

structure of real-world label noise, where labels are only re-
placed by similar classes (e.g. deer→horse, dog↔cat). We
adopt 18-layer PreAct Resnet [17] as the backbone. Dur-
ing training, we train DNNs for 300 epochs using SGD
optimizer with a momentum of 0.9, with weight decay of
0.0005 for CIFAR-10 and 0.001 for CIFAR-100. The batch
size is 64 for CIFAR-10 and 128 for CIFAR-100. We set
the initial learning rate as 0.02 and reduce it by a factor of
10 after 150 epochs. The warm-up period is 10 epochs for
CIFAR-10 and 30 epochs for CIFAR-100, respectively. For
all CIFAR experiments, we set τ = 0.95, r = 5, and choose
λn from {0.2, 0.5, 1, 2, 10, 15} for a small validation test.
More experimental details are in supplementary materials.

Clothing1M contains 1 million real-world shopping im-
ages belonging to 14 classes. We use ResNet-50 [16] with
weights pretrained on ImageNet as the classification model.
WebVision consists of web-crawled images with the same
concepts from ImageNet ILSVRC12 [10]. We follow the
previous work [24, 7] and compare baseline methods on
the first 50 classes of the Google image subset using the
inception-resnet v2 [42]. The training details are delineated
in supplementary materials.

4.2. Experimental Results

Results on CIFAR. Table 1 illuminates RankMatch out-
performs the state-of-the-art models across most noisy lev-
els. RRL [26] combats noisy labels by learning robust
representations and slightly outperforms our method on
CIFAR-10 with 20% symmetric label noise. One possi-
ble explanation is that the massive clean labels make it
easy to rectify the symmetric label noise. Thus, the sam-
ple selection strategy is less effective in this scenario but
shows great advantages for a high noise ratio and real-world
dataset. Benefiting from the advanced confidence sample
selection mechanism, RankMatch boosts the averaged test
accuracy of the last ten epochs from 77.4% to 92.1% on
CIFAR-10 and 33.1% to 49.9% on CIFAR-100 under the
extreme case of 90% noise. Even without MixMatch [6]
technique, RankMatch achieves around 20 points improve-
ment (50.6% v.s. 31.5%) compared to DivideMix [24] on
CIFAR-100 with 90% noisy labels. We surpass CTRR [28],
the most recent contrastive learning-based method, under
all noise ratios, especially on the more challenging CIFAR-
100 dataset.

Results on real-world dataset. Table 2 and Table 3
demonstrate the results on Clothing1M and WebVision,
respectively. Our method outperforms all the alternative
methods in both noisy real-world datasets. We achieve the
improvement of 0.18% over SFT [50], the most recent sam-
ple selection-based method with MixMatch [6]. Besides,
the most recent baseline UNICON [19] well combines the
advantages of semi-supervised learning (DivideMix-like)
and contrastive learning (RRL-like) and achieves great per-
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Dataset CIFAR-10 CIFAR-100

Method/Noise ratio 20% 50% 80% 90% Asym. 40% 20% 50% 80% 90%

Cross-Entropy Best 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Last 82.7 57.9 26.1 16.8 72.3 61.8 37.3 8.8 3.5

PENCIL Best 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
[56] Last 92.0 88.7 76.5 58.2 88.1 68.1 56.4 20.7 8.8

Meta-Learning Best 92.9 89.3 77.4 58.7 89.2 68.5 59.2 42.4 19.5
[25] Last 92.0 88.8 76.1 58.3 88.4 67.7 58.0 40.1 14.3

DivideMix Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
[24] Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

ELR [30] Best 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4

MOIT [38] Best 94.1 91.1 75.8 70.1 93.2 75.9 70.1 51.4 24.5

RRL [26] Last 96.4 95.3 93.3 77.4 93.3 80.3 76.0 61.1 33.1

CTRR [28] Best 93.3 - 86.7 84.3 89.0 70.1 - 43.7 -

RankMatch Best 96.5 95.6 94.5 92.6 94.7 79.5 77.9 67.6 50.6
Last 96.4 95.4 94.2 92.1 94.4 79.3 77.6 67.2 49.9

Table 1: Comparison between RankMatch and state-of-the-art methods on CIFAR-10 and CIFAR-100 under symmetric and
asymmetric noise. "Best" refers to the best test accuracy across all epochs and "Last" is the averaged test accuracy over the
last 10 epochs.

