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Abstract

The problem of realistic VQA (RVQA), where a model
has to reject unanswerable questions (UQs) and answer an-
swerable ones (AQs), is studied. We first point out 2 draw-
backs in current RVQA research, where (1) datasets contain
too many unchallenging UQs and (2) a large number of an-
notated UQs are required for training. To resolve the first
drawback, we propose a new testing dataset, RGQA, which
combines AQs from an existing VQA dataset with around
29K human-annotated UQs. These UQs consist of both
fine-grained and coarse-grained image-question pairs gen-
erated with 2 approaches: CLIP-based and Perturbation-
based. To address the second drawback, we introduce an
unsupervised training approach. This combines pseudo
UQs obtained by randomly pairing images and questions,
with an RoI Mixup procedure to generate more fine-grained
pseudo UQs, and model ensembling to regularize model
confidence. Experiments show that using pseudo UQs sig-
nificantly outperforms RVQA baselines. RoI Mixup and
model ensembling further increase the gain. Finally, hu-
man evaluation reveals a performance gap between humans
and models, showing that more RVQA research is needed.
Code and dataset is released on https://github.
com/chihhuiho/RGQA.

1. Introduction

Visual Question Answering (VQA) is a challenging task
that requires a machine to understand a question in natural
language, perceive an image, and produce an answer. De-
spite extensive research in VQA [3, 12, 19, 36, 20, 42, 7,
54], little attention has been given to VQA robustness. In
this work, we consider robustness to unanswerable ques-
tions (UQs), which cannot be answered by image inspec-
tion, as in Fig. 1(b). This is opposed to the traditional an-
swerable questions (AQ), such as in Fig. 1(a).

Lack of robustness to UQs is problematic because, in the
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Figure 1: Realistic VQA. In VQA, a vision system answers a question by
inspection of an image. However, existing approaches have no awareness if
the question is answerable (AQ), such as in (a), or unanswerable (UQ), as
in (b). A realistic VQA system only answers AQs. (c) RVQA performance
of prior (yellow) vs. proposed (blue) models.

absence of image information, the VQA system frequently
resorts to the answer statistically most correlated with the
question. In the figure, the absence of food in (b) entices
the robot to pick the answer corresponding to the “side of
food” most commonly “cut” in the dataset, which happens
to be the “top” (perhaps because the dataset is rich in cake
images). The problem is that a decision by the robot to act
on this answer would be catastrophic for the cat in the scene.
More generally, the inability to reject UQs signals a deeper
perceptual deficiency and exposes VQA systems to attacks.

Vulnerability to UQs can create safety hazards for indoor
robots [2] or assistants for the visually impaired [14] and
reduces user trust in VQA models (see appendix for vari-
ous examples from the recent large-scale BLIP model [29]).
When faced with a UQ, the VQA system should refuse to
answer or ask for more information. More precisely, it
should assess the question, decide to (a) “accept” or “re-
ject” it, and only (b) answer the accepted questions. Since
this resembles the idea of a “realistic model” for classifica-
tion [50, 48], we denote it realistic VQA (RVQA).

Although some prior works have addressed RVQA, ex-
isting formulations are not conducive to practical RVQA
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systems, for three reasons. First, existing formulations ad-
dress the supervised training of RVQA models. This, how-
ever, requires a significant number of annotated UQs [40,
35, 14]. The collection of a set of annotated UQs large
enough to train a modern VQA network is expensive, fre-
quently not even plausible. This is compounded by the ex-
istence of many types of UQs: training on one type does not
guarantee generalization to another. Second, prior datasets
generate UQs by randomly paring images and questions
from an existing VQA dataset [40, 35, 21, 45]. This, how-
ever, tends to produce obviously unrelated pairs of images
and questions with low semantic similarity, that are easy
to reject. In the real world, RVQA models must be able
to handle both simple and challenging UQs. Finally, the
VQA datasets that support RVQA, such as VizWiz [14], are
designed for a specific application domain, frequently con-
taining images with few objects. This prevents the modeling
of complex image-question relationships.

To address these drawbacks, we consider the problem of
unsupervised RVQA. We start by curating a new evaluation
dataset for this task, based on testdev set of the widely used
GQA dataset [19]. The new dataset, denoted as realistic
GQA (RGQA), is composed of 26, 591 AQs in the testdev
set of GQA and 29, 046 additional human-annotated UQs.
To penalize RVQA models that overfit on a specific type of
UQs, we generate candidate UQ by two methods. CLIP-
based UQ generation produces candidate UQs by retrieving
questions sorted by CLIP [39] similarity score between im-
age and question. Perturbation-based (PT-based) UQ gen-
eration perturbs the object, attribute, and relation phrases in
a question. For each method, we further generate a set of
easy and a set of hard candidate UQs, leading to a total of
four RGQA subsets. All candidate UQs are finally anno-
tated by humans, to guarantee they are unanswerable.

