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Abstract

Domain adaptation (DA) aims to transfer knowledge
from a label-rich source domain to a related but label-
scarce target domain. Recently, increasing research has
focused on exploring data structure of the target domain.
In light of the recent success of Instance Discrimination
Contrastive (IDCo) loss in self-supervised learning, we try
directly applying it to domain adaptation tasks. However,
the improvement is very limited, which motivates us to re-
think its underlying limitations for domain adaptation tasks.
An intuitive limitation is that a pair of samples belonging to
the same class could be treated as negatives. Here we argue
that using low-confidence samples to construct positive and
negative pairs can alleviate this issue and is more suitable
for IDCo loss. Another limitation is that IDCo loss cannot
capture enough semantic information. We address this by
introducing domain-invariant and accurate semantic infor-
mation from classifier weights and input data. Specifically,
we propose a class relationship enhanced features. It uses
probability weighted class prototpyes as the input features
of IDCo loss, which can implicitly transfer the domain-
invariant class relationship. We further propose a target-
dominated cross-domain mixup that can incorporate accu-
rate semantic information from the source domain. We eval-
uate the proposed method in unsupervised DA and other
DA settings, and extensive experimental results reveal that
our method can make IDCo loss more effective and achieve
state-of-the-art performance.'

1. Introduction

Deep neural networks have shown considerable effec-
tiveness in a variety of machine learning challenges [29,
5, 56]. However, the impressive performance gain heavily
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Figure 1. Illustration of our proposed method. The bottom left rep-
resents the target-domain feature distribution during training. The
bottom right is the feature distribution obtained by our method.
The upper part is our proposed effective instance discrimination
contrastive loss, which contains three key designs. Best viewed in
color.

relies on massive well-labeled training data. Additionally,
manually annotating sufficient training data is often time
and expense prohibitive in reality. Besides, another disad-
vantage of traditional deep learning is its inability to gener-
alize to new datasets due to the domain shift problem [2, 1].
Domain Adaptation (DA) addresses this issue by utilizing
the knowledge of a label-rich source domain to assist the
learning in a related but label-scarce target domain.

The most popular way to deal with domain shift is to
learn domain-invariant representations. We can roughly
classify these DA approaches as either discrepancy metric-
based methods [45, 83] or adversarial-based methods [72,
42, 9]. Recently, there have been more methods exploring
the inherent structures of unlabeled target domains, such as
self-training through pseudo labels [15, 101, 27, 43] and
aligning prototypes across domains [25, 95]. The majority
of them rely on trustworthy samples selected by some crite-
ria, such as probability [52, 3] and sample ratio [101]. This
can create reliable pseudo labels or prototypes, leading to
better discriminability on the target domain. However, this
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would lead to a suboptimal transferability since the trust-
worthy samples are more biased to source domain samples
and meanwhile less confident samples are not well learned.

Recently, Instance Discrimination Contrastive (IDCo)
loss [19, 6] has achieved great success in self-supervised
learning. It regards different views of the same image as
positive pairs and pulls them togher. All other images are
negative samples and are pushed away from the query sam-
ple. Inspired by this, a natural idea is to introduce /DCo loss
into the unlabeled target domain, considering no class labels
are needed. However, when directly applying IDCo loss
in feature space, we observed that only a slight improve-
ment was gained. We conjecture that it is caused by two
main factors. Firstly, there exists category collision in /DCo
loss [91, 26]. That is, two instances, even belonging to the
same category, are considered negative pairs if they origi-
nate from different samples, and their similarity will be re-
duced. Secondly, with little category priors, the traditional
IDCo loss learn rich low-level features without encoding
enough high-level semantic informantion [61, 71, 21]. This
is suboptimal for many visual recognition tasks that require
discriminative semantic features.

Existing work improves IDCo loss by selecting more
informative positive and negative samples, i.e., integrating
category information [21] or resorting to the nearest neigh-
bors [14, 90]. Although the limitations can be partially al-
leviated, the selection of informative samples are compli-
cated. Differently, we focus on exploring a pure and effec-
tive IDCo loss for domain adaptation tasks.

For the first limitation, we argue that category collision
cannot be completely avoided due to lack of accurate la-
bels. However, considering the push away process between
the query sample and negative samples, the contributions of
different negative samples are not equal [74]. The closer
negative sample contributes more to the push away pro-
cess. Based on this, we find that low-confidence samples
are more suitable for /DCo loss. Specifically, if we draw
both positive and negative samples from low-confidence
ones as in Figure 1 upper middle, the closer negative sam-
ples will more likely belong to different classes with the
query sample. With this simple design, category collision
can be greatly alleviated. More importantly, low-confidence
sample based IDCo loss is complementary to existing self-
training or category contrastive methods, which rely more
on high-confidence samples.