Method Test Accuracy

Cross-Entropy 69.21
PENCIL [56] 73.49
DivideMix [24] 74.76
RRL [26] 74.97
DSOS [1] 73.63
UNICON [19] 74.98
SOP [31] 73.50
SFT [50] 75.08

RankMatch 75.22

Table 2: Comparison with state-of-the-art methods on
Clothing1M. Baseline results are copied from original pa-
pers.

formance gain. In particular, RankMatch achieves 0.24%
performance gain over UNICON on the challenging Cloth-
ing1M dataset. Moreover, RankMatch obtain over 2%
Top-1 accuracy improvement over state-of-the-art on both
mini-WebVison and ILSVRC12 validation sets, and guar-
antees state-of-the-art Top-5 accuracy on WebVision and
ILSVRC12, indicating the effectiveness of our approach.

4.3. Ablation Study

The role of confidence in LNL. To explore the role of
the fixed confidence threshold in the LNL setting, we fo-
cus on the relationship between confident predictions and
ground-truth labels. Specifically, we directly train DNNs

Method
WebVision ILSVRC12

top1 top5 top1 top5

MentorNet [18] 63.00 81.40 57.80 79.92
Co-teaching [14] 63.58 85.20 61.48 84.70
Iterative-CV [7] 65.24 85.34 61.60 84.98
DivideMix [24] 77.32 91.64 75.20 90.84
RRL [26] 77.8 91.3 74.4 90.9
DSOS [1] 77.76 92.04 74.36 90.80
SOP [31] 76.6 - 69.1 -
UNICON [19] 77.60 93.44 75.29 93.72

RankMatch 79.91 93.61 77.39 94.26

Table 3: Comparison with state-of-the-art methods on
(mini) WebVision dataset. Numbers denote top-1 (top-5)
accuracy (%) on the WebVision and ImageNet ILSVRC12
validation set. Results for baselines are copied from the cor-
responding papers.

for classification on CIFAR-10 under different noise levels
and record the following statistics: confident ratio, preci-
sion, and recall of confident predictions.

From the results shown in Figure 4, we discover the fol-
lowing empirical rules: (1) Confident ratio and recall in-
crease in the same trend, while precision continues to de-
crease, indicating that the process of overfitting to noise la-
bel can regard as the process of overconfidence. (2) The
precision of confident samples maintains a high level at the
early stage, which means that confident predictions selected
by the high threshold are reliable after the warm-up stage.
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Figure 4: Some key statistics of confident samples on CIFAR-10. The confident samples are selected via the fixed confidence
threshold. (a) Precision, ratio of correctly predicted samples in confident samples, maintains a high level (close to 100%) at
the early stage, but continues to decline afterwards. Under Symmetry-50% noise, there is no confident samples in the early
period. Hence, we record the precision after 30 epochs. (b) Recall, ratio of confident samples in correct prediction samples,
maintains a low level in early stage, and gradually rises to high level. (c) Confidence ratio, ratio of confident samples in
training set, has the same trend with Recall.
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Figure 5: Accuracy (%) of the selected clean samples under different symmetric noise rates on CIFAR-100 datasets. Our
full method RankMatch is compared with two baselines. One is DivideMix, denoted as GMM and MixMatch. The other
is replacing GMM with our proposed Sample-selection via Confident Voting (SCV) method. Compared with GMM, SCV
is more efficient to identify the clean samples. And our full model RankMatch has significant improvement in the sample
selection stage under high noise rate.