Since each AQ in RGQA is complemented by its answer,
the dataset enables measuring the accuracy of both AQ/UQ
detection and VQA accuracy. For this, we propose the
ACC-FPR curve [9], a joint measure of VQA accuracy for
AQs and UQ rejection performance. This is complemented
by introducing 3 new unsupervised RVQA methods that es-
tablish a set of baselines for future RVQA work. These are
classifiers with a binary output per class, which elicit a re-
jection when all class outputs are below a threshold. Three
methods differ in training strategy and are shown capable of
producing RVQA models that both reject UQs and answer
AQs correctly, outperforming prior RVQA methods.

The first is to train the classifier with pseudo UQs, ob-
tained by randomly pairing images and questions. This suf-
fers from the fact that pseudo UQs are noisy and not always
challenging. The second improves the sampling of image-
question pairs, by using a RoI Mixup strategy to encourage
the model to spot fine-grained mismatches between image
and question during training. The third address the limita-

tions of random sampling at the classifier output, by ensem-
bling multiple RVQA models. Experiments show that all
strategies enhance RVQA performance and that they can be
combined to achieve best results. As shown in Fig. 1(c), this
combination (blue) significantly exceeds the performance
of existing VQA models (yellow) under the joint objective
of rejecting UQs and correctly answering AQs.

Overall, three contributions are made to VQA. First,
we introduce RGQA, a new challenging testing dataset for
evaluating RVQA. It contains both fine- and coarse-grained
image-question pairs which better align with real-world sce-
narios than previous datasets. Second, we propose an unsu-
pervised training strategy that uses free pseudo UQs, com-
bining random sampling, RoI Mixup, and model ensem-
bling. Finally, extensive experiments demonstrate the effec-
tiveness of the proposed methods over prior RVQA meth-
ods. We also show that the proposed models under-perform
humans, which encourages future work in the RVQA prob-
lem.

2. Related Work
In this section, we review related works. See appendix

for a broader discussion of the literature.
Realistic VQA (RVQA): The study of RVQA is still in its
infancy. A central question is how to assemble datasets of
UQs, i.e. unrelated pairs of images and questions. Most
methods start from a VQA dataset. VTFQ [40] collected a
RVQA dataset by randomly pairing images and questions.
QRPE [35] uses question-derived object/attribute premises.
The associated image is then replaced by its Euclidean
nearest neighbor in a set of images without the extracted
premises. These approaches are limited by the inability of
random pairing or Euclidean similarity to guarantee a fine-
grained semantic mismatch between image and UQ.

VizWiz [14] is a VQA dataset from the visually impaired
setting, with UQs asked by people. However, its images
are of poor quality and contain one or a few objects, which
prevents complex interaction between objects, scenes, and
language. TDIUC [21] and C2VQA [44] are created by
checking if objects mentioned in questions also appear in
images. While UQ cardinality can be easily scaled up [21]
by randomly paring images and questions without common
objects, this assumes that the only reason for a UQ is ob-
ject mismatch. In comparison, the proposed RGQA dataset
considers both coarse- and fine-grained mismatches, based
on stronger measures of image-question similarity. No con-
straints of image content are also imposed on UQ genera-
tion, producing a more challenging and diverse dataset.

All previous works address supervised RVQA, using an-
notated UQs, which is expensive and limits dataset sizes.
For instance, [40] generates a caption per image with Neu-
ralTalk2 [23] and measures question-caption similarity with
a binary LSTM classifier. [35] further extracts the ques-
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Figure 2: Examples of CLIP based (a,b,e,f) and Perturbation (PT) based UQs (c,d,g,h) in RGQA. For the PT-based UQs, the red words are modified from
the original question. See appendix for more examples.

tion premise and uses the concatenated question-premise-
caption triplet as classifier input. [30] uses this architec-
ture to reject UQs in VQA. [27] uses the maximum atten-
tion score between objects and text tokens for rejection and
regularizes attentions by training on UQs. In this work,
we explore an unsupervised training strategy that is model-
agnostic and does not rely on annotated UQs.

Out of Distribution Detection (OOD) RVQA is closely
related to OOD in classification [16, 25, 33, 18, 49, 17, 28]
which aims to detect samples on which a classifier has not
been trained. This has been addressed by temperature scal-
ing of classifier logits [33], using Mahalanobis distance [28]
or energy scores [34] to measure the distance to the training
distribution, ensembling predictions from multiple mod-
els [25, 46], or regularizing in-distribution (ID) features [8].
It is also possible to use a background dataset, with dif-
ferent distribution from the training dataset, during train-
ing [10, 18, 49, 32]. While background datasets can signif-
icantly improve OOD, prior works in RVQA [30, 27] show
a performance degradation for AQs. We devise sampling
strategies that address this problem.

The classification and OOD performance are usually re-
ported by combining Area Under ROC curve (AUROC) and
accuracy on ID samples [38, 4, 55, 51]. However, separate
metrics increase the difficulty to compare models. We in-
troduce a unified metric for the RVQA problem.

