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Abstract

Large vocabulary object detectors are often faced with
the long-tailed label distributions, seriously degrading their
ability to detect rarely seen categories. On one hand, the
rare objects are prone to be misclassified as frequent cate-
gories. On the other hand, due to the limitation on the to-
tal number of detections per image, detectors usually rank
all the confidence scores globally and filter out the lower-
ranking ones. This may result in missed detection during
inference, especially for the rare categories that naturally
come with lower scores. Existing methods mainly focus
on the former problem and design various classification
loss to enhance the object-level classification accuracy, but
largely overlook the global-level ranking task. In this paper,
we propose a novel framework that Reconciles Object-level
and Global-level (ROG) objectives to address both prob-
lems. As a multi-task learning framework, ROG simulta-
neously trains the model with two tasks: classifying each
object proposal individually and ranking all the confidence
scores globally. Specifically, complementary to the object-
level classification loss for model discrimination, we design
a generalized average precision (GAP) loss to explicitly op-
timize the global-level score ranking across different ob-
jects. For each category, GAP loss generates balanced gra-
dients to rectify the ranking errors. In experiments, we show
that GAP loss is highly versatile to be plugged into various
advanced methods and brings considerable benefits. Code
is at https://github.com/EricZsy/ROG.

1. Introduction
The development of modern convolutional neural net-

works (CNNs) gives rise to great advances in object detec-
tion [14, 36, 29] and instance segmentation [49, 54]. So far,
the state-of-the-art object detectors typically rely heavily on
a huge amount of annotated data [27]. However, with the
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Figure 1. The two major causes degrading detection performance
for rare categories: misclassification (MC) and missed detection
(MD). (a) The common pipeline of an object detector. The boxes
with solid line and dashed line are foregrounds and backgrounds
respectively. The dots denote the predictions for these boxes, fol-
lowed by their confidence scores. (b) Rare object soccer is mis-
classified as person in the classification task. (c) Missed detection
for soccer caused by global ranking and filtering.

rapid growth of data scale, the long-tail effect has become a
bottleneck in training object detectors for real-world use. In
large vocabulary image datasets such as LVIS [15], there are
only a few categories containing abundant instances, while
most other rare categories seldom appear. Detectors natu-
rally lean towards the frequent categories and usually fail in
detecting those rarely seen objects.

In Figure 1, we analyze that the undesired phenomenon
is mainly derived from two aspects. First, the significantly
more frequent objects dominate the training process, and
thereby suppress the rare categories by overwhelming dis-
couraging gradients [42]. As a result, the latter is more
likely to be predicted with lower confidence scores and mis-
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classified, e.g., the soccer is classified as the frequent cat-
egory person in Figure 1(b). Second, during inference, the
rare objects are prone to be lost due to a seemingly triv-
ial detail: the global ranking and filtering for all the scores
in each image. Before non-maximum suppression (NMS),
all the scores are collected together and the ones below a
certain threshold will be filtered out. In addition, consid-
ering the memory limit, the object detectors usually have
limitations on the maximum number of detections per im-
age. Therefore, after NMS, all the detected objects in an
image will be ranked by their confidence scores, and only
the top-K of them will be reserved for final results. Since
the scores for rare categories are relatively low, they are eas-
ily squeezed out in the global-level and cross-object ranking
competition (see Figure 1(c)). The two problems, respec-
tively arising in training and inference phase, are relevant
but of different emphasis. The former presents the chal-
lenge of classifying each object accurately, while the latter
focuses on how to rank all the scores fairly.

Prior works in long-tail detection mainly focus on the
former problem, i.e., misclassification from tail to head.
To calibrate the classification bias, a variety of special-
ized classification loss functions are proposed. Some of
them re-weight the classification loss based on class prior
[42, 17, 1] or training status [41, 45, 48], while others
[43, 37, 12, 19, 47] design class-wise margins for calibrated
decision boundaries. Although modifying the classifica-
tion loss could enhance model discrimination and improve
object-level classification accuracy, it is not able to give a
direct solution to the cross-object ranking task. In fact, even
though a rare object is classified correctly, it is still possi-
ble to be missed due to the low confidence score. Recall
that for object detection, the classification accuracy is not
a comprehensive indicator, while average precision (AP) is
a more widely used metric. Motivated by this, some work
[4, 30, 31, 7] replace the classification task with a ranking
task to learn to rank every positive sample above all the neg-
ative samples. Detectors trained by ranking-based loss may
be good at ranking task but not discriminative enough. For
example, the loss could be minimized to zero even if the
scores of positive samples are only slightly higher than that
of negative ones. More importantly, these ranking algo-
rithms are category-agnostic that weights all ground-truth
samples equally, no matter which categories they belong to.
It is still inconsistent with the AP metric1 which is averaged
over each category. Especially, under long-tail distribution,
the gradients for ranking rare-category samples are weak,
and will be easily deflected by frequent categories.