For the second limitation, it is necessary to explicitly in-
volve semantic information into /DCo loss. We solve this
by introducing domain-invariant and accurate semantic in-
formation using classifier weights and input data. On the
one hand, the classifier weights can be regarded as class pro-
totypes. Instead of using original features, we propose class
relationship enhanced features where the classifier proto-
types is weighted by predicted probability. Through this

re-represented features, the domain-invariant class relation-
ship can be implicitly embedded when computing the sim-
ilarity of two samples. Specifically, the class relationship
is represented by cosine similarities matrix A of the classi-
fier weights, and the similarity of two samples can be rep-
resented as the sum of A weighted outer product of two
probabilities. In this way, the class relationship can be bet-
ter maintained. On the other hand, the source images con-
tain accurate semantic information. We propose to combine
Mixup [93] with IDCo loss. The model is encouraged to
behave linearly across the source and target domains during
the instance discrimination process. In such a case, it is still
crucial to guarantee the low-confidence of mixed samples
according to the above analysis. To this end, we propose
a target-dominated mixup where the low-confidence target
samples are given a higher weight than the source samples.
By combining all three designs, the IDCo loss can work
well, and features of low-confidence target samples are bet-
ter learned.
Our contributions are summarized as follows:

* We propose a pure and effective IDCo loss in domain
adaptation for image classification. Here two main
limitations are considered and can be greatly allevi-
ated.

* We propose to use only low-confidence samples in
IDCo loss to alleviate category collision. Further-
more, we propose class relationship enhanced features
and target-dominated cross-domain mixup to encode
domain-invariant and accurate semantic information.

* We conducted extensive experiments on multiple DA
benchmarks, and the results reveal that our proposed
method achieves the state-of-the-art performance.

2. Related Work
2.1. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) [2, 1] is a tech-
nique for generalizing a model from a labeled source do-
main to an unlabeled target domain. The mainstream ap-
proaches are to learn domain-invariant representations, and
they can be classified into domain discrepancy based meth-
ods [45, 83, 66, 67, 53] and domain adversarial training
based methods [17, 72, 97, 42, 76, 39].

To increase discriminability, more recent methods at-
tempt to investigate data structure in unlabeled target do-
main. Self-training as a typical approach generates target
pseudo labels [15, 101, 48, 51, 27, 30, 43]. Another line
is to construct protoptypes [52, 3, 98, 95] or cluster cen-
ters [25, 10, 69] across domains and then perform class-
wise alignment. Most of these approaches use probability
threshold or sample ratio to choose the trustworthy sam-
ples and neglect other less trustworthy samples. To mitigate
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the harmful effect of noisy labels, it is reasonable to utilize
only reliable samples. However, less trustworthy samples
are also important since they may reveal the complete struc-
ture of the target data.

We turn to instance discrimination contrastive loss to ex-
plore the data distribution in the target domain. It should
be noted that most approaches [25, 91, 21] in domain adap-
tation use contrastive loss on the basis of classes (not in-
stances) with a selection strategy of reliable samples. Only
a few methods [26, 57, 63] use the instance discrimination
contrastive loss. CDS [26] employs contrastive learning in
a pre-train step before proceeding to a domain alignment
stage. CLDA [63] suggests that the classifier can be used
as a contrastive projection head [6]. CoMix [57] conducts
temporal contrastive self-supervised learning over the graph
representations. In contrast to previous efforts, we focus on
the potential limitations of the /DCo loss in DA tasks, and
then propose three key designs to make it more effective.

2.2. Related Techniques

Instance discrimination contrastive learning has shown
remarkable advantages in self-supervised learning [19, 6,
14]. The contrastive loss measures the similarity of repre-
sentation pairs and attempts to distinguish between positive
and negative pairs. MoCo [19] maintains a queue of pre-
viously processed embeddings as a negative memory bank.
SimCLR [6] shows that large batch size and strong data aug-
mentations have a comparable performance to the memory-
based approaches. Here we adopt a similar architecture
to MoCo [19] to perform contrastive learning. Differently,
we carefully design the input features to more concern the
low-confidence samples, and propose a novel class relation-
ship enhanced features and target-dominated cross-domain
mixup to encode semantic information.