3. RGQA Dataset

In this section, we introduce the RGQA dataset for eval-
uating RVQA systems. It is a human-annotated dataset with
∼ 29K UQs and built upon the testdev set of GQA [19].

3.1. Dataset Curation

RGQA has a balanced coverage of AQs and UQs. AQs
are image-question pairs with answers from the GQA test-
dev set. For UQs, we first generate a candidate set using two
different approaches, CLIP-based and Perturbation-based,
to mitigate potential UQ generation biases. Human annota-
tors then decide which candidates are true UQs.
CLIP-based Candidate UQs: Leveraging recent advances
in image-text pre-training, we use CLIP [39] to measure
similarity between images and questions. Given an image I ,
we consider the set of questions Q(I) in the testdev dataset,
excluding 1) existence questions (e.g. “Are there any ...?”),
which can never be UQs, and 2) the questions originally
paired with I . We then feed all pairs (I,Q), Q ∈ Q(I) to
the CLIP model and rank the questions by similarity score.
To cover the spectrum from simple to hard UQs, 85 ques-
tions sampled from the top 2, 500 are used as candidate UQs
for CLIP-Hard, while the last 50 questions are used as can-
didate UQs for CLIP-Easy. Fig. 2 shows images from each
set. The pairs of CLIP-Hard (Fig. 2 (a,b)) have more subtle
mismatches than those of CLIP-Easy (Fig. 2 (e,f)).
Perturbation-based Candidate UQs: Given an AQ in
GQA testdev, a candidate UQ counterpart is generated by
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Table 1: Comparison to previous datasets. The proposed RGQA dataset has longer and more fine-grain UQs and requires a multi-task classifier to solve the
RVQA problem. RGQA is only for evaluation purposes.

Dataset Supervised UQ Type UQ Annotation Image Source Question Source UQ(%) # Test Pair Avg. Length
VTFQ [40] ✓ UQ det. human MSCOCO VQAv1 89.24 31464 7.53
QRPE [35] ✓ UQ det. generated MSCOCO VQAv1 50.87 35476 7.76

C2VQA [45] ✓ UQ det. generated Visual Genome Visual Genome 50.00 29106 7.10
TDIUC [21] ✓ VQA+UQ det. generated MSCOCO+Visual Genome VQAv1+Visual Genome 22.17 538868 7.92
VizWiz [14] ✓ VQA+UQ det. human VizWiz VizWiz 27.84 8000 8.10

RGQA ✗ VQA+UQ det. human GQA testdev GQA testdev 52.22 55637 10.33

perturbing its objects and adjectives. This is implemented
by first collecting a set of candidate objects and their at-
tributes from the scene graphs of GQA train and valid set.
For each AQ, objects and adjectives are extracted by POS
tagging. Similar to the CLIP-based approach, both easy
and hard UQs are generated by the perturbation-based ap-
proach, resulting in the subsets PT-Easy and PT-Hard. For
PT-Easy, each object in the AQ is replaced by a random but
different object sampled from the candidate object set. For
PT-Hard, the objects in AQ are kept but their attributes are
replaced by different candidate attributes of the same object.
Finally, the spatial relation terms in PT-Hard are replaced by
antonyms, such as “left/right” and “top/bottom”. Conflict-
ing questions, like “What color are the black shoes?” are
then eliminated. Fig. 2(g,h) and Fig. 2(c,d) show examples
from PT-Easy and PT-Hard, with the perturbed text in red.
Human Annotation: Human annotators analyze all image-
question candidates and decide which are true UQs. Fol-
lowing [43, 15, 26, 5], we use 8 expert annotators with
experience in visual language research. The annotator is
shown an image and two questions (see interface in ap-
pendix), and asked to choose from “valid” (corresponding
to AQs) and “invalid” (UQs) options for each question. We
instruct the annotator to choose “valid” if the decision is
ambiguous, due to unclear images, confusing wording, or
any other reason. These annotations are discarded.

This process produced 11, 264 UQs for CLIP-Hard,
5, 689 for CLIP-Easy, 6, 130 for PT-Easy and 5, 963 for PT-
Hard. The next step aimed to sample a similar number of
AQs, to balance the dataset. For CLIP-Hard and CLIP-Easy,
we randomly sample AQs to pair with UQs. For each UQ,
we consider the associated image and retrieve the AQs orig-
inally paired with this image in GQA. We then randomly
sample one of these AQs. This produced 11, 158 questions
for CLIP-Easy and 20, 325 for CLIP-Hard. For PT-Easy and
PT-Hard, we pair with the original AQs for each perturbed
UQ which results in 12, 241 questions in total for PT-Easy
and 11, 913 for PT-Hard. See appendix for more details.

