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Abstract

This paper focuses on developing modern, efficient,
lightweight models for dense predictions while trading off
parameters, FLOPs, and performance. Inverted Residual
Block (IRB) serves as the infrastructure for lightweight
CNNs, but no counterpart has been recognized by attention-
based studies. This work rethinks lightweight infrastructure
from efficient IRB and effective components of Transformer
from a unified perspective, extending CNN-based IRB to
attention-based models and abstracting a one-residual Meta
Mobile Block (MMB) for lightweight model design. Follow-
ing simple but effective design criterion, we deduce a modern
Inverted Residual Mobile Block (iRMB) and build a ResNet-
like Efficient MOdel (EMO) with only iRMB for down-stream
tasks. Extensive experiments on ImageNet-1K, COCO2017,
and ADE20K benchmarks demonstrate the superiority of our
EMO over state-of-the-art methods, e.g., EMO-1M/2M/5M
achieve 71.5, 75.1, and 78.4 Top-1 that surpass equal-order
CNN-/Attention-based models, while trading-off the parame-
ter, efficiency, and accuracy well: running 2.8-4.0× ↑ faster
than EdgeNeXt on iPhone14.

1. Introduction

With a recent increasing demand for storage/computing
restricted applications, mobile models with fewer parame-
ters and low FLOPs have attracted significant attention from
developers and researchers. The earliest attempt to design an
efficient model dates back to the Inceptionv3 [58] era, which
uses asymmetric convolutions to replace standard convolu-
tion. Then, MobileNet [20] proposes depth-wise separable
convolution to significantly decrease the amount of computa-
tion and parameters, which is viewed as a fundamental CNN-
based component for subsequent works [82, 46, 51, 15]. Re-
markably, MobileNetv2 [54] proposes an efficient Inverted
Residual Block (IRB) based on Depth-Wise Convolution
(DW-Conv) that is recognized as the infrastructure of ef-
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Figure 1: Performance vs. FLOPs with concurrent methods.

ficient models [61] until now. Inevitably, limited by the
natural induction bias of static CNN, the accuracy of CNN-
pure models still maintains a low level of accuracy that needs
further improvements. In summary, one extreme core is to
advance a stronger fundamental block going beyond IRB.

On the other hand, stared from vision transformer
(ViTs) [13], many follow-ups [64, 68, 69, 42, 41, 80, 79, 33]
have achieved significant improvements over CNN. This
is due to its ability to model dynamically and learn from
the extensive dataset, and how to migrate this capability to
lightweight CNN is worth our explorations. However, lim-
ited by the quadratic amount of computations for Multi-Head
Self-Attention (MHSA), the attention-based model requires
massive resource consumption, especially when the channel
and resolution of the feature map are large. Some works
attempt to tackle the above problems by designing variants
with linear complexity [29, 7], decreasing the spatial resolu-
tion of features [71, 68, 31], rearranging channel [48], using
local window attention [42] etc. However, these methods
still cannot be deployed on devices.

Recently, researchers have aimed to design efficient hy-
brid models with lightweight CNNs, and they obtain better
performances than CNN-based models with trading off ac-
curacy, parameters, and FLOPs. However, current methods

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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introduce complex structures [49, 50, 67, 6, 47] or multiple
hybrid modules [47, 52], which is very detrimental to opti-
mize for applications. So far, little work has been done to
explore attention-based counterparts as IRB, and this inspires
us to think: Can we build a lightweight IRB-like infrastruc-
ture for attention-based models with only basic operators?

Based on the above motivation, we rethink efficient In-
verted Residual Block in MobileNetv2 [54] and effective
MHSA/FFN modules in Transformer [66] from a unified
perspective, expecting to integrate both advantages at the
infrastructure design level. As shown in Fig. 2-Left, while
working to bring one-residual IRB with inductive bias into
the attention model, we observe two underlying submodules
(i.e., FFN and MHSA) in two-residual Transformer share
the similar structure to IRB. Thus, we inductively abstract
a one-residual Meta Mobile Block (MMB, c.f ., Sec. 2.2)
that takes parametric arguments expansion ratio λ and effi-
cient operator F to instantiate different modules, i.e., IRB,
MHSA, and FFN. We argue that MMB can reveal the con-
sistent essence expression of the above three modules, and
it can be regarded as an improved lightweight concentrated
aggregate of Transformer. Furthermore, a simple yet effec-
tive Inverted Residual Mobile Block (iRMB) is deduced that
only contains fundamental Depth-Wise Convolution and our
improved EW-MHSA (c.f ., Sec. 2.3) and we build a ResNet-
like 4-phase Efficient MOdel (EMO) with only iRMBs (c.f .,
Sec. 2.4). Surprisingly, our method performs better over the
SoTA lightweight attention-based models even without com-
plex structures, as shown in Fig. 1. In summary, this work
follows simple design criteria while gradually producing an
efficient attention-based lightweight model.