Mixup [93] provide effective data augmentation strate-
gies for supervised and semi-supervised learning. In do-
main adaptation, the domain-level mixup [80, 79] and
category-level mixup [84, 49, 89] are used to learn domain-
invarient features. In self-supervised learning, recent work
has leveraged the idea of image space mixtures [62, 32]
and embedding space mixtures [24, 99] to generate more
valuable positive or negative samples. We propose a target-
dominated cross-domain mixup which is more compatible
with IDCo loss in DA tasks.

3. Preliminary

Unsupervised domain adaptation (UDA) for classifica-
tion aims to train a model on labeled source domain D, =
{(},y%)}i2, and unlabeled target domain D; = {x]}}~,
to obtain high accuracy on a target domain test set. The
data in source and target domains are drawn from the joint

distributions P(xs, ys) and Q(x¢, y;) with P # Q.

Mean Similarity within the same class Mean Similarity across different classes

0 0.5 1 0 0.5 1 1.5 2
Low-confidence samples M All samples B High-confidence samples
Figure 2. Motivation for exploiting low-confidence samples: the
mean similarity within the same class (left) and across classes
(right). In each figure, all three similarities are scaled, making
the value for all samples similarity equal to 1 for better compari-
son. Best viewed in color.

The framework is shown in Figure 3. We first split the
network into a feature extractor F' and a classifier C, and
then adopt a teacher-student framework. The teacher model
(F and O) is continuously updated by exponential moving
average (EMA) [70] of the student model (F and C'). For a
target sample, we send its weakly augmented view 2? to the
teacher model and obtain its probability 7. Then we com-
pare the maximum value of p) with the predefined proba-
bility threshold 7. If max(p?) > 7, it is high confidence.
Otherwise, it is low-confidence. We adopt FixMatch [65]
for high-confidence ones. In this work, we focus on low-
confidence target samples.

Before introducing our method, we first review the tradi-
tional Instance Discrimination Contrastive (IDCo) loss used
in self-supervised learning. Given an image x; € D;, we
can obtain two strongly augmented views x}, x? as the
query and the key image. Then /3-normalized features can
be produced by f; = lo(F(x})), fi = fo(F(x?)). The
naive contrastive loss without other designs (e.g., projection
head) can be presented as follows:

h(fh ft) = eXp(.fEﬁ/Tco)7
_ h(fe, fr) _ (1)
h(fe, f)+ X2 hfi f-)

f-eMm

Eidco = - 1Og

where T, is the temperature hyperparameter, and we use h
to denote the exponential of scaled cosine similarity. M is
the memory bank [19] that stores the features processed by
the teacher feature extractor. Intuitively, this loss pulls the
fi close to ft and pushes f; away from f_.

In this work, we propose to use IDCo loss to learn the
unlabeled target data. We tried directly applying it in the
feature space (even with an extra projection head [6]), but
got limited improvement (< 0.5%), which motivates us to
rethink the potential limitations of IDCo loss for domain
adaptation tasks.

4. Our Method
4.1. Necessity of Low-confidence Samples

An intuitive limitation is that a pair of samples belong-
ing to the same class could be treated as negatives. More
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Figure 3. The framework of our proposed method. Here a teacher-student framework is adopted. For the high-confidence target samples,
we use FixMatch loss. For the low-confidence ones, we propose an Effective Instance Discrimination Contrastive (EIDCo) loss (i.e.

shaded part).

specifically, for a balanced dataset D, there are on average
% samples that belong to the same class as the query im-
age, but are regarded as negative samples (K is the num-
ber of classes). This cannot be changed as long as M is
constructed randomly. Inspired by previous work [21], we
delve into the average cosine similarities of features within
the same class and across classes. Figure 2 depicts our find-
ings under Office-Home Art—Clipart. Here, the definition
of high- and low-confidence sample follows Sec. 3. It can
be observed that for the low-confidence samples, the aver-
age similarity within the same class is smaller (i.e. gray row
in Figure 2 left) and that across classes is larger (i.e. gray
row in Figure 2 right). When considering the push away
process between the negative sample f_ and the query sam-
ple f, the distance between f_ and f; determines the con-
tribution of f_ to push f; away [74]. Specifically, the closer
negative sample f_ is to f, the more contributions it would
make to push f; away.