To address the aforementioned problems in long-tail
detection, it is highly considerable to reconcile both the

1Note that in COCO [27], there is no distinction between AP and mean
average precision (mAP). They are both averaged over all categories. We
follow their notations and use AP throughout the paper for consistency.

object-level discrimination objective and global-level rank-
ing objective during training. Therefore, in this paper, we
present ROG, a multi-task learning framework that simulta-
neously learns two tasks: classifying each object proposal
individually and ranking all confidence scores globally. The
object-level discrimination objective aims to train a discrim-
inative classifier that could classify each object accurately.
It also ensures a unified score distribution across categories.
On this basis, the global-level ranking objective is proposed
to optimize the cross-object ranking orders via a generalized
average precision loss. For each specific category, the loss
is calculated by ranking errors between category-specific
positive-negative pairs. Then the generalized precision loss
is averaged over all categories, and thus generates balanced
gradients to re-rank samples for each category equally. Fol-
lowing [5], the error-driven update algorithm is adopted to
optimize the non-differentiable ranking loss. As a whole,
the classification task and the ranking task complement each
other to jointly cater to the classification and ranking proce-
dures in object detection. In addition, the two tasks could
be trained harmoniously: the classification scores are pro-
vided for the ranking task, and the ranking task could im-
prove scores of positive samples and reduce scores of nega-
tive samples which in turn promotes the classification task.

Extensive experiments are conducted on the challenging
LVIS [15] and OpenImages [22] datasets. We show that
the generalized average precision loss is highly versatile to
cooperate with existing methods. As a whole framework,
ROG consistently improves the performance of state-of-the-
art methods, across various classification losses [41, 19],
sampling strategies [15] and post-processing methods [33].

To sum up, the main contribution of this work is a ROG
framework that considers both object-level classification
task and global-level ranking task in long-tail detection. It
is motivated by the overlooked ranking and filtering proce-
dure in inference phase, and aims to learn to classify each
object and rank all the confidence scores simultaneously. A
generalized average precision loss is proposed to rectify the
ranking errors for each category equally. The extensive ex-
periments validate the effectiveness of ROG.

2. Related Works
General Object Detection. With deep learning, general
object detection [53] is popularized by both two-stage and
single-stage detectors. Two-stage detectors [14, 13, 38, 16]
are equipped with a separate module to first generate re-
gion proposals, which are further refined for accurate clas-
sification and localization in the second stage. Based on
this pipeline, Many follow-up improvements have been pro-
posed from different concerns, including feature pyramid
network (FPN) [25], mask branch for instance segmenta-
tion [16], and etc. Instead, single-stage detectors such as
YOLO [36] and SSD [29] classify and localize semantic
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objects in a single shot using dense sampling. They are typ-
ically high in efficiency but have been lagging in accuracy
until the introduction of RetinaNet [26]. In addition, there
are other methods generating detection boxes by grouping
key-points on objects [11, 23].
Long-tail Object Classification and Detection. Recently,
long-tail object classification [51, 55] has drawn a lot of
attention. Existing methods can be roughly categorized
into class re-balancing and data augmentation. Class re-
balancing, either by cost-sensitive learning [21, 2, 9, 40] or
data re-sampling [18, 56, 3], aim to balance different classes
during training. Kang et al. [20] further propose the decou-
pled training strategy which only re-balances the classifier
learning. Alternatively, data augmentation methods attempt
to increase the size and diversity of rare categories via data
mixing [8] or head-to-tail knowledge transfer [52, 44].

The long-tailed data distribution also degrades the per-
formance of object detectors [32]. Wang et al. [46] show
that the performance drop mainly arises in the classifica-
tion sub-network. Therefore, with the precedents in long-
tail classification, earlier attempts in long-tail detection
utilize decoupled training [46, 24] or cost-sensitive loss
[37, 42, 17]. To alleviate the suppression on rare categories,
Equalization Loss (EQL) [42] is proposed with class-wise
weights to reduce discouraging gradients from frequent in-
stances, and it is further improved by directly re-weighting
the classification loss based on gradient statistics [41]. Sim-
ilarly, Seesaw Loss [45] dynamically balances gradients
for each category with the mitigation factor and the com-
pensation factor. Although these methods could alleviate
the object-level misclassification, they overlook the cross-
object global ranking, which may result in missed detection
on rare objects. Very recently, Effective Class-Margin Loss
[19] is proposed to implicitly bound the mean average pre-
cision by a margin-based classification loss. Orthogonal to
designing the classification loss, we provide a new angle of
view to explicitly optimize the global-level ranking task in
long-tail detection.
Ranking for Object Detection. In object detection, a line
of work [5, 30, 35, 28, 50] directly replaces the classifica-
tion loss with ranking-based loss. AP Loss [5] explicitly
models the category-agnostic ranking orders between all the
positive-negative sample pairs, while RS Loss [31] extends
this idea to additionally sort positive pairs w.r.t. their lo-
calization qualities. RankDetNet [28] systematically inte-
grates the score-guided and IoU-guided ranking task to re-
place the classification task. However, the ranking loss it-
self is not discriminative enough. Moreover, these ranking-
based losses are category-agnostic and mainly designed for
general object detection. Under long-tailed distribution,
the ranking objective will be dominated by frequent cate-
gories, while the incorrect ranking and missed detection for
rare categories still remain unsolved. Unless prior works,

our global-level ranking objective optimizes each category
equally for ranking rectification.