Our contributions are four folds: 1) We extend CNN-
based IRB to the two-residual transformer and abstract a
one-residual Meta Mobile Block (MMB) for lightweight
model design. This meta paradigm could describe the cur-
rent efficient modules and is expected to have the guiding
significance in concreting novel efficient modules. 2) Based
on inductive MMB, we deduce a simple yet effective modern
Inverted Residual Mobile Block (iRMB) and build a ResNet-
like Efficient MOdel (EMO) with only iRMB for down-
stream applications. In detail, iRMB only consists of naive
DW-Conv and the improved EW-MHSA to model short-
/long-distance dependency, respectively. 3) We provide de-
tailed studies of our method and give some experimental find-
ings on building attention-based lightweight models, hoping
our study will inspire the research community to design pow-
erful and efficient models. 4) Even without introducing com-
plex structures, our method still achieves very competitive
results than concurrent attention-based methods on several
benchmarks, e.g., our EMO-1M/2M/5M reach 71.5, 75.1,
and 78.4 Top-1 over current SoTA CNN-/Transformer-based
models. Besides, EMO-1M/2M/5M armed SSDLite obtain
22.0/25.2/27.9 mAP with only 2.3M/3.3M/6.0M parameters

and 0.6G/0.9G/1.8G FLOPs, which exceeds recent Mobile-
ViTv2 [50] by +0.8↑/+0.6↑/+0.1↑ with decreased FLOPs by
-33%↓/-50%↓/-62%↓; EMO-1M/2M/5M armed DeepLabv3
obtain 33.5/35.3/37.98 mIoU with only 5.6M/6.9M/10.3M
parameters and 2.4G/3.5G/5.8G FLOPs, surpassing Mobile-
ViTv2 by +1.6↑/+0.6↑/+0.8↑ with much lower FLOPs.

2. Methodology: Induction and Deduction
2.1. Criteria for General Efficient Model

When designing efficient visual models for mobile appli-
cations, we advocate the following criteria subjectively and
empirically that an efficient model should satisfy as much as
possible: ➀ Usability. Simple implementation that does not
use complex operators and is easy to optimize for applica-
tions. ➁ Uniformity. As few core modules as possible to
reduce model complexity and accelerated deployment. ➂ Ef-
fectiveness. Good performance for classification and dense
prediction. ➃ Efficiency. Fewer parameters and calculations
with accuracy trade-off. We make a summary of current
efficient models in Tab. 1: 1) Performance of MobileNet
series [20, 54, 67] is now seen to be slightly lower, and its
parameters are slightly higher than counterparts. 2) Recent
MobileViT series [49, 50, 67] achieve notable performances,
but they suffer from higher FLOPs and slightly complex
modules. 3) EdgeNeXt [47] and EdgeViT [52] obtain pretty
results, but their basic blocks also consist of elaborate mod-
ules. Comparably, the design principle of our EMO follows
the above criteria without introducing complicated opera-
tions (c.f ., Sec. 2.4), but it still obtains impressive results on
multiple vision tasks (c.f ., Sec. 3).

Table 1: Criterion comparison for current efficient mod-
els. ➀: Usability; ➁: Uniformity; ➂: Effectiveness; ➃: Effi-
ciency. ✔: Satisfied. ✚: Partially satisfied. ✘: Unsatisfied.

Method vs. Criterion ➀ ➁ ➂ ➃

MobileNet Series [20, 54, 67] ✔ ✔ ✚ ✚
MobileViT Series [49, 50, 67] ✚ ✚ ✔ ✚
EdgeNeXt [47] ✚ ✘ ✔ ✔
EdgeViT [52] ✔ ✚ ✔ ✚

EMO (Ours) ✔ ✔ ✔ ✔

2.2. Meta Mobile Block

Motivation. 1) Recent Transformer-based works [74, 42,
12, 56, 39, 62, 63] are dedicated to improving spatial token
mixing under the MetaFormer [75] for high-performance
network. CNN-based Inverted Residual Block [54] (IRB) is
recognized as the infrastructure of efficient models [54, 61],
but little work has been done to explore attention-based
counterpart. This inspires us to build a lightweight IRB-like
infrastructure for attention-based models. 2) While working
to bring one-residual IRB with inductive bias into the atten-
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Figure 2: Left: Abstracted unified Meta-Mobile Block from Multi-Head Self-Attention / Feed-Forward Network [66] and
Inverted Residual Block [54] (c.f . Sec 2.2). The inductive block can be deduced into specific modules using different expansion
ratio λ and efficient operator F . Right: ResNet-like EMO composed of only deduced iRMB (c.f . Sec 2.3).

tion model, we stumble upon two underlying sub-modules
(i.e., FFN and MHSA) in two-residual Transformer that hap-
pen to share a similar structure to IRB.
Induction. We rethink Inverted Residual Block in Mo-
bileNetv2 [54] with core MHSA and FFN modules in Trans-
former [66], and inductively abstract a general Meta Mobile
Block (MMB) in Fig. 2, which takes parametric arguments
expansion ratio λ and efficient operator F to instantiate
different modules. We argue that the MMB can reveal the
consistent essence expression of the above three modules,
and MMB can be regarded as an improved lightweight con-
centrated aggregate of Transformer. Also, this is the basic
motivation for our elegant and easy-to-use EMO, which
only contains one deduced iRMB absorbing advantages
of lightweight CNN and Transformer. Take image input
X(∈ RC×H×W ) as an example, MMB firstly use a expan-
sion MLPe with output/input ratio equaling λ to expand
channel dimension:

Xe = MLPe(X)(∈ RλC×H×W ). (1)

Then, intermediate operator F enhance image features fur-
ther, e.g., identity operator, static convolution, dynamic
MHSA, etc. Considering that MMB is suitable for efficient
network design, we present F as the concept of efficient
operator, formulated as:

Xf = F(Xe)(∈ RλC×H×W ). (2)

Finally, a shrinkage MLPs with inverted input/output ratio
equaling λ to shrink channel dimension:

Xs = MLPs(Xf )(∈ RC×H×W ), (3)

where a residual connection is used to get the final output
Y = X + Xs(∈ RC×H×W ). Notice that normalization
and activation functions are omitted for clarity.
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Figure 3: Paradigm illustra-
tion with MetaFormer.