For low-confidence samples, the similarity within the
same class is still small, while the similarity across diffe~r-
ent classes is relatively larger. If we construct f; and f_
from low-confidence samples, the closer negative samples
around f; are more likely to belong to different classes. As
a result, the /DCo loss will focus more on pushing f; away
from samples of different classes. This indicates the low-
confidence samples are more suitable for /DCo loss.

4.2. Class Relationship Enhanced Features

Another limitation of the IDCo loss for DA tasks is that
it does not encode enough semantic information, which

may result in inconsistency with task-specific discriminabil-
ity. To tackle this issue, we propose to involve classifier
weights in contrastive learning and introduce a domain-
invariant semantic prior. Each classifier weight can be re-
garded as a class prototype. Although the classifier is some-
what source biased due to the supervision of source sam-
ples or high-confidence target samples [100], the semantic
relationship between different classes is maintained across
domains [12]. Given the normalized classifier weights
W = |[wi,ws,.. wxg]T € REXP where D is the fea-
ture dimension, and the probabilities p € REXL of a low-
confidence target domain sample, we propose a novel Class
Relationship enhanced Features (CRF) which can be pre-
sented as follows:

K
for(p) = paw; = (p"W)" e RPX!(2)
=1

Based on this re-represented feature, the h(-) in Eq. 1
which uses cosine similarity of features can be replaced by
the following h..(+):

$er(P, @) = for(P)T for(@) = (W) (g"W)T,
her(P,q) = exp(ser(P, @)/ Teo),

where s, represents the similarity of two samples (i.e. p
and q), T, is the same temperature as in Eq. 1.

In the above process, the class relationship is implic-
itly embedded. Specifically, we use the consine similar-
ity of classifier prototypes to represent the class relation-
ship. Here, the class similarity matrix A can be obtained by

3)
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A =WW)T € REXE and the proposed similarity s,

can be further presented as follows:

K K

ser(P,@) = D (pwi) (qywy) = Y Aij xpixq

‘,jfl ij=1

—szXQz+Z Z Aij X pi X qj
i=1 j=1,j#1i

“)
In the above equation, s, is split into two terms. The
former is the traditional intra-class similarity which is in-
spired by PCL [34]. The latter can be viewed as inter-class
similarity which contains probability products of all differ-
ent classes. The nondiagonal elements in A is further em-
bedded into it as coefficients. By using the intra-class term
alone, the classifier weight can be optimized by IDCo loss,
thus can incorporate some semantic information [34]. How-
ever, intra-class term lacks the true relationship of samples
in the feature space. Since A; ; reflects the true similarity
of different class ¢ and class j, adding the inter-class term
can better express the relationship of two samples. This
is important since our low-confidence sample based /DCo
loss relies on different distances between negative samples
and the query sample during push away process. Using
intra-class similarity alone will weaken the difference of
distances between negative samples and the query sample,
and thus is harmful in alleviating category collision. Adding
inter-class similarity will integrate class relationship prior

and represent the sample relationship more accurately.
Some previous domain adaptation methods also con-
sider class relationship. CAiDA [12] focus on multi-source-
free domain adaptation, and propose to preserve the con-
sistency of inter-class relationship through aligning soft la-
bel distributions of different domains. Some methods (e.g.
MCC [23] and BCDM [37]) propose to utilize the inter-
class term, but their primary objective is to suppress it and
produce more confident predictions. It is implemented by
directly minimizing the inter-class term [23] or resorting to
adversarial training between two classifiers [37]. Different
from them, we aim to accurately express the similarity of

two samples by incorporating class relationship prior.

4.3. Target-Dominated Cross-Domain Mixup

The above proposed sample similarity can incorporate
domain-invariant class relationship. Here we further in-
troduce more accurate semantic information (i.e. labeled
source image) at the input level. Different from previ-
ous methods which use mixup in either domain adversar-
ial learning [80] or pseudo-label based self-training [49],
we propose to introduce mixup in /DCo loss as shown in
Figure 3. According to previous subsection 4.1, the low-
confidence characteristic of input samples should be main-
tained. Thus, we propose a target-dominated strategy where

target samples are given higher weights. Specifically, given
a low-confidence target sample x; € D;, we randomly se-
lect a source sample s € D,. Then we generate two views
for each sample, i.e., z;, x? for ; and x! and z? for x;.
The image mix of ? and 2 can be presented as

N = max(], 17)\) A ~ Beta(a, a),
mm — Nz ( o )\/):132

ER

&)

where « is the parameter controlling the shape of Beta dis-
tribution. In our experiments, we set o = 1.0.