3. Our Method
We propose to reconcile object-level and global-level

(ROG) objectives to improve long-tail detection. In Sec.
3.1, we first revisit the evaluation of object detection as pre-
liminary, and present an overview of our method. Then we
introduce the two components in ROG: the object-level dis-
crimination objective (see Sec. 3.2) and the global-level
ranking objective (see Sec. 3.3). Lastly, the multi-task ob-
jective and its optimization are introduced in Sec. 3.4.

3.1. Preliminary and Overview

Given an image, the aim of object detection is to detect
semantic objects with their locations and categories. For
better insight into our method, we begin by revisiting how
to measure the performance of an object detector.

When evaluated on a dataset, the detector collects all the
object proposals, each with a score vector s = [s0, . . . , sC ],
where sC is the score for background and others for differ-
ent foreground categories. Then, all the scores are ranked
globally and the lower-ranking ones are filtered out. Since
the ranking task is performed on the scores, here we use the
term sample to refer to each score si. The reserved sam-
ples are collected in S to calculate the precision and recall
values. For a category m, S is divided into a set of pos-
itive samples P(m) and a set of negative samples N (m).
The average precision on m could be written as the mean of
precision over P(m):

APm =
1

|P(m)|
∑

i∈P(m)

Prec(i), (1)

where |P(m)| is the size of P(m), and the precision for i-th
positive sample is

Prec(i) =
Rm+(i)

R(i)
. (2)

Rm+(i) and R(i) stands for the ranking position of sample
i in P(m) and P(m) ∪ N (m). Then the average precision
over all foreground categories is formulated as:

AP =
1

C

C−1∑
m=0

APm, (3)

The AP metric has two desired characteristics. First, it ef-
fectively captures the cross-object ranking relation between
confidence scores, which is in concert with the ranking
task in inference phase. Second, it measures each category
equally so that the influence of data imbalance on overall
assessment could be eliminated. Therefore, it is promising
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Figure 2. The framework of ROG. Detector predicts score vectors for all the detected boxes, each of which contains the scores for C
foreground categories and a background (BG) category. The overall objective includes an object-level discrimination objective and a
global-level ranking objective. The former aims for accurate classification for each object, while the latter rectifies the cross-object score
ranking for each specific category. * denotes the ground-truth, and the green arrows denote the optimization directions in each objective.

to adopt AP as a global-level ranking optimization objective
on long-tailed data.

Our goal is to improve long-tail detection by reducing
both classification errors and ranking errors, especially for
rare categories. To this end, we propose to reconcile object-
level objective and global-level objective during training.
The overall framework of ROG is illustrated in Figure 2.
ROG jointly optimizes an object-level discrimination objec-
tive and a global-level ranking objective on the confidence
scores. The object-level discrimination objective aims to
ensure a discriminative model to classify each object ac-
curately. Complementarily, the global-level ranking objec-
tive caters to the ranking procedure of inference phase and
guides the detector to rank all scores across objects. It is
achieved by a generalized average precision loss, which
generates balanced gradients for each category via global
statistics ω. The generalized average precision loss is par-
ticularly suitable for long-tailed data as it aims to rectify
ranking errors for each specific category equally and pays
enough attention to rare categories. Under the ROG frame-
work, the two objectives complement with each other to
jointly promote the detection performance.

3.2. Object-Level Discrimination Objective

In object detection, the classification sub-network plays
a role in classifying each object proposal. It is usually
trained with the cross-entropy (CE) classification loss to en-
sure the discrimination. For each proposal, the CE classifi-
cation loss could be written as:

Lcls = −
C∑

j=0

yj log pj , (4)

where y = [y0, . . . , yC ] is the one-hot label and p =
[p0, . . . , pC ] is the probability vector for C foreground cat-
egories plus background.

In view of the long-tailed characteristic, there are many
novel classification losses proposed for balancing the train-
ing among categories, such as Seesaw Loss [45] and Ef-
fective Class-Margin Loss [19]. These methods effectively
promote the rare categories and can be freely adopted as
the classification loss in our framework. Overall though,
the object-level classification loss only ensures the discrim-
inative ability of the model, which means that the model
could discriminate the ground-truth from other categories
for each proposal individually. However, it is not able to
manage the cross-object ranking task. We present an ex-
ample in Figure 3. Owing to the classification loss, all the
three objects are classified accurately with the highest con-
fidence scores for their ground-truth categories. In terms
of the ranking task, however, the ranking order could still
be incorrect. The ground-truth of rare category, i.e. soc-
cer, tends to be predicted with a low confidence score, and
thus may rank behind some negative samples. Although the
classification loss could improve the score of ground-truth
category, it fails to provide explicit comparisons among dif-
ferent objects to rectify the incorrect ranking orders.

3.3. Global-Level Ranking Objective

The classification loss aims to enhance the discrimina-
tion of the model, but it could not optimize the cross-object
ranking task directly. To overcome this limitation, we fur-
ther propose a generalized average precision (GAP) loss to
explicitly adjust the ranking orders for each category.