(3) However, it is prone to selecting few samples when
directly selecting reliable confidence samples by the high
threshold because the recall is extremely low under high
noise. It forms a dilemma between the quality and quan-
tity of the selected samples.

Sample selection via confident voting (SCV) is one
main reason for RankMatch achieving great improvement.
To study and verify its effectiveness, we test the accu-
racy of the selected clean samples under various symmetric
noises on CIFAR-100. Since the great success DivideMix
has made, we regard the GMM-based sample selection
method as our baseline. Figure 5 presents that the SCV-
based methods are more accurate than DivideMix in all
cases. Furthermore, in the extremely demanding scenario
(, i.e., Symmetry-80% and Symmetry-90%), SCV based
method achieves tremendous improvement. Specifically,
DivideMix with SCV achieves over 18% improvement than
that with GMM at 80% label noise. In contrast, our full
RankMatch achieves over 25% improvement, which implies
that the SCV benefits from more robust representation train-

ing. Under the most extreme 90% label noise, our full
RankMatch achieves over 140% selection accuracy gain,
while DivideMix with SCV improves over 75%. The expla-
nation for this result is that our full model includes consis-
tency regularization and rank contrastive loss. Consistency
regularization enhances semantic consistency and rectifies
some confident-but-noisy features, which generates more
robust prototypes and benefits SCV. Furthermore, rank con-
trastive loss promotes more discriminative features, improv-
ing confident prototype generation. The supplementary ma-
terial contains other in-depth studies examining the sensi-
tivity of high threshold τ and hyper-parameters in SCV.

Effects of RankMatch components. We remove the
corresponding components to study the effects of RCL and
network ensemble. We remove LRCL to validate the effect
of rank contrastive loss. We replace the SCV module as
the sample selection strategy of DivideMix to validate the
effectiveness of SCV. We remove the K-means in SCV for
detailed study. As the results shown in Table 4, we find that
rank contrastive loss is beneficial to RankMatch. The results
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Dataset CIFAR-10 CIFAR-100

Noise ratio 50% 90% 50% 90%

RankMatch Best 95.6 92.6 77.9 50.6
Last 95.4 92.1 77.6 49.9

w/o SCV Best 95.1 89.6 75.3 45.1
Last 94.9 89.1 74.9 44.9

SCV w/o K-means Best 95.4 91.8 76.5 47.9
Last 95.2 91.4 75.2 47.5

w/o RCL Best 95.2 90.8 76.1 45.6
Last 94.9 88.7 75.2 44.5

Table 4: Ablation study results in terms of test accuracy (%)
on CIFAR-10 and CIFAR-100 with symmetric label noise.

also validate the effectiveness of our proposed SCV. Diver-
sifing the intra-class patterns by K-means is more effective
under complex scenario and extreme noise ratio.
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Figure 6: Sensitivity to the variance of hyperparameters.
Experiments are conducted on CIFAR-10 under 50% and
90% symmetric noises.

Sensitivity Analysis. SCV introduce the confidence
threshold τ and number of prototypes K. We range the
number of prototypes K from 5 to 30 and vary the thresh-
old τ from 0.90 to 0.99. Figure 6 shows that our method is
robust against different choices for τ and K. More in-depth
studies are included in supplementary materials.

5. Conclusions

We presented RankMatch, a novel framework for LNL
that strives to combat noisy labels by enhancing confidence
and consistency. Confidence-wise, we propose a novel
clean sample selection strategy based on confidence repre-
sentation voting rather than the small-loss criterion. Col-
lecting votes from confident prototypes makes our method
robust to noise and can sieve clean samples out with ample
quantity. Consistency-wise, we introduce a novel rank con-
trastive loss based on the rank statistics of principal features
instead of the widely-used L2 distance. Such a loss could
enhance consistency between similar samples even if they

were wrongly labeled. Moreover, we leverage consistency
regularization to enhance the semantic consistency. We val-
idate our superiority over several challenging benchmarks.
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