3.2. Dataset Analysis

UQ Categories: RGQA covers a wide spectrum of UQs,
including questions without valid answers (e.g. Fig. 2 (b)),
with false premise at object (e.g. Fig. 2 (e)) or attribute level
(e.g. Fig. 2 (d)), and underspecified questions (e.g. “Do the
snowpants look black and long?” for Fig. 2 (f)). Many UQs
also have subtle mismatches with the image, which can only

be spotted via high-level understanding of image semantics.
For instance, in Fig. 2(b), both the predicate “wearing” and
the object “shoes” exist in the image, so the model needs to
understand the semantics of “wearing” and search for their
subject. Hence, beyond evaluating robustness, RGQA also
measures how strongly VQA models learn semantics.

Dataset Comparison: Table 1 compares RGQA to pre-
vious VQA datasets with UQs [40, 35, 14, 45, 21]. Several
of these only address UQ detection. RGQA combines this
with VQA, which better matches real-world applications.
It also contains higher-quality human annotations, a better
balance between AQs and UQs, and longer and more com-
plex questions (last column) than previous datasets. Over-
all, it poses a greater challenge to model reasoning skills.

AQs vs UQs: To gain insight on the differences between
AQs and UQs, we performed an analysis from two aspects.
The first is to plot the distributions of image-question CLIP
similarity scores, as shown in Fig. 3. Clearly, for VTFQ [40]
and QRPE [35] the scores are smaller, indicating simpler
questions, and the AQ/UQ distributions have less overlap,
showing that they can be easily separated. VizWiz [14],
CLIP-Hard, and PT-Hard have larger scores and stronger
overlap between the two distributions, indicating that their
UQs have finer-grained mismatch between image and ques-
tion. However, while the CLIP score measures semantic
similarity, it does not capture the answerability of UQs.
The second strategy addresses this limitation, by plotting
the distribution of questions by the first three words (See ap-
pendix). Other than a different order for the three most pop-
ular words (“Are”, “Who” and “Which”) and a few changes
on the proportions, there are no major differences between
the AQ and UQ distributions. This shows that AQs/UQs
cannot be easily separated by question structure.

3.3. Evaluation Metrics

Since UQ detection is an OOD problem, we leverage
well-established OOD practices for evaluation. However,
because RVQA requires jointly solving UQ detection and
VQA, the common OOD practice of reporting close-set ac-
curacy and AUROC is not satisfying. We instead proposed
to use the ACC-FPR curve, introduced as CCR-FPR curve
in [9], which measures the joint performance. Given a VQA
classifier f and a UQ detector g, ACC is the proportion of
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Figure 3: CLIP image-question similarity distribution of both AQs and UQs. The overlap area between 2 normalized histograms (sum of overall area=1)
and the distance between the means are computed.

Figure 4: Comparison between ROC curve (green; right axis) and ACC-
FPR curve (orange; left axis). See text for details.

AQs with correct VQA prediction and accepted as AQ, i.e.

ACC =
|{xi|f(xi) = ai, g(xi) = AQ, (xi, ai) ∈ Daq}|

|Daq|
,

(1)
where xi = (vi, qi) denotes image-question pair, ai is the
corresponding VQA answer and Daq is the dataset of AQs.
FPR is the proportion of UQs falsely accepted as AQ, i.e.

FPR =
|{xi|g(xi) = AQ, xi ∈ Duq}|

|Duq|
, (2)

where Duq is the dataset of UQs. The ACC-FPR curve is
drawn by connecting ACCs (y-axis) at different FPRs (x-
axis) as in Fig. 4. We define the maximum value of the
curve on the y axis (best accuracy the model can achieve on
AQs) as full accuracy (FACC).

A RVQA model with a strong VQA classifier f and a
UQ detector g (orange line) has higher FACC than a model
with the same g but random f (purple line). On the other
hand, a model with the same f but random g (blue line) has

the same FACC but underperforms the RVQA model for all
FPRs less than 1. Note that the ROC curve (green line) is
the special case of ACC-FPR curve with FACC= 1. As
a single evaluation metric, we use Area Under ACC-FPR
curve (AUAF), for joint performance, FPR at 95% FACC
(FF95) for rejection, and FACC for classification.

4. Unsupervised RVQA Learning
In this section, we introduce unsupervised RVQA and

three model-agnostic methods for unsupervised training.

4.1. Unsupervised RVQA

Unsupervised RVQA learns a model, VQA classifier f
and UQ detector g, from a dataset of AQs Daq

tr = {(xi, ai)},
without annotated UQs. At testing, g(x) decides whether a
pair x is accepted. If so, f(x) then predicts an answer.

4.2. Training with Pseudo UQ

Inspired by recent OOD works using an auxiliary back-
ground dataset [9, 18, 32, 37] for training, we investigate
training the RVQA model with a background dataset. For
image classification, choosing a background dataset of rea-
sonable scale and effective performance is non-trivial [32].
However, this is much simpler for RVQA: a simple and
natural choice is to randomly pair images and question
{(vi, qi)} already available in the VQA dataset. Given an
image vi, we randomly sample a question qk belonging to
a different image vk ̸= vi to form a pseudo unanswerable
image-question pair (vi, qk). Fig. 5 illustrates an example
of this random paring, where image ν1 is paired with ques-
tion q2. Like this example, most randomly sampled pairs
are unanswerable1. The pseudo UQs are used to construct

1We inspected 100 pairs on GQA train and found 77% to be UQs.
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Figure 5: Illustration of the pseudo UQ and RoI Mixup. The right table shows the label for different visual question inputs.

the unsupervised background dataset D̂uq
tr .