The generalized average precision loss is calculated on
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(a) Object classification. (b) Score ranking.

Figure 3. Illustration of an example which succeeds in classifica-
tion but fails in ranking. For the ranking task, the score compar-
isons across different objects, e.g., 0.30 vs. 0.15 framed in boxes,
are not considered in the object-level classification loss.

each training batch B̂. In B̂, all the positive samples of cat-
egory m are collected in P̂(m), while negative samples are
collected in N̂ (m). Following [5], we define a pairwise
ranking function H(i, j):

H(i, j) =


0, sj − si < −δ
(sj−si)

2δ + 0.5, −δ ≤ sj − si ≤ δ

1, sj − si > δ

(5)

where δ is a parameter controlling the margin between si
and sj . Then the ranking position for each positive sam-
ple i ∈ P̂(m) could be obtained via accumulative pairwise
ranking:

Rm+(i) = 1 +
∑

j∈P̂(m),j ̸=i

H(i, j), (6)

R(i) = 1 +
∑

j∈P̂(m)∪N̂ (m),j ̸=i

H(i, j). (7)

Following above definitions, the generalized average
precision loss is proposed as ⟨1− AP⟩B̂, with special de-
signs to adapt to the mini-batch training paradigm. In-
tuitively, the AP metric should reflect the ranking perfor-
mance for each category equally over the entire dataset.
However, due to mini-batch training, the statistical infor-
mation in each training batch is usually biased, which could
not reflect the global statistics. Typically, only a small sub-
set of foreground categories Ĉ occurs in a mini-batch and
the frequency of each category may also vary sharply in dif-
ferent B̂. Therefore, we need to inject the global statistics
of the entire dataset into the batch-wise ranking loss. Let
Lij = H(i, j)/R(i), then the generalized average precision
loss on the training batch is:

Lgap =
1

|Ĉ|

∑
m∈Ĉ

ωm

|P̂(m)|

∑
i∈P̂(m)

∑
j∈N̂

Lij . (8)

The global statistic for category m is introduced by ωm:

ωm =
( 1
|P(m)| )

γ∑C−1
k=0 (

1
|P(k)| )

γ
× C, (9)

where γ is a hyper-parameter controlling the strength of
global information. The total size |P(·)| for each cate-
gory is empirically accumulated by |P̂(·)| from each train-
ing batch. Note that in Eq. 8, the negative samples
are defined in N̂ rather than N̂ (m), which means they
are not positive samples for any other category. This is
because that positive samples for other categories would
be also included in N̂ (m), leading to conflicting gra-
dients in optimization. Therefore, the ranking orders
between positive sample pairs from different categories{
(i, j)|i ∈ P̂(m), j ∈ P̂(n),m ̸= n

}
are not constrained

in the loss as illustrated in Figure 2.

3.4. Multi-Task Objective and Optimization

Combining both object-level discrimination objective
and global-level ranking objective, the total loss of ROG
is:

Lrog = Lcls + λgapLgap, (10)

where λgap is the parameter controlling the weight of two
tasks. Since we mainly focus on the classification sub-
network, the bounding box regression loss in the localiza-
tion sub-network is omitted here.

The Lcls could be optimized easily via backpropagation
and automatic differentiation [34]. However, note that the
ranking function H(i, j) is non-differentiable, the optimiza-
tion of Lgap is not trivial. Inspired by [5], we adopt the
error-driven update algorithm [39] to efficiently calculate
the gradients. Given the input (sj − si) and the resulting
pairwise loss Lij , the update for input is directly set as the
difference between target loss value and current loss value,
i.e., (0− Lij). Therefore, ∂Lij

∂si
and ∂Lij

∂sj
could be replaced

by −Lij and Lij , respectively. For a score sk, the gradient
propagated from Lgap is:

gkgap =

{
− 1

|Ĉ|
ωm

|P̂(m)|

∑
j∈N̂ Lkj , k ∈ P̂(m)

1
|Ĉ|

∑
m∈Ĉ

ωm

|P̂(m)|

∑
i∈P̂(m) Lik, k ∈ N̂ .

(11)
The manually set gradients could be further back propa-
gated by the chain rule to train the whole network. Please
refer to supplementary material for the detailed derivations.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate ROG on LVIS v1 [15] and OpenIm-
ages [22] dataset. LVIS v1 is a large vocabulary object de-
tection and instance segmentation dataset, which contains
100k images for training and 19.8k images for validation.
There are totally 1,203 object categories with long-tailed
distribution. According to the number of training images
per category, they are divided into three groups: rare (with
1-10 images), common (with 11-100 images), and frequent
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Table 1. Results on the validation set of LVIS v1 with ResNet-50 backbone. The proposed generalized average precision loss brings
consistent improvements on existing methods under different sampling strategies. † indicates reproduced results from their released codes.