Relation to MetaFormer.
We discuss the dif-
ferences between our
Meta Mobile Block and
MetaFormer [75] in Fig. 3.
1) From the structure,
two-residual MetaFormer
contains two sub-modules
with two skip connections,
while our Meta Mobile
Block contains only one
sub-module that covers one-residual IRB in the field of
lightweight CNN. Also, shallower depths require less
memory access and save costs [46] that is more general and
hardware friendly. 2) From the motivation, MetaFormer is
the induction of high-performance Transformer/MLP-like
models, while our Meta Mobile Block is the induction of
efficient IRB in MobileNetv2 [54] and effective MHSA/FFN
in Transformer [66, 13] for designing efficient infrastructure.
3) To a certain extent, the inductive one-residual Meta
Mobile Block can be regarded as a conceptual extension
of two-residual MetaFormer in the lightweight field. We
hope our work inspires more future research dedicated to
lightweight model design domain based on attention.

Table 2: Complexity and Maximum Path Length analysis
of modules. Input/output feature maps are in RC×W×W ,
L = W 2, l = w2, W and w are feature map size and window
size, while k and G are kernel size and group number.

Module #Params FLOPs MPL
MHSA 4(C + 1)C 8C2L+4CL2+3L2 O(1)

W-MHSA 4(C + 1)C 8C2L+4CLl+3Ll O(Inf)
Conv (Ck2/G+1)C (2Ck2/G)LC O(2W/(k−1))

DW-Conv (k2 + 1)C (2k2)LC O(2W/(k−1))
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2.3. Micro Design: Inverted Residual Mobile Block
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Figure 4: Paradigm
of iRMB.

Based on the inductive Meta
Mobile Block, we instantiate an
effective yet efficient modern In-
verted Residual Mobile Block
(iRMB) from a microscopic view
in Fig. 4.
Design Principle. Following cri-
teria in Sec. 2.1, F in iRMB is
modeled as cascaded MHSA and
Convolution operations, formu-
lated as F(·) = Conv(MHSA(·)).
This design absorbs CNN-like effi-
ciency to model local features and
Transformer-like dynamic mod-
elling capability to learn long-distance interactions. How-
ever, naive implementation can lead to unaffordable expenses
for two main reasons:
1) λ is generally greater than one that the intermediate dimen-
sion would be multiple to input dimension, causing quadratic
λ increasing of parameters and computations. Therefore,
components of F should be independent or linearly depen-
dent on the number of channels.
2) FLOPs of MHSA is proportional to the quadratic of total
image pixels, so the cost of a naive Transformer is unafford-
able. The specific influences can be seen in Tab. 2.
Deduction. We employ efficient Window-MHSA (W-
MHSA) and Depth-Wise Convolution (DW-Conv) with a
skip connection to trade-off model cost and accuracy.
Improved EW-MHSA. Parameters and FLOPs for obtain-
ing Q,K in W-MHSA is quadratic of the channel, so we
employ unexpanded X to calculate the attention matrix
more efficiently, i.e., Q=K=X (∈ RC×H×W ), while the
expanded value Xe as V (∈ RλC×H×W ). This improve-
ment is termed as Expanded Window MHSA (EW-MHSA)
that is more applicative, formulated as:

F(·) = (DW-Conv, Skip)(EW-MHSA(·)). (4)

Also, this cascading manner can increase the expansion
speed of the receptive field and reduce the maximum path
length of the model to O(2W/(k − 1 + 2w)), which has
been experimentally verified with consistency in Sec. 3.3.
Flexibility. Empirically, current transformer-based meth-
ods [47, 32, 73] reach a consensus that inductive CNN in
shallow layers while global Transformer in deep layers com-
position could benefit the performance. Unlike recent Ed-
geNeXt that employs different blocks for different depths,
our iRMB satisfies the above design principle using only
two switches to control whether two modules are used (Code
level is also concise in #Supp).
Efficient Equivalent Implementation. MHSA is usually
used in channel-consistent projection (λ=1), meaning that

Table 3: A toy experiment for assessing iRMB.

Model #Params ↓ FLOPs ↓ Top-1 ↑
DeiT-Tiny [64] 5.7M 1258 72.2
DeiT-Tiny w/iRMB 4.9M -14% ↓ 1102 -156M ↓ 74.3 +2.1% ↑

PVT-Tiny [68] 13.2M 1943 75.1
PVT-Tiny w/iRMB 11.7M -11% ↓ 1845 -98M ↓ 75.4 +0.3% ↑

the FLOPs of multiplying attention matrix times expended
Xe (λ>1) will increase by λ - 1. Fortunately, the informa-
tion flow from X to expended V (Xe) involves only linear
operations, i.e., MLPe(·), so we can derive an equivalent
proposition:"When the groups of MLPe equals to the head
number of W-MHSA, the multiplication result of exchang-
ing order remains unchanged." To reduce FLOPs, matrix
multiplication before MLPe is used by default.
Choice of Efficient Operators. We also replace the compo-
nent of F with group convolution, asymmetric [58] convo-
lution, and performer [7], but they make no further improve-
ments with much higher parameters and FLOPs at the same
magnitude for our approach.
Boosting Naive Transformer. To assess iRMB performance,
we set λ to 4 and replace standard Transformer structure in
columnar DeiT [64] and pyramid-like PVT [68]. As shown
in Tab. 3, we surprisingly found that iRMB can improve
performance with fewer parameters and computations in the
same training setting, especially for the columnar ViT. This
proves that the one-residual iRMB has obvious advantages
over the two-residual Transformer in the lightweight model.
Parallel Design of F . We also implement the parallel struc-
ture of DW-Conv and EW-MHSA with half the number of
channels in each component, and some configuration de-
tails are adaptively modified to ensure the same magnitude.
Comparably, this parallel model gets 78.1 (-0.3↓) Top-1
in ImageNet-1k dataset with 5.1M parameters and 964M
FLOPs (+63M↑ than EMO-5M), but its throughput will slow
down by about -7%↓. This phenomenon is also discussed
in the work [46] that: "Network fragmentation reduces the
degree of parallelism".