With Daq
tr and D̂uq

tr , the VQA classifier f and binary UQ
detector g can be trained to minimize the risk

R = E(xi,ai)∈Daq
tr
I(f(xi) ̸= ai) (3)

+ Exi∈Daq
tr
I(g(xi) ̸= AQ) + Exi∈D̂uq

tr
I(g(xi) ̸= UQ),

where the first term is the classification error and the last
two are the detection error. Different from most OOD meth-
ods, which use softmax outputs [18], VQA models are usu-
ally trained as multi-label models. Let Y = {1, . . . ,K}
be the set of possible answers. Then, the ground truth for
ith example xi = (vi, qi) and kth answer is a binary vari-
able, yi,k ∈ {0, 1}, with yi,k = 1 if the answer holds for xi

and yi,k = 0 otherwise. The VQA model f has K binary
outputs, where fk(x) is the predicted probability for kth an-
swer, implemented with sigmoid functions and trained with
the binary cross entropy (BCE) loss

li =

K∑
k=1

yi,k log fk(xi) + (1− yi,k) log(1− fk(xi)). (4)

In Sec. 5.2.1, several configurations of models f and g
are ablated. Best results were obtained with an integrated
model, where both f and g share the network according to

g(x) = I(max
k

fk(x) > θ) → y∗ = argmax
k

fk(x), (5)

where → means that the second equation is only imple-
mented if g(x) = 1. The rejection step first checks that
there is at least one fk above threshold θ. If so, VQA is
performed. Otherwise, the example x is identified as a UQ
and rejected. This model minimizes (3) by simply assigning
labels yi,k = 0,∀k ∈ Y to each UQ xi, leading to

Lrvqa =
1

Naq
tr +Nuq

tr

N
aq
tr +N

uq
tr∑

i=1

li, (6)

where Naq
tr , Nuq

tr is the size of Daq
tr and D̂uq

tr , respectively.

4.3. RoI Mixup
While random pairing is effective for constructing a

background dataset of UQs, it tends to produce coarse-
grained UQs, where (see Fig. 5) image and question are
weakly related. To increase the coverage of fine-grained
mismatches, we propose an additional sampling strategy

denoted as RoI Mixup, motivated by mixup data augmen-
tation [53, 52, 6]. Most VQA models have an object-
based architecture [42, 7, 11, 31, 54], where image vi is
represented as a set of M (usually fixed) objects features
oi = {oi,m}Mm=1 detected by a pre-trained object detec-
tor [41]. In training, RoI Mixup randomly replaces a portion
1− λ, where λ ∈ (0, 1), of the objects in image vi with ob-
jects from another image vj ̸= vi. This leads to a new and
mixed set of objects õi

õi = {oi,m}λMm=1

⋃
{oj,n}(1−λ)M

n=1 (7)

with a new target one-hot vector ỹi = λyi. Note that
yi can either be a correct answer, for AQs, or a zero vec-
tor, for UQs. Intuitively, by reducing the percentage λ of
original objects, the probability of the question being AQ
should also shrink by λ. Fig. 5 illustrates the mixing of
two sets of visual features o1 and o2 with λ = 0.25 to syn-
thesize the object set õ. Following [53], λ is sampled as
λ ∼ Beta(1, β) where β is a tunable hyper-parameter.

4.4. Model Ensembling

Random pairing and RoI Mixup are sampling strategies
to create a background UQ dataset with a mix of coarse-
and fine-grained UQs. It is also possible to improve the
performance by regularizing the model output. As in the
calibration literature [25, 46], we achieve this with model
ensembles. Given C models {f c}Cc=1, model f c predicts
the probability of answer yk as pc(yk = 1|x) = f c

k(x).
Assuming the predictions of different models are indepen-
dent, the probability predicted by the ensemble is pE(yk =

1|x) = fE
c (x) =

∏C
c=1 f

c
k(x). Model ensembling is then

implemented by replacing f with fE in (5), which produces
more conservative predictions and rejects more UQs.

5. Experiments
In this section, we discuss a set of experiments that

leverage the proposed RGQA dataset and metrics to eval-
uate the RVQA performance of both existing VQA models
and proposed unsupervised RVQA training techniques. In
what follows, “RP” means the model is trained with pseudo
UQs,“Mix” means RoI Mixup examples are also used, and
“Ens” is the ensembling of RP and Mix.
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Table 2: RVQA comparison of recent VQA models, using MSP for the UQ detector g. * indicates that the model is not finetuned on GQA dataset. Larger
AUAF and smaller FF95 are better.