Sampler Lcls Lgap APbbox AP APr APc APf

Random

Sigmoid CE ✗ 17.3 16.7 0.8 13.4 27.4
✓ 24.7 (+7.4) 23.9 (+7.2) 14.1 (+13.3) 23.7 28.0

Softmax CE ✗ 16.7 16.1 0.0 12.0 27.4
✓ 22.0 (+5.3) 22.3 (+6.2) 12.1 (+12.1) 21.9 27.3

CE + NorCal [33] † ✗ 20.2 19.6 2.7 18.4 28.3
✓ 24.2 (+4.0) 24.1 (+4.5) 16.7 (+14.0) 24.2 27.2

EQLv2 [41] † ✗ 24.2 23.6 15.0 22.5 28.5
✓ 25.0 (+0.8) 24.4 (+0.8) 17.2 (+2.2) 23.5 28.7

ECM [19] † ✗ 22.4 21.3 5.1 20.9 28.9
✓ 25.0 (+2.6) 24.7 (+3.4) 16.7 (+11.6) 24.2 28.7

RFS

Sigmoid CE ✗ 22.9 22.2 11.8 21.4 27.6
✓ 25.9 (+3.0) 25.1 (+2.9) 18.2 (+6.4) 24.6 28.7

GOL [1] † ✗ 25.8 26.0 19.1 26.2 28.8
✓ 26.1 (+0.3) 26.4 (+0.4) 20.3 (+1.2) 26.6 28.9

ECM [19] † ✗ 26.7 26.3 19.5 26.0 29.8
✓ 27.2 (+0.5) 26.9 (+0.6) 20.1 (+0.6) 26.8 30.0

(with over 100 images). OpenImages is another long-tailed
object detection dataset with 500 categories, which are fur-
ther divided into five groups following [41].
Evaluation Metrics. The evaluation metric is the mean av-
erage precision across IoU threshold from 0.5 to 0.95. We
use APbbox to assess the detection performance, and AP to
assess the segmentation performance. In addition to the av-
erage precision over all categories, we also report APr, APc,
and APf on LVIS to measure the performance for the rare,
common and frequent groups respectively.
Implementation Details. Our implementation is based on
MMDetection toolbox[6]. We adopt the Mask R-CNN [16]
and Faster R-CNN [38] with Feature Pyramid Networks
(FPN) [25] as baseline models for LVIS and OpenImages,
respectively. Models are trained by SGD with a momen-
tum of 0.9 and a weight decay of 0.0001. For 1x schedule
with 12 training epochs, the learning rate is initialized as
0.02, and then decays by 0.1 at the end of epoch 8 and 11.
For 2x schedule, models are trained with 24 epochs, and the
learning rate decays at the end of epoch 16 and 22. Dur-
ing training, the default data augmentations such as random
horizontal flipping and scale jitter are used. During infer-
ence, the score threshold is set to 0.0001 and the maximum
number of detections per image is set to 300 following the
convention. For ROG, we set δ = 0.5 and γ = 1 unless
specified. The λgap is set to 0.1 for experiments with repeat
factor sampling (RFS) [15] and 1.0 for other experiments.

4.2. Ablation Study

We conduct the ablation studies on LVIS, with ResNet-
50 backbone network and 1x training schedule.
Effectiveness of ROG. We firstly evaluate the effectiveness
of the generalized average precision loss Lgap. Since GAP

loss is based on ranking and complementary to the clas-
sification task, it can be seamlessly plugged into existing
classification-based methods. As shown in Table 1, GAP
loss consistently enhances the classification-based baselines
and state-of-the-arts. For the baseline model trained with
sigmoid CE loss and random sampler, GAP loss could im-
prove the AP of object detection and instance segmenta-
tion by 7.4 and 7.2, respectively. It is noted that the AP
for rare categories rises from 0.8 to 14.1, which clearly
demonstrates the effectiveness of GAP loss for promoting
rare categories. Furthermore, we apply our GAP loss with
the recently proposed ECM loss [19]. We find that GAP loss
still brings solid improvements (e.g., +11.6 APr). Consid-
ering that ECM loss is already the state-of-the-art classifi-
cation loss, we attribute the additional improvements to the
global-level ranking objective. In addition, our method is
also compatible with the RFS sampler that repeatedly sam-
ples images containing rare objects. This is attributed to the
manner of online statistics in each batch, which precisely
calculates the total number of training instances from each
category, even with different samplers.

We further verify the effectiveness of ROG that reduces
missed detection caused by global ranking. To quantita-
tively analyze missed detection, an intuitive idea is to in-
crease the maximum number of detections per image (de-
noted by K) to include more missed samples, and observe
how much the AP will be improved [10]. In Table 3, by in-
cluding more samples into the final detection (from K = 50
to 100), the improvements for rare categories are far more
than frequent ones (71.8% vs. 11.0%), which indicates that
rare samples are more likely to be missed. In contrast, for
our ROG, the improvements brought by increasing K are
relatively balanced among all the categories. This validates
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Table 2. Comparisons on different choices of global-level ranking objectives.
Object-level Global-level APbbox AP APr APc APf

N/A
AP loss [5] 17.2 17.9 3.4 15.9 26.4
RS loss [31] 20.5 19.8 3.6 17.6 29.4

GAP loss (ours) 21.1 21.1 12.0 21.0 25.2

Softmax CE loss AP loss [5] 16.7 17.8 4.5 16.5 25.2
GAP loss (ours) 22.0 22.3 12.1 21.9 27.3