2.4. Macro Design of EMO for Dense Prediction

Based on the above criteria, we design a ResNet-like 4-
phase Efficient MOdel (EMO) based on a series of iRMBs
for dense applications, as shown in Fig. 2-Right.
1) For the overall framework, EMO consists of only iRMBs
without diversified modules➁, which is a departure from re-
cent efficient methods [49, 47] in terms of designing idea.
2) For the specific module, iRMB consists of only standard
convolution and multi-head self-attention without other com-
plex operators➀. Also, benefitted by DW-Conv, iRMB can
adapt to down-sampling operation through the stride and
does not require any position embeddings for introducing
inductive bias to MHSA➁.
3) For variant settings, we employ gradually increasing ex-
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Table 4: Core configurations of EMO variants.

Items EMO-1M EMO-2M EMO-5M
Depth [ 2, 2, 8, 3 ] [ 3, 3, 9, 3 ] [ 3, 3, 9, 3 ]
Emb. Dim. [ 32, 48, 80, 168 ] [ 32, 48, 120, 200 ] [ 48, 72, 160, 288 ]
Exp. Ratio [ 2.0, 2.5, 3.0, 3.5 ] [ 2.0, 2.5, 3.0, 3.5 ] [ 2.0, 3.0, 4.0, 4.0 ]

pansion rates and channel numbers, and detailed configura-
tions are shown in Tab. 4. Results for basic classification
and multiple downstream tasks in Sec. 3 demonstrate the
superiority of our EMO over SoTA lightweight methods on
magnitudes of 1M, 2M, and 5M➂➃.
Details. Since MHSA is better suited for modelling semantic
features for deeper layers, we only turn it on at stage-3/4
following previous works [47, 32, 73]. Note that this never
violates the uniformity criterion, as the shutdown of MHSA
was a special case of iRMB structure. To further increase
the stability of EMO, BN [26]+SiLU [18] are bound to DW-
Conv while LN [2]+GeLU [18] are bound to EW-MHSA.
Also, iRMB is competent for down-sampling operations.
Relation to MetaFormer. 1) From the structure,
MetaFormer extended dense prediction model employs an
extra patch embedding layer for down-sampling, while our
EMO only consists of iRMB. 2) From the result, our in-
stantiated EMO-5M (w/ 5.1M #Params and 903M FLOPs)
exceeds instantiated PoolFormer-S12 (w/ 11.9M #Params
and 1,823M FLOPs) by +1.2↑, illustrating that a stronger
efficient operator makes a advantage. 3) We further replace
Token Mixer in MetaFormer with F in iRMB and build a
5.3M model vs. our EMO-5M. It only achieves 77.5 Top-1
on ImageNet-1k, i.e., -0.9↓ than our model, meaning that our
proposed Meta Mobile Block has a better advantage for con-
structing lightweight models than two-residual MetaFormer.

Table 5: Ablation study on com-
ponents in iRMB.

EW-MHSA DW-Conv Top-1
✘ ✘ 73.5
✔ ✘ 76.6 +3.1 ↑

✘ ✔ 77.6 +4.1 ↑

✔ ✔ 78.4 +4.9 ↑

Importance of In-
stantiated Efficient
Operator. Our de-
fined efficient opera-
tor F contains two
core modules, i.e.,
EW-MHSA and DW-
Conv. In Tab. 5, we
conduct an ablation experiment to study the effect of both
modules. The first row means that neither EW-MHSA nor
DW-Conv is used, i.e., the model is almost composed of
MLP layers with several DW-Conv for down-sampling, and
F degenerates to Identity operation. Surprisingly, this model
still produces a respectable result, i.e., 73.5 Top-1. Com-
paratively, results of the second and third rows demonstrate
that each component contributes to the performance, e.g.,
+3.1↑ and +4.1↑ when adding DW-Conv and EW-MHSA,
respectively. Our model achieves the best result, i.e., 78.4
Top-1, when both components are used. Besides, this exper-
iment illustrates that the specific instantiation of iRMB is
very important to model performance.

Order of Operators. Based on EMO-5M, we switch the
order of DW-Conv/EW-MHSA and find a slight drop in per-
formance (-0.6↓), so EW-MHSA performs first by default.

3. Experiments

3.1. Image Classification

Setting. Due to various training recipes of SoTA meth-
ods [19, 13, 64, 49, 50, 45, 47] that could lead to potentially
unfair comparisons (summarized in Tab. 6), we employ a
weaker training recipe to increase model persuasion and
open the source code for subsequent fair comparisons in
#Supp. All experiments are conducted on ImageNet-1K
dataset [11] without extra datasets and pre-trained models.
Each model is trained for standard 300 epochs from scratch
at 224×224, and AdamW [44] optimizer is employed with
betas (0.9, 0.999), weight decay 5e−2, learning rate 6e−3,
and batch size 2,048. We use Cosine scheduler [43] with
20 warmup epochs, Label Smoothing 0.1 [59], stochastic
depth [22], and RandAugment [10] during training, while
LayerScale [65], Dropout [57], MixUp [78], CutMix [77],
Random Erasing [84], Position Embeddings [13], Token
Labeling [28], and Multi-Scale training [49] are disabled.
EMO is implemented by PyTorch [53], based on TIMM [70],
and trained with 8×V100 GPUs.
Results. EMO is evaluated with SoTAs on three small scales,
and quantitative results are shown in Tab. 7. Surprisingly, our
method obtains the current best results without using com-
plex modules and MobileViTv2-like strong training recipe.
For example, the smallest EMO-1M obtains SoTA 71.5 Top-
1 that surpasses CNN-based MobileNetv3-L-0.50 [19] by
+2.7↑ with nearly half parameters and Transformer-based
MobileViTv2-0.5 [50] by +1.3↑ with only 56% FLOPs.
Larger EMO-2M achieves SoTA 75.1 Top-1 with only 439M
FLOPs, nearly half of MobileVit-XS [49]. Comparatively,
the latest EdgeViT-XXX [52] obtains a worse 74.4 Top-1
while requiring +78%↑ parameters and +27%↑ FLOPs. Con-
sistently, EMO-5M obtains a superior trade-off between
#Params (5.1M) / #FLOPs (903M) and accuracy (78.4),
which is more efficient than contemporary counterparts. Sur-
prisingly, after increasing the channel of the fourth stage of
EMO-5M from 288 to 320, the new EMO-6M reaches 79.0
Top-1 with only 961M FLOPs.
Training Recipes Matters. We evaluate EMO with different
training recipes:

MNetv3 DeiT EdgeNeXt EMO
NaN 78.1 78.3 78.4

We find that the simple training recipe (Ours) is enough to
get good results for our lightweight EMO, while existing
stronger recipes (especially in EdgeNeXt [47]) will not im-
prove the model further. NaN indicates the model did not
train well for the possibly unadapted hyper-parameters.

1393



Table 6: Comparison of training recipes among contem-
porary methods and we employ the same setting in all
experiments. Please zoom in for clearer comparisons. Ab-
breviated MNet and MViT: MobileNet and MobileViT.

Super-Params. MNetv3 [19]
ICCV’19

ViT [13]
ICLR’21

DeiT [64]
ICML’21

MViTv1 [49]
ICLR’22

MViTv2 [50]
arXiv’22

EdgeNeXt [47]
arXiv’22

EMO
Ours

Epochs 300 300 300 300 300 300 300
Batch size 512 4096 1024 1024 1024 4096 2048
Optimizer RMSprop AdamW AdamW AdamW AdamW AdamW AdamW

Learning rate 6.4e−2 3e−3 1e−3 2e−3 2e−3 6e−3 6e−3

Learning rate decay 1e−5 3e−1 5e−2 1e−2 5e−2 5e−2 5e−2

Warmup epochs 3 3.4 5 2.4 16 20 20
Label smoothing 0.1 ✘ 0.1 0.1 0.1 0.1 0.1

Drop out rate ✘ 0.1 ✘ 0.1 ✘ ✘ ✘
Drop path rate 0.2 ✘ 0.1 ✘ ✘ 0.1 0.1
RandAugment 9/0.5 ✘ 9/0.5 ✘ 9/0.5 9/0.5 9/0.5
Mixup alpha ✘ ✘ 0.8 ✘ 0.8 ✘ ✘
Cutmix alpha ✘ ✘ 1.0 ✘ 1.0 ✘ ✘

Erasing probability 0.2 ✘ 0.25 ✘ 0.25 ✘ ✘
Position embedding ✘ ✔ ✔ ✘ ✘ ✔ ✘
Multi-scale sampler ✘ ✘ ✘ ✔ ✘ ✔ ✘

Table 7: Classification performance on ImageNet-1K dataset.
White, yellow, and blue backgrounds indicate CNN-based,
Transformer-based, and our EMO, respectively. This kind of
display continues for all subsequent experiments. Unit: (M).
Abbreviated MNet and MViT: MobileNet and MobileViT.

Model #Params ↓ FLOPs ↓ Reso. Top-1 #Pub
MNetv3-L-0.50 [19] 2.6 69 2242 68.8 ICCV’19
MViTv1-XXS [49] 1.3 364 2562 69.0 ICLR’22
MViTv2-0.5 [50] 1.4 466 2562 70.2 arXiv’22
EdgeNeXt-XXS [47] 1.3 261 2562 71.2 ECCVW’22
EMO-1M 1.3 261 2242 71.5 ICCV’23
MNetv2-1.40 [54] 6.9 585 2242 74.7 CVPR’18
MNetv3-L-0.75 [19] 4.0 155 2242 73.3 ICCV’19
MoCoViT-1.0 [45] 5.3 147 2242 74.5 arXiv’22
PVTv2-B0 [69] 3.7 572 2242 70.5 CVM’22
MViTv1-XS [49] 2.3 986 2562 74.8 ICLR’22
MFormer-96M [6] 4.6 96 2242 72.8 CVPR’22
EdgeNeXt-XS [47] 2.3 538 2562 75.0 ECCVW’22
EdgeViT-XXS [52] 4.1 557 2562 74.4 ECCV’22
tiny-MOAT-0 [73] 3.4 800 2242 75.5 ICLR’23
EMO-2M 2.3 439 2242 75.1 ICCV’23
MNetv3-L-1.25 [19] 7.5 356 2242 76.6 ICCV’19
EfficientNet-B0 [61] 5.3 399 2242 77.1 ICML’19
DeiT-Ti [64] 5.7 1258 2242 72.2 ICML’21
XCiT-T12 [1] 6.7 1254 2242 77.1 NIPS’21
LightViT-T [23] 9.4 700 2242 78.7 arXiv’22
MViTv1-S [49] 5.6 2009 2562 78.4 ICLR’22
MViTv2-1.0 [50] 4.9 1851 2562 78.1 arXiv’22
EdgeNeXt-S [47] 5.6 965 2242 78.8 ECCVW’22
PoolFormer-S12 [75] 11.9 1823 2242 77.2 CVPR’22
MFormer-294M [6] 11.4 294 2242 77.9 CVPR’22
MPViT-T [30] 5.8 1654 2242 78.2 CVPR’22
EdgeViT-XS [52] 6.7 1136 2562 77.5 ECCV’22
tiny-MOAT-1 [73] 5.1 1200 2242 78.3 ICLR’23
EMO-5M 5.1 903 2242 78.4 ICCV’23
EMO-6M 6.1 961 2242 79.0 ICCV’23