CLIP-Easy CLIP-Hard PT-Easy PT-Hard Avg.
Classifiers AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF FF95↓ FACC AUAF
BUTD [7] 38.45 64.75 53.50 36.13 79.14 53.08 37.83 66.05 53.02 33.60 83.11 51.31 36.50
Uniter [7] 40.03 73.15 57.08 39.42 80.48 57.10 41.45 61.76 56.82 35.17 83.52 55.08 39.01

LXMERT [42] 42.39 76.25 0.87 42.60 78.92 60.49 47.30 61.79 59.94 38.12 85.14 58.76 42.60
SwapMix [13] 46.31 71.98 61.05 42.44 78.41 60.10 46.19 62.27 59.77 37.78 82.73 58.37 43.18

Vilt [24] 46.17 69.62 58.91 40.66 79.21 57.39 48.06 60.54 60.64 37.93 82.40 57.63 43.21
Oscar [31] 45.51 72.14 62.09 41.76 80.04 61.72 46.38 64.27 63.44 39.16 83.15 60.20 43.2
VinVL [54] 49.86 69.87 64.89 46.36 78.16 64.61 41.68 84.27 63.38 41.67 84.26 63.37 44.89

MDETR [22] 47.81 70.32 62.91 43.86 78.94 62.05 47.14 70.04 62.93 39.04 84.11 60.30 44.46
BLIP-VQAv2* [29] 35.93 69.39 51.67 34.94 82.10 51.13 37.44 69.33 52.49 32.62 86.91 49.79 35.23

Table 3: Comparison between different RVQA approaches on AUAF. Cells with light cyan background denote training with pseudo UQs. See appendix for
full table with FF95 and FACC.

BUTD [1] UNITER [7] LXMERT [42]

RVQA Approaches CLIP CLIP PT PT Avg. CLIP CLIP PT PT Avg. CLIP CLIP PT PT Avg.easy hard easy hard easy hard easy hard easy hard easy hard

FRCNN 33.58 30.73 31.43 26.94 30.67 35.81 33.09 33.67 28.82 32.84 38.43 35.22 35.73 31.00 35.09
MSP 38.45 36.13 37.83 33.60 36.50 40.03 39.42 41.45 35.17 39.01 42.39 42.60 47.30 38.12 42.60
ODIN 38.47 36.14 37.80 33.60 36.50 40.04 39.43 41.45 35.16 39.02 42.41 42.59 47.33 38.12 42.61
Maha 30.05 25.75 25.34 23.93 26.26 37.52 33.74 35.87 31.68 34.70 57.68 44.96 49.44 39.25 47.83

Energy 38.47 36.19 37.77 33.67 36.52 40.10 39.42 41.41 35.19 39.03 38.76 42.11 47.00 37.90 41.44
Q-C 53.04 36.20 47.14 29.06 41.36 56.61 38.67 50.12 30.93 44.08 60.39 41.31 53.11 33.18 46.99

Resample 40.25 37.73 39.54 34.78 38.07 58.66 48.08 53.65 39.84 50.05 60.47 50.80 55.74 42.18 52.29
RP w/ hard UQ 43.74 43.27 37.62 36.17 40.2 44.92 47.14 41.89 37.92 42.96 53.60 51.39 46.95 42.96 48.72

RP(Ours) 56.31 44.09 50.51 37.18 47.02 58.35 48.37 54.42 40.27 50.35 60.51 51.49 56.08 42.53 52.65
Mix(Ours) 56.85 44.70 51.27 37.59 47.60 59.08 49.00 54.63 41.50 51.05 60.79 51.91 56.83 43.56 53.27
Ens(Ours) 57.25 45.46 51.95 38.46 48.28 59.62 49.65 55.79 42.14 51.8 61.03 52.42 56.90 43.75 53.52

5.1. Experimental Set-up

An RVQA model consists of a VQA model f and a UQ
detector g. RVQA methods vary along three dimensions:
VQA model f , RVQA architecture, which determines how
f and g are combined, and RVQA approach, which uses the
architecture to implement the RVQA method. We consider
several models, architectures, and approaches.

VQA models: We consider the nine VQA models [1, 7,
42, 24, 22, 31, 54, 29, 13] listed in Table 2. These rep-
resent a sampling of the literature, ranging from smaller
models like BUTD [1] to recent large scale models, like
VinVL [54]. All models are finetuned on GQA [19], except
BLIP [29] whose finetuning requirements exceed our re-
sources. BUTD/UNITER/LXMERT were trained for 1/7/7
epochs, respectively, with the original hyperparameters. For
MDETR/OSCAR/VinVL/SwapMix, we used VQA check-
points fine-tuned on GQA from the authors’ githubs. Since
Vilt [24] does not have a GQA checkpoint, it was fine-tuned
on GQA using its pre-trained weights and fine-tuning pro-
cedure from prior works [22, 31]. See appendix for details.