Sigmoid CE loss AP loss [5] 14.6 15.8 2.9 13.8 23.7
GAP loss (ours) 24.7 23.9 14.8 23.0 28.8

Figure 4. Ratios of accumulated positive gradients to negative gra-
dients from different ranking loss.

that ROG largely compensates missed detection for rare cat-
egories caused by global ranking and filtering.
Analysis of different ranking objectives. The global-level
ranking objective in ROG trains the model to rank confi-
dence scores across different objects. We investigate how
the performance is affected by different choices of the rank-
ing objectives. In Table 2, our GAP loss is compared with
AP loss [5] and RS loss [31], which are both category-
agnostic. When using AP loss or RS loss as the global-level
ranking objective alone, we find that the results are compa-
rable with the CE loss baseline. However, the performance
for rare categories are still significantly lower than common
and frequent categories. Due to the category-agnostic na-
ture, these losses weight each positive sample equally with-
out considering their labels, leading to insufficient training
for the ranking task on rare categories. In contrast, our GAP
loss is category-specific and thus induces balanced training
over all categories. As a result, the performance on rare cat-
egories are improved over 8 AP via GAP loss, which vali-
dates our analysis. Furthermore, we also find that training
AP loss together with the object-level CE loss even leads
to worse performance. Our GAP loss works more harmo-
niously with CE loss and consistently improves the AP on
all the rare, common and frequent categories. Note that [31]
designs a special way to balance the RS loss and bounding
box regression loss, so we did not conduct experiments on
the combination of RS loss and classification loss. To fur-

Table 3. Relative improvements by increasing the maximum num-
ber of detections per image (denoted by K) on LVIS v1.

Method K APr APc APf

RFS 50 3.9 12.4 22.6
100 6.7 (+71.8%) 16.1 (+29.8%) 25.1 (+11.0%)

ROG 50 11.4 16.5 23.7
100 13.4 (+17.5%) 19.9 (+20.6%) 26.1 (+10.1%)

Table 4. Ablation study on designs in GAP loss. The global statis-
tic ω is defined in Eq. 9. Online means the online statistic man-
ner for calculating category size. Excl.FG means excluding other
foreground positive samples from the negative set of category m.

ω Online Excl. FG APbbox AP
✗ ✗ ✗ 19.2 19.6
✓ ✗ ✗ 23.8 23.5
✓ ✓ ✗ 24.1 23.4
✓ ✗ ✓ 24.1 23.9
✓ ✓ ✓ 24.7 23.9

ther explore the balanced performance from GAP loss, we
follow [41] to accumulate the gradients from positive sam-
ples and negative samples for each category and calculates
their ratios. The ratios from different ranking loss are pre-
sented in Figure 4, which shows that GAP loss produces
more balanced gradients for ranking on each category.
Designs in GAP loss. In Eq. 8, our GAP loss differs from
previous ranking loss [5] mainly in the category-specific
ranking manner and the introduction of global statistic ω.
In Table 4, we start by omitting the ω in calculating the
loss. As analyzed in Sec. 3.3, the statistic in a single batch
could not represent the statistic of the entire training set.
It fails to optimize the AP over all categories in the face
of long-tail distribution, and thus leads to a sub-optimal re-
sult. When introducing ω by the pre-defined category dis-
tribution from dataset, the AP gains by a large margin (4.6
points on APbbox and 3.9 points on AP). Furthermore, we
replace the pre-defined distribution by the online statistic
distribution, which slightly improves the AP for object de-
tection by 0.3 points. In addition, when calculating GAP
loss between positive and negative samples for category m,
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(a) Weight norms of classifier. (b) Average precision of each category.

Figure 5. Visualization on weight norms of classifier and AP of each category.

Table 5. Comparisons with state-of-the-art methods on LVIS v1.
Method APbbox AP APr APc APf

RFS [15] 26.6 25.5 16.6 24.5 30.6
EQLv2 [41] 27.9 27.2 20.6 25.9 31.4
LOCE [12] 29.0 28.0 19.5 27.8 32.0
Seesaw [45] 28.9 28.1 20.0 28.0 31.9
ROG (ours) 29.3 28.8 21.1 29.1 31.8

Table 6. Comparisons with state-of-the-art methods on OpenIm-
ages.

Method APbboxAP1 AP2 AP3 AP4 AP5

Faster-R101 46.0 29.2 45.5 49.3 50.9 54.7
EQL [42] 48.0 36.1 47.2 50.5 51.0 55.0

Seesaw [45] 47.5 37.2 46.0 48.7 50.2 55.1
EQLv2 [41] 55.1 51.0 55.2 56.6 55.6 57.5
ROG (ours) 58.2 54.8 59.2 60.6 58.0 58.5

we consider the negative set N̂ instead of N̂ (m). This will
exclude positive samples of other foreground categories and
avoids conflicting gradients among categories in optimiza-
tion. The experimental results verify the effectiveness of
our designs, which achieve APbbox of 24.7 and AP of 23.9.
Weight norm of classifier and AP of each category. Pre-
vious work [20] has shown that classifier trained on long-
tail data exhibits imbalanced weight norms across cate-
gories. In Figure 5(a), we visualize the weight norms of
classifier in the Mask R-CNN. We train a model by the
baseline sigmoid CE loss and another by the baseline ROG.
By applying the GAP loss on the CE loss, we observe that
the baseline ROG leads to more balanced weight norms. In
addition, we represent the AP of each category in Figure
5(b). We find that ROG significantly lifts up the perfor-
mance on rare categories, meanwhile without obvious per-
formance drop on other categories.