3.2. Downstream Tasks

Object detection. ImageNet-1K pre-trained EMO is inte-
grated with light SSDLite [19] and heavy RetinaNet [37] to
evaluate its performance on MS-COCO 2017 [38] dataset
at 320×320 resolution. Considering fairness and friendli-
ness for the community, we employ standard MMDetection
library [4] for experiments and replace the optimizer with
AdamW [44] without tuning other parameters.

Table 8: Object detection performance by SSDLite on MS-
COCO. Abbreviated MNet/MViT: MobileNet/MobileViT.

Backbone #Params ↓ FLOPs ↓ mAP
MNetv1 [20] 5.1 1.3G 22.2
MNetv2 [54] 4.3 0.8G 22.1
MNetv3 [19] 5.0 0.6G 22.0
MViTv1-XXS [49] 1.7 0.9G 19.9
MViTv2-0.5 [50] 2.0 0.9G 21.2
EMO-1M 2.3 0.6G 22.0
MViTv2-0.75 [50] 3.6 1.8G 24.6
EMO-2M 3.3 0.9G 25.2
ResNet50 [17] 26.6 8.8G 25.2
MViTv1-S [49] 5.7 3.4G 27.7
MViTv2-1.25 [50] 8.2 4.7G 27.8
EdgeNeXt-S [47] 6.2 2.1G 27.9
EMO-5M 6.0 1.8G 27.9

Table 9: Object detection results by RetinaNet on MS-
COCO.

Backbone #Params AP AP50 AP75 APS APM APL

ResNet-50 [17] 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PVTv1-Tiny [68] 23.0 36.7 56.9 38.9 22.6 38.8 50.0
PVTv2-B0 [69] 13.0 37.2 57.2 39.5 23.1 40.4 49.7
EMO-5M 14.4 38.9 59.8 41.0 23.8 42.2 51.7

For SSDLite, comparison results with SoTA methods are
shown in Tab. 8, and our EMO surpasses corresponding
counterparts by apparent advantages. For example, SSDLite
equipped with EMO-1M achieves 22.0 mAP with only 0.6G
FLOPs and 2.3M parameters, which boosts +2.1↑ compared
with SoTA MobileViT [49] with only 66% FLOPs. Consis-
tently, our EMO-5M obtains the highest 27.9 mAP so far
with much fewer FLOPs, e.g., 53% (1.8G) of MobileViT-
S [49] (3.4G) and 0.3G less than EdgeNeXt-S (2.1G). For
RetinaNet, data in Tab. 9 come from official EdgeViT [52],
and our EMO consistently obtains better results over coun-
terparts, e.g., +2.6↑ AP than CNN-based ResNet-50 and
+1.7↑ AP than Transformer-based PVTv2-B0. In addition,
we report EMO-5M-based RetinaNet with 178.11 GFLOPs
for the follow-up comparison.

Qualitative detection visualizations compared with Mo-
bileViTv2 by SSDLite are shown in Fig. 5-(a), and results
indicate the superiority of our EMO for capturing adequate
and accurate information on different scenes.
Semantic segmentation. ImageNet-1K pre-trained EMO
is integrated with DeepLabv3 [5] and PSPNet [83]
to adequately evaluate its performance on challenging
ADE20K [85] dataset at 512×512 resolution. Also, we
employ standard MMSegmentation library [9] for experi-
ments and replace the optimizer with AdamW [44] without
tuning other parameters. Details can be viewed in the code.

Comparison results with SoTA methods are shown
in Tab. 10, and our EMO is apparently superior over
SoTA Transformer-based MobileViTv2 [50] at various
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Figure 5: Qualitative comparisons with MobileNetv2 on two
main downstream tasks. Zoom in for more details.

Table 10: Semantic segmentation performance on ADE20K
dataset. Abbreviated MNet/MViT: MobileNet/MobileViT.

Backbone
DeepLabv3 [5] PSPNet [83]

#Params FLOPs mIoU #Params FLOPs mIoU
MViTv2-0.5 [50] 6.3 26.1 31.9 3.6 15.4 31.8
EMO-1M 5.6 2.4 33.5 4.3 2.1 33.2
MNetv2 [54] 18.7 75.4 34.1 13.7 53.1 29.7
MViTv2-0.75 [50] 9.6 40.0 34.7 6.2 26.6 35.2
EMO-2M 6.9 3.5 35.3 5.5 3.1 34.5
MViTv2-1.0 [50] 13.4 56.4 37.0 9.4 40.3 36.5
EMO-5M 10.3 5.8 37.8 8.5 5.3 38.2

scales when integrating into segmentation frameworks.
For example, EMO-1M/2M/5M armed DeepLabv3 obtains
33.5/35.3/37.8 mIoU, surpassing MobileViTv2 counterparts
by +1.6↑/+0.6↑/+0.6↑, while owning fewer parameters and
FLOPs benefitted from efficient iRMB. Also, consistent
conclusions can be reached when applying EMO as the back-
bone network of PSPNet. More qualitative results in #Supp.

Qualitative segmentation results compared with Mobile-
ViTv2 by DeepLabv3 are shown in Fig. 5-(b), and EMO-
based model can obtain more accurate and stable results
than the comparison approach, e.g., more consistent bathtub,
sand, and baseball field segmentation results.