In original Mixup [93], the label is mixture of two labels.
When combining mixup with IDCo loss, the key should be
mixture of two keys as shown in Figure 3. Specifically, the
query is student model prediction (i.e. p***) of the mixed
1mage x®_ The key is the mixture (i.e. pm“C Npi+(1—

N)pL) of teacher model predictions (i.e. p;,pl) of images
x} and z!.

By combining all three designs, we can construct an
Effective Instance Discrimination Contrastive (EIDCo)
loss, which represented as follows:

hcr (p;m xT , pmm: )

Zei o =—10 ~
¢ s Z hcr(pt aer) + Z hcr( mw,p )
p+EPL p-€M ©

where h..(-) is defined in Eq. 3, P, contains {p;,p.}, M
stores previous keys p7*** produced by teacher model. This
loss can be regarded as the log form of a (|M| + 2)-way
softmax-based classifier that tries to classify py*i* as py*i*.

4.4. Overall Training Objective

Our proposed method focus on the learning of low-
confidence target domain samples through IDCo loss. It
cannot be used alone since the discriminativeness of tar-
get domain features can not be guaranteed. Adding exist-
ing well-performed baselines, including domain adversar-
ial methods (i.e. GVB [9], ToAlign [78], and Baseline-B in
SSRT [68]) or entropy adversarial method (i.e. MME [58])
is feasible, since their training uses all target samples and
can generate high-confidence predictions. Here, we further
add the simple yet effective FixMatch [65] loss to existing
baseline and get a stronger one. As a result, the overall loss
is presented as

gfinal = Ebaseline + gfiw'match + )\cogeidcoa (7)
where lpqseiine Tepresents the loss in the baseline method,
£ ¢izmatch is the same as FixMatch [65], A, is the trade-off
hyperparameter.

5. Experiments

We evaluate the effectiveness of our method under
three DA settings, i.e., single source unsupervised do-
main adaptation (SUDA), semi-supervised domain adapta-
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Table 1. Accuracy (%) of different UDA methods on Office-Home with ResNet-50 (R-50) and ViT-B (T).

Net Method A—-C AP AR C—»A C—»P C-»R P—»A P-C PR R—-A R—-C R—=P | Acc
Source-Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
HDAN (NeurIPS’20) [22] 56.8 75.2 79.8 65.1 73.9 752 66.3 56.7 81.8 75.4 59.7 84.7 70.9
PRONOUN (TIP’21) [20] 57.6 75.0 78.4 64.9 74.0 74.8 66.6 58.2 80.4 74.3 60.4 84.3 70.7
TSA (CVPR’21) [38] 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 71.5 72.2 58.8 82.1 68.3
CKB-MMD (CVPR’21) [46] 54.2 74.1 71.5 64.6 72.2 71.0 64.5 534 78.7 72.6 58.4 82.8 68.7
FixBi (CVPR’21) [49] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
ATDOC (CVPR’21) [41] 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
MetaAlign (CVPR’21) [77] 59.3 76.0 80.2 65.7 4.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
SCDA (ICCV’21) [39] 60.7 76.4 82.8 69.8 71.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1
TCM (ICCV’21) [92] 58.6 74.4 79.6 64.5 74.0 75.1 64.6 56.2 80.9 74.6 60.7 84.7 70.7

R-50 | FGDA (ICCV’21) [18] 52.3 77.0 78.2 64.6 75.5 73.7 64.0 49.5 80.7 70.1 52.3 81.6 68.3
CST (NeurIPS’21) [43] 59.0 79.6 834 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0
MCC+NWD (CVPR’22) [4]| 58.1 79.6 83.7 67.7 77.9 78.7 66.8 56.0 81.9 73.9 60.9 86.1 72.6
GVB (CVPR’20) [9] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 704
+ EIDCO 58.1 76.8 80.0 65.1 75.4 74.4 65.6 58.3 82.2 75.0 62.8 84.7 71.5
+ FixMatch 61.0 77.6 80.4 65.6 76.8 74.5 66.5 60.0 83.3 76.7 64.8 85.1 72.7
+ FixMatch + EIDCo 64.4 81.1 81.6 68.5 78.9 78.8 69.1 59.9 87.0 71.3 67.7 86.7 75.1
ToAlign (NeurIPS’21) [78] 57.9 76.9 80.8 66.7 75.6 77.0 67.8 57.0 82.5 75.1 60.0 84.9 72.0
+ EIDCo 60.5 78.2 81.0 65.4 77.6 78.0 67.9 59.5 82.8 75.7 62.8 85.3 72.9
+ FixMatch 62.0 79.2 81.2 65.8 78.0 78.4 68.1 60.2 83.2 76.7 65.0 86.3 73.7
+ FixMatch + EIDCo 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8
ViT-B 54.68 83.04 87.15 77.30 8342 8554 7441 5090 87.22 79.56 53779  88.80 | 75.48
CDTrans (ICLR’22) [82] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT (WACV’23) [87] 74.89  86.82  89.47 82.78 8795 8827 7981 7194 90.13 8546  74.62 90.56 | 83.56
DOT-B (ACMMM’22) [47] 73.1 89.1 90.1 85.5 89.4 89.6 83.2 72.1 90.4 84.4 72.9 91.5 84.3

T SSRT (CVPR’22) [68] 75.17 8898  91.09 85.13 8829 8995 8504 7423 9126 8570 78.58 91.78 | 85.43
Baseline-B in SSRT 66.96 85.74  88.07 80.06 84.12 86.67 7952 67.03 89.44 83.64 70.15 91.17 | 81.05
+ IEDCo 69.42  86.04  88.59 81.71 84.87 87.15 8090 68.89 90.08 84.55 7121 9134 | 82.06
+ FixMatch 70.53 8697  89.95 82.36 8591 87.82 81.48 70.61 91.03 8578 7274 91.70 | 83.07
+ FixMatch + EIDCo 76.88 90.33 9128 86.53 90.52 90.04 86.33 7552 91.70 88.14 77.06 92.25 | 86.38

tion (SSDA), and multi-source unsupervised domain adap-
tation (MSDA). For SSDA, a small number of labeled tar-
get samples (1-shot or 3-shot per class) are given [11]. In
all three settings, our EIDCo loss considers unlabeled low-
confidence target samples and source samples. Particularly,
we regard multi-source domains as one in MSDA.

5.1. Datasets and Scenarios

Single Source UDA: Office-Home [73] is a challenging
dataset with 15,500 images in 65 categories. It has four
domains: Artistic, Clipart, Product, and Real-World (abbr.
A, C, P, and R). VisDA-2017 [54] is a large-scale dataset for
synthetic-to-real adaptation. It contains 152,397 synthetic
images and 55,388 real-world images in 12 categories.

Semi-Supervised DA: DomainNet [53] is initially a multi-
source DA benchmark with 6 domains across 345 cate-
gories. For SSDA, four domains are commonly involved,
i.e., Real, Clipart, Painting, and Sketch (abbr. R, C, P, and
S). Each of them contains images of 126 categories. Office-
Home consists of A, C, P, and R domains with 65 classes.

Multi-Source UDA: DomainNet is a large-scale dataset that
contains about 600,000 images in 345 categories, covering
6 domains with large domain gap: Clipart (C), Infograph
(D), Painting (P), Quickdraw (Q), Real (R), and Sketch (S).
We evaluate methods on five-source to one-target domain
adaptation, resulting in 6 MSDA cases in total.

5.2. Implementation Details

For the baseline methods used in this paper, we choose
GVB [9] and ToAlign [78] for SUDA, MME [58] and
ToAlign [78] for SSDA, and ToAlign [78] for MSDA. To
further evaluate the effectiveness with transformer back-
bone (i.e., ViT [13]), we also adopt the baseline method
in SSRT [68] (denoted by Baseline-B in SSRT) as baseline.
For fair comparison, we report the average result of three
random seeds.

For weak augmentation, we use random resize, crop, and
horizontal flip. For strong augmentation, we adopt Ran-
dAugment [7] following FixMatch. For the training settings
(i.e. batch size, optimizer, training iterations efc.), we di-
rectly follow the baseline method.

For the hyperparameters, we empirically set the prob-
ability threshold 7 to 0.95 following FixMatch [65]. We
find that 7 = 0.95 works well across all settings and tasks.
For the temperature 7, in contrastive loss Eq. (3), we
set it to 0.07 following previous contrastive learning meth-
ods [19, 86]. For the trade-off hyperparameters A, in Eq.
(7), we directly set it to 1.0. For the size of the memory
bank, we find that the proposed method is insensitive to it
and adopt | M| = 512 for all experiments.

5.3. Comparison with State-of-the-Art Methods

Single Source UDA. Table 1 and Table 2 show the re-
sults on Office-Home and VisDA-2017, respectively. It

11393



Table 2. Accuracy(%) of different UDA methods on VisDA-2017
with ResNet