Please refer to supplementary material for more results
and analysis.

4.3. Main Results

In this section, we compare the proposed ROG with sev-
eral state-of-the-art methods on LVIS v1 and OpenImages.
We adopt ResNet-101 with FPN as backbone network, and
use 2x training schedule. For LVIS, Seesaw loss [45] is
adopted as the classification loss in ROG. The results listed
in Table 5 show that ROG improves the Seesaw loss by 0.7
points on AP and 1.1 points on APr. For OpenImages, we
choose the EQLv2 [41] as the classification loss. In Table 6,
on the basis of EQLv2, ROG brings 3.1 AP gains for object
detection. It improves the performance on all the groups,
especially the rarest one (3.8 points for AP1).

5. Conclusion and Limitation

In this paper, we propose ROG to reconcile object-level
and global-level objectives in long-tail detection. Different
from previous works focusing mainly on classification, we
analyze that the ranking and filtering procedure during in-
ference may cause the missed detection for rare categories.
Motivated by this, complementary to the object-level dis-
crimination objective, a generalized average precision loss
is proposed as a global-level ranking objective, with a bal-
anced view to rectify ranking errors for each specific cate-
gory. Since the two objectives aim for two separate tasks,
existing classification losses could be plugged into ROG
without any interference. Meanwhile, the two objectives
works harmoniously with each other, and jointly promote
the performance of object detection and instance segmenta-
tion especially for the rare categories. Experimental results
show that ROG consistently improves the performance of
state-of-the-art methods.
Limitation. In ROG, the proposed generalized average pre-
cision loss is based on pairwise ranking of all positive sam-
ples. As a result, it takes slightly longer for training than
the classification-based baseline. We plan to address these
limitations in the future work.

18989



Acknowledgements. This work is supported by the
National Key R&D Program of China under Grant
2021YFF0602101.

References
[1] Konstantinos Panagiotis Alexandridis, Jiankang Deng, Anh

Nguyen, and Shan Luo. Long-tailed instance segmentation
using gumbel optimized loss. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part X, pages 353–369. Springer,
2022.

[2] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. Advances in neural informa-
tion processing systems, 32, 2019.

[3] Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Animashree
Anandkumar, Sanja Fidler, and Jose M Alvarez. Image-level
or object-level? a tale of two resampling strategies for long-
tailed detection. In International conference on machine
learning, pages 1463–1472. PMLR, 2021.

[4] Kean Chen, Jianguo Li, Weiyao Lin, John See, Ji Wang,
Lingyu Duan, Zhibo Chen, Changwei He, and Junni Zou.
Towards accurate one-stage object detection with ap-loss. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5119–5127, 2019.

[5] Kean Chen, Weiyao Lin, Jianguo Li, John See, Ji Wang, and
Junni Zou. Ap-loss for accurate one-stage object detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(11):3782–3798, 2020.

[6] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

[7] Tao Chenxin, Zizhang Li, Xizhou Zhu, Gao Huang, Yong
Liu, et al. Searching parameterized ap loss for object detec-
tion. Advances in Neural Information Processing Systems,
34:22021–22033, 2021.

[8] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei,
and Da-Cheng Juan. Remix: rebalanced mixup. In Computer
Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–
28, 2020, Proceedings, Part VI 16, pages 95–110. Springer,
2020.

[9] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9268–9277,
2019.

[10] Achal Dave, Piotr Dollár, Deva Ramanan, Alexander Kir-
illov, and Ross Girshick. Evaluating large-vocabulary ob-
ject detectors: The devil is in the details. arXiv preprint
arXiv:2102.01066, 2021.

[11] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 6569–6578,
2019.

[12] Chengjian Feng, Yujie Zhong, and Weilin Huang. Exploring
classification equilibrium in long-tailed object detection. In
Proceedings of the IEEE/CVF International conference on
computer vision, pages 3417–3426, 2021.

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014.

[15] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5356–5364, 2019.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017.

[17] Ting-I Hsieh, Esther Robb, Hwann-Tzong Chen, and Jia-Bin
Huang. Droploss for long-tail instance segmentation. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 35, pages 1549–1557, 2021.

[18] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou
Tang. Learning deep representation for imbalanced classifi-
cation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5375–5384, 2016.

[19] Jang Hyun Cho and Philipp Krähenbühl. Long-tail detec-
tion with effective class-margins. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part VIII, pages 698–714.
Springer, 2022.

[20] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,
Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-
pling representation and classifier for long-tailed recogni-
tion. arXiv preprint arXiv:1910.09217, 2019.