3.3. Extra Ablation and Explanatory Analysis

Throughput Comparison. In Tab. 11, we present through-
put evaluation results compared with SoTA EdgeNeXt [47].
The test platforms are AMD EPYC 7K62 CPU and V100
GPU with a resolution of 224×224 and a batch size of
256. Results indicate that our EMO has an faster speed
on both platforms, even though both methods have similar
FLOPs. For example, EMO-1M achieves speed boosts of
+20%↑ for GPU and +116%↑ for CPU than EdgeNeXt-XXS

Table 11: Comparisons of throughput on CPU/GPU and
running speed on mobile iPhone14 (ms).

Method FLOPs CPU GPU iPhone14
EdgeNeXt-XXS 261M 73.1 2860.6 12.6
EMO-1M 261M 158.4 3414.6 4.5 2.8× ↑

EdgeNeXt-XS 538M 69.1 1855.2 20.2
EMO-2M 439M 126.6 2509.8 5.1 3.9× ↑

EdgeNeXt-S 965M 54.2 1622.5 27.7
EMO-5M 903M 106.5 1731.7 6.8 4.0× ↑

Table 12: Performance vs. depth configurations.

Depth #Params FLOPs Top-1
[ 2, 2, 10, 3 ] 5.3M 901M 78.0
[ 2, 2, 12, 2 ] 5.0M 970M 77.8
[ 4, 4, 8, 3 ] 4.9M 905M 78.1
[ 3, 3, 9, 3 ] 5.1M 903M 78.4

over the same FLOPs. This gap is further widened on mo-
bile devices (following official classification project [25] by
iPhone14), i.e., 2.8× ↑, 3.9× ↑, and 4.80× ↑ faster than
SoAT EdgeNeXt [47]. This derives from our simple and
device-friendly iRMB with no other complex structures, e.g.,
Res2Net module [14], transposed channel attention [1], etc.
Depth Configuration. We assess another three models with
different depths on the order of 5M in Tab. 12. The selected
depth configuration produces relatively better performance.
Comparison with EfficientNet/EfficientFormer. The man-
ually designed EMO trade-offs #Params, FLOPs, and per-
formance, and #Params lies in 1M/2M/5M scales, thus
NAS-assisted EfficientNet-B1 (ENet-B1) [61] with 7.8M
and EfficientFormer-L1 (EFormer-L1) [36] with 12.3M are
not included in Tab. 7. Comparatively, our EMO-6M ob-
tains a competitive 79.0 Top-1 with much less #Params over
them, arguing that EMO achieves a better trade-off among
#Params, FLOPs, and performance. Also, our roughly manu-
ally designed model is promising for further performance im-
provements with more rational configurations in future work.
Benefit from EW-MHSA, EMO offers clear advantages for
high-resolution downstream tasks, e.g., compared with more
powerful EfficientNet-B2 (ENet-B2) and EfficientFormer-
L1 with higher #Params/FLOPs, EMO-5M achieves better
performance as belows:

Backbone mAP
SSDLite

APbox

Mask RCNN
APmask

Mask RCNN
mIoU

DeepLabv3
mIoU

Semantic FPN
ENet-B1 27.3 38.0 35.2 36.6 38.5
ENet-B2 27.5 38.5 35.6 37.0 39.1

EFormer-L1 - 37.9 35.4 - 38.9
EMO-5M 27.9 39.3 36.4 37.8 40.3

Normalization Type in Different Stages. BN and LN of
the same dimension have the same parameters and similar
FLOPs, but LN has a tremendous negative impact on the
speed of vision models limited by the underlying optimiza-
tion of GPU structure. Fig. 6A shows the throughput of
EMO-5M with the LN layer applying to different stages, and
LN is used to stage-3/4 (S-34) by default. As more stages
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Figure 6: Ablation studies on ImageNet-1K with EMO-5M.

replace BN with LN, i.e., S-1234, throughput decreases sig-
nificantly (1,693 → 952) while the benefit is modest (+0.2↑).
We found that the model is prone to unstable NaNs when
LN is not used; thus, we argue that LN is necessary but used
in a few stages is enough for Attention-based EMO.
MHSA in Different Stages. Fig. 6B illustrates the changes
in model accuracy when applying MHSA to different stages
based on EMO-5M, and we further detail that as follows:

S1 S2 S3 S4 #Params FLOPs Top-1 CPU GPU iPhone14
✘ ✘ ✘ ✔ 4.697 797 78.0 205.7 2111.4 4.9

EMO-5M ✔ ✔ 5.109 903 78.4 106.5 1731.7 6.8
✘ ✔ ✔ ✔ 5.130 931 78.5 98.0 1492.2 7.5
✔ ✔ ✔ ✔ 5.139 992 78.8 52.3 886.8 9.5

Results indicate that MHSA always positively affects model
accuracy no matter what stage inserted. Our efficient model
obtains the best result when applying MHSA to every stage,
but this would take an extra 10%↑ more FLOPs, i.e., from
903M to 992M. Therefore, only using MHSA in the last two
stages is used by default, which trades off the accuracy and
efficiency of the model.
Effect of Drop Path Rate. Fig. 6C explores the effect of
drop path rate for training EMO-5M. Results show that the
proposed model is robust to this training parameter in the
range [0, 0.1] that fluctuates accuracy within 0.2, and 0.05
can obtain a slightly better result.
Effect of Batch Size. Fig. 6D explores the effect of batch
size for training EMO. Small batch size (≤ 512) will bring
performance degradation, while high batch size will suffer
from performance saturation, and it will also put higher
requirements on the hardware. Therefore, 1,024 or 2,048 is
enough to meet the training requirement.
Attention Visualizations by Grad-CAM. To better illus-
trate the effectiveness of our approach, Grad-CAM [55] is
used to highlight concerning regions of different models.
As shown in Fig. 7, CNN-based ResNet tends to focus on
specific objects, and Transformer-based MPViT pays more
attention to global features. Comparatively, our EMO could
focus more accurately on salient objects while keeping the
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Figure 7: Visualizations by Grad-CAM among CNN-based
ResNet, Transformer-based MPViT, and our EMO.
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Figure 9: Diagonal similarity with different components.

capability of perceiving global regions. This potentially
explains why EMO gets better results in various tasks.
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Figure 8: #Params and FLOPs distri-
butions of EMO-5M in terms of core
modules in iRMB. MLP represents
the expansion/shrinkage operations
outside DW-Conv and MHSA.