RVQA approaches: We group RVQA approaches into
two categories. Post-hoc, training free methods use the fine-
tuned VQA model f directly, implementing g with post-hoc
operations. These frequently involve thresholding a confi-
dence score derived from the model predictions, a popular
approach in the OOD literature . Training based methods re-

train the VQA model, using unlabeled data (pseudo-UQs),
to learn g. The proposed RP, Mix, and Ens methods are of
this type. We considered the following approaches.
Post-hoc, training free methods.

MSP [16]: Confidence score is the largest probability
output by VQA model; ODIN [33]. Extension of MSP that
uses temperature scaling and input processing to boost per-
formance. For RVQA, input processing is only applied to
visual features. The temperature is 1e5 and the noise 1e−4
for all datasets; Maha [28]. Estimate class-conditional
Gaussian distribution of the VQA model features and use
the Mahalanobis distance with respect to the closest class as
confidence score. Energy [34, 47]. Energy scoring method,
initially proposed for Softmax based models [34] and re-
cently adapted to multi-label models [47]. We find that only
considering the top-2 classes improves performance. FR-
CNN. A rule-based method, which compares object names
detected by Faster-RCNN [41] with the nouns in the ques-
tion. All object names and nouns are converted into word
stems. If there exist nouns that are not in the object names,
the question is declared as UQ.
Training based methods.

Resample [32]. An OOD method that performs iterative
adversarial weighting of background examples (i.e. pseudo
UQs), assigns higher weights to harder examples and the
reweighted dataset is trained. Q-C [40]. A caption is gener-
ated per image and its similarity to the question is measured.
While [40] adopts NeuralTalk2 [23], we use BLIP [29] cap-
tions. To measure similarity, we finetune a BERT model
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that takes the concatenation of a caption and a question and
predicts whether the two match, with a binary score.

RVQA architectures: Several configurations of model f
and detector g were considered. Integrated: sequential
implementation of g and f as in (5); Branched: a com-
mon backbone with decoupled classifier heads for f and g;
Multi-branched: generalizes Branched by taking features
from multiple layers; Separated: trains g and f separately,
with different models [30]. K+ 1 : [55] defines UQs as an
additional (K + 1)th VQA class and trains f as a K + 1-
class classifier. The integrated approach is applicable to all
methods discussed above. The remaining architectures are
only possible for training-based methods since they require
pseudo-UQs to train separate g heads, models, or classes.

5.2. Quantitative Results

The combinatorial space of RVQA methods, VQA mod-
els, and RVQA architectures makes a comparison of all pos-
sibilities infeasible. We instead use a factorial experiment:
start by ablating the architecture given a model and method,
then compare models given the best architecture, and finally
compare different methods for a few models.

5.2.1 RVQA Architecture

We started by investigating if the multiple architectures pos-
sible for trained models have any benefit over the integrated
architecture of (5), which can be universally used. These
experiments used the LXMERT VQA model and RP train-
ing. Fig. 6 left compares the averaged AUAF of the different
architectures on RGQA. The integrated architecture has top
performance, followed by Separated that, besides not being
universal, doubles parameter sizes and inference time. We
use the integrated architecture in the following experiments.

5.2.2 VQA Model

We next compared the UQ robustness of the different VQA
models, using the MSP RVQA approach. Table 2 shows that
all models are quite vulnerable to UQs, with average AUAF
across datasets below 45. This shows that there is signifi-
cant room for improvement. Interestingly, larger and more
recent models do not fare significantly better than smaller
models. Despite their superior AQ performance (FACC),
they have similar FF95 and AUAF to the smaller models
at the top of the table. Since the smaller models are much
easier to train, we use them in the remaining experiments.

5.2.3 RVQA Approach

We finally compared the proposed RP, Mix, and Ens to all
prior RVQA approaches discussed above. In these exper-
iments, all approaches use BUTD, UNITER or LXMERT

Integrated K+1 Branched Multi-Branched Separated
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Figure 6: Left: RVQA architecture ablation. Right: Human evaluation.

models. Non-trainable approaches use models learned from
AQs alone, trainable methods leverage a background dataset
of pseudo UQs. For Mix, we empirically find the best β
value per model and use it for all subsets. See appendix
for more details. Table 3 (see appendix for full table with
FACC and FF95) summarizes the performance of all mod-
els on the 4 RGQA subsets. The last column is the averaged
AUAF across subsets. The table allows several conclusions.

Post-hoc approaches do not help. While MSP outper-
forms FRCNN, post-hoc approaches like ODIN, Maha, and
Energy, which do not leverage pseudo-UQ, fail to improve
on MSP. Surprisingly, these approaches have similar perfor-
mance for CLIP-Easy and CLIP-Hard, even though CLIP-
Easy has much coarser-grained image-question pairs.