[21] Salman H Khan, Munawar Hayat, Mohammed Bennamoun,
Ferdous A Sohel, and Roberto Togneri. Cost-sensitive learn-
ing of deep feature representations from imbalanced data.
IEEE transactions on neural networks and learning systems,
29(8):3573–3587, 2017.

[22] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, et al. The
open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. Interna-
tional Journal of Computer Vision, 128(7):1956–1981, 2020.

[23] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 734–750, 2018.

[24] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng
Wang, Jintao Li, and Jiashi Feng. Overcoming classi-
fier imbalance for long-tail object detection with balanced
group softmax. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10991–
11000, 2020.

18990



[25] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[28] Ji Liu, Dong Li, Rongzhang Zheng, Lu Tian, and Yi Shan.
Rankdetnet: Delving into ranking constraints for object de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 264–273,
2021.

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings,
Part I 14, pages 21–37. Springer, 2016.

[30] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan
Kalkan. A ranking-based, balanced loss function unifying
classification and localisation in object detection. Advances
in Neural Information Processing Systems, 33:15534–15545,
2020.

[31] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan
Kalkan. Rank & sort loss for object detection and instance
segmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 3009–3018, 2021.

[32] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Ak-
bas. Imbalance problems in object detection: A review. IEEE
transactions on pattern analysis and machine intelligence,
43(10):3388–3415, 2020.

[33] Tai-Yu Pan, Cheng Zhang, Yandong Li, Hexiang Hu, Dong
Xuan, Soravit Changpinyo, Boqing Gong, and Wei-Lun
Chao. On model calibration for long-tailed object detection
and instance segmentation. Advances in Neural Information
Processing Systems, 34:2529–2542, 2021.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[35] Qi Qian, Lei Chen, Hao Li, and Rong Jin. Dr loss: Improving
object detection by distributional ranking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12164–12172, 2020.

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[37] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi,
et al. Balanced meta-softmax for long-tailed visual recog-
nition. Advances in neural information processing systems,
33:4175–4186, 2020.

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[39] Frank Rosenblatt. The perceptron: a probabilistic model for
information storage and organization in the brain. Psycho-
logical review, 65(6):386, 1958.

[40] Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Naka-
mura. Class-difficulty based methods for long-tailed vi-
sual recognition. International Journal of Computer Vision,
130(10):2517–2531, 2022.

[41] Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and Quan-
quan Li. Equalization loss v2: A new gradient balance ap-
proach for long-tailed object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1685–1694, 2021.

[42] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli
Ouyang, Changqing Yin, and Junjie Yan. Equalization
loss for long-tailed object recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11662–11671, 2020.

[43] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-
tailed classification by keeping the good and removing the
bad momentum causal effect. Advances in Neural Informa-
tion Processing Systems, 33:1513–1524, 2020.

[44] Jianfeng Wang, Thomas Lukasiewicz, Xiaolin Hu, Jianfei
Cai, and Zhenghua Xu. Rsg: A simple but effective mod-
ule for learning imbalanced datasets. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3784–3793, 2021.

[45] Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang
Cao, Jiangmiao Pang, Tao Gong, Kai Chen, Ziwei Liu,
Chen Change Loy, and Dahua Lin. Seesaw loss for
long-tailed instance segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9695–9704, 2021.

[46] Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao Liew,
Sheng Tang, Steven Hoi, and Jiashi Feng. The devil is
in classification: A simple framework for long-tail instance
segmentation. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XIV 16, pages 728–744. Springer, 2020.

[47] Tong Wang, Yousong Zhu, Yingying Chen, Chaoyang Zhao,
Bin Yu, Jinqiao Wang, and Ming Tang. C2am loss: Chas-
ing a better decision boundary for long-tail object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6980–6989, 2022.

[48] Tong Wang, Yousong Zhu, Chaoyang Zhao, Wei Zeng,
Jinqiao Wang, and Ming Tang. Adaptive class suppres-
sion loss for long-tail object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 3103–3112, 2021.

[49] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong,
and Lei Li. Solo: A simple framework for instance segmen-

18991



tation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):8587–8601, 2021.

[50] Dongli Xu, Jinhong Deng, and Wen Li. Revisiting ap loss
for dense object detection: Adaptive ranking pair selection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14187–14196, 2022.

[51] Lu Yang, He Jiang, Qing Song, and Jun Guo. A survey on
long-tailed visual recognition. International Journal of Com-
puter Vision, 130(7):1837–1872, 2022.

[52] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-
mohan Chandraker. Feature transfer learning for face recog-
nition with under-represented data. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5704–5713, 2019.

[53] Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra
Aslam, Nadia Kanwal, Mamoona Asghar, and Brian Lee. A
survey of modern deep learning based object detection mod-
els. Digital Signal Processing, page 103514, 2022.

[54] Yuhang Zang, Chen Huang, and Chen Change Loy. Fasa:
Feature augmentation and sampling adaptation for long-
tailed instance segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3457–3466, 2021.

[55] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and
Jiashi Feng. Deep long-tailed learning: A survey. arXiv
preprint arXiv:2110.04596, 2021.

[56] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min
Chen. Bbn: Bilateral-branch network with cumulative learn-
ing for long-tailed visual recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9719–9728, 2020.

18992