Distributions of
#Params and
FLOPs. iRMB
mainly consists
of DW-Conv and
EW-MHSA mod-
ules, and Fig. 8
further displays
distributions of
#Params and
FLOPs. In gen-
eral, DW-Conv
and MHSA account for a low proportion of #Params and
FLOPs, i.e., 4.6%/4.1% and 13.8%/14.6%, respectively.
Also, we found that #Params is consistent with the
proportion of FLOPs for our method, meaning that EMO is
a relatively balanced model.
Feature Similarity Visualizations. As mentioned in
Sec. 2.3, cascaded Convolution and MHSA operations can
increase the expansion speed of the receptive field. To verify
the validation of this design, we visualize the similarity of
diagonal pixels in Stage-3 with different compositions, i.e.,
only DW-Conv, only EW-MHSA, and both modules. As
shown in Fig. 9, results show that features tend to have short-
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distance correlations when only DW-Conv is used, while
EW-MHSA brings more long-distance correlations. Compar-
atively, iRMB takes advantage of both modules with a larger
receptive field, i.e., distant locations have high similarities.

4. Related Work
Efficient CNN Models. With increasing demands of
neural networks for mobile vision applications, efficient
model designing has attracted extensive attention from re-
searchers in recent years. SqueezeNet [24] replaces 3x3
filters with 1x1 filters and decreases channel numbers to
reduce model parameters, while Inceptionv3 [58] factor-
izes the standard convolution into asymmetric convolu-
tions. Later, MobileNet [20] introduces depth-wise sepa-
rable convolution to alleviate a large amount of computation
and parameters, followed in subsequent lightweight mod-
els [21, 54, 82, 46, 51, 15, 34, 35]. Besides the above hand-
craft methods, researchers exploit automatic architecture
design in the pre-defined search space [19, 61, 60, 40, 3].
Hugging Vision Transformer with CNN. Since ViT [13]
first introduces Transformer structure [66] into visual tasks,
massive improvements have successfully been developed.
DeiT [64] provides a benchmark for efficient transformer
training, subsequent works [68, 69, 42] employ ResNet-
like [17] pyramid structure to form pure Transformer-based
models for dense prediction tasks. However, the absence
of 2D convolution will potentially increase the optimization
difficulty and damage the model accuracy for lacking local
inductive bias, so researchers [16, 27] concentrate on how to
better integrate convolution into Transformer for obtaining
stronger hybrid models. E.g., work [76] incorporate con-
volution design into FFN, works [8, 32] regard convolution
as the positional embedding for enhancing inductive bias
of the model, and works [72, 71] for attention and QKV
calculations, respectively. Unlike the above methods that
improve naive Transformer to obtain high performance, we
study how to build a simple but effective lightweight model
based on an improved one-residual attention block.
Efficient Transformer Improvements. Recently, re-
searchers have started to lighten Transformer-based models
for low computational power. Tao et al. [23] introduce ad-
ditional learnable tokens to capture global dependencies
efficiently, and Chen et al. [23] design a parallel struc-
ture of MobileNet and Transformer with a two-way bridge
in between. Works [81, 52] improve an efficient Trans-
former block by borrowing convolution operation, while
EdgeNeXt [47] absorbs effective Res2Net [14] and trans-
posed channel attention [1]. The recently popular MobileVit
series [49, 50, 67] fuse improved MobileViT blocks with
Mobile blocks [54] and achieve significant improvements
over MobileNet [20, 54, 19] on several vision tasks. How-
ever, most current approaches build on transformer structure
and require elaborate complex modules, which limits the

mobility and usability of the model. In summary, how to bal-
ance parameters, computation, and accuracy while designing
an easy-to-use mobile model still needs further research.

5. Conclusion and Future Works
This work rethinks lightweight infrastructure from effi-

cient IRB and effective components of Transformer in a
unified perspective, and we propose the concept of Meta Mo-
bile Block for designing efficient models. In detail, we de-
duce a modern infrastructural iRMB and build a lightweight
attention-based EMO with only iRMB for downstream tasks.
Massive experiments on several datasets demonstrate the
superiority of our approach. Also, we provide detailed stud-
ies of our method and give some experimental findings on
building an attention-based lightweight model. Hope our
study will inspire researchers to design more power efficient
models and make interesting applications.

More complex operators may potentially improve the
effectiveness of the model, e.g., transposed channel at-
tention [1], multi-scale Res2Net [14], and efficient Per-
former [7], etc., which should be thoroughly tried and exper-
imented further to explore the upper limits of the efficient
model structure. Also, higher resolution input, combined
with Neural Architecture Search (NAS), distillation from
heavy models, training on larger ImageNet-21K dataset,
and stronger training augmentations/strategies [49, 47, 28]
will further improve the model performance. Limited by
the current computational power, we will leave the above-
mentioned attempts in our future works.
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