Pseudo UQs are effective. The cyan cells of Table 3
show that training based methods, which leverage pseudo
UQs, have significantly better RVQA performance (AUAF)
than methods that do not. This is mainly due to a decrease
of FF95 without sacrificie of FACC (see all metrics in ap-
pendix). Q-C consistently improves upon MSP by 5 − 10
pts. Resample further improves performance for most mod-
els. However, the proposed RP improves on both, out-
performing Q-C by ∼5.9 pts and Resample by ∼3.4 pts
on average. This is somewhat surprising, since Resample
is a more sophisticated sampling strategy. We hypothe-
size that Resample is unsuitable for the noisy background
data generated by random pairing, likely applying larger
weights to noisy examples (AQs) and hurting RVQA per-
formance. The proposed Mix and Ens approaches have ad-
ditional gains, producing the best results across VQA mod-
els. Finally, unlike prior RVQA works [30, 27], RP, Mix,
and Ens do not harm VQA performance, even improving
FACC. See appendix for GQA test set performance.

Impact of VQA model. Comparing the 3 models of Ta-
ble 3, shows that RVQA approaches are more beneficial for
models of higher VQA accuracy (FACC). For instance, for
MSP on CLIP-Hard, from BUTD to LXMERT a FACC in-
crease from 53.08 to 60.49 (shown in appendix) is accom-
panied by an AUAF increase from around 36 to 42. This
shows that better VQA reasoning skills help the model de-
tect UQs. However, note that these gains saturate quickly, as
shown in Table 2. Together, the two tables show that RVQA
benefits more from pseudo-UQ than from large models.

UQ Diversity. Most approaches achieve higher AUAF
on CLIP-Easy and PT-Easy, because these 2 subsets have
either low CLIP score or object level mismatch between
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Q: How is the vehicle to the 
left of the ambulance called?

MSP: 
Train

RP: 
UQ

ENS: 
UQ

Q: What are the jars sitting 
on top of?

MSP: 
Desk

RP: 
UQ

ENS: 
UQ

CLIP-Easy CLIP-Hard

Q: Does the hair that is not 
long look small?

MSP: 
Yes

RP: 
UQ

ENS: 
UQ

Q: On which side is the wood 
mirror?

MSP: 
Right

RP: 
Right

ENS: 
UQ

PT-Easy PT-Hard
Figure 7: Qualitative examples for a threshold such that all models achieve
55% accuracy.

image and question. Conversely, most approaches under-
perform on CLIP-Hard and PT-Hard, where UQs have sub-
tle mismatches at attribute or relation level. This trend holds
across VQA models and subsets. We also consider RP train-
ing only on hard pseudo UQs, selected by CLIP score, (RP
w/ hard UQs in Table 3), which produced a weaker AUAF
than standard RP, especially on CLIP-Easy and PT-Easy.
These results show the importance of UQ diversity.

5.3. Qualitative results

Confidence score distribution: Fig. 8 compares the
confidence score distribution of the post-hoc MSP approach
to the proposed RP and Ens training-based methods. It
shows that MSP tends to be over-confident for both AQs
(blue) and UQs (orange), while RP and Ens have higher
(lower) scores for AQs (UQs). MSP is also not able to
capture fine-grained mismatches. For instance, it assigns to
UQ C a higher score than to AQ A. Finally, the confidence
scores of AQ B show that RP and Ens can even detect in-
correct annotations in the original GQA dataset.

Model prediction: Fig. 7 shows some qualitative exam-
ples from the four subsets of RGQA. The rejection thresh-
old is set such that all models have accuracy of 55%. Ens
correctly rejects all UQs, and RP three of the four, while
MSP fails in all cases. Note that, for the fine-grained mis-
matches of the hard subsets, the VQA system tends to re-
spond by statistical association -the missing jars are “sit-
ting on the desk” and the nonexistent wood mirror is on the
“right,” which is the side of the bike closest to the camera.

Figure 8: Left: confidence scores of MSP, RP, and Ens methods for 500
random samples. Right: qualitative examples. AQs/UQs are shown in
blue/orange. B is an annotation error in the original GQA dataset.

5.4. Human Evaluation

To assess the challenge posed by the UQs in RGQA
dataset, we conducted a human evaluation on MTurk.
Workers were asked to perform the binary rejection on 50
AQs and 50 UQs for each subset. Fig. 6 right shows the re-
jection accuracy on UQs, comparing to models thresholded
so as to achieve the same true positive rate on AQs. As
expected, annotators found CLIP-Hard and PT-Hard more
challenging. While Ens approaches human performance on
the easier subsets, the gap on harder subsets is large.

6. Conclusion
We studied the problem of realistic VQA (RVQA) that

aims to both reject UQs and answer AQs. Prior RVQA
methods assume labeled UQs for training. It was argued
that prior datasets are insufficient because they contain
poor-quality images or lack of UQ diversity. To address
this, we assembled the RGQA dataset, using 2 approaches
to generate candidate UQs for human annotation. This
allowed RGQA to cover broader granularities in image-
question mismatch. A combination of pseudo UQs, RoI
Mixup, and model ensembles was then proposed for unsu-
pervised training of RVQA models. Experiments show that
the resulting models outperform RVQA baselines for both
easy and hard UQs. Comparison to human performance
shows that more research is needed in RVQA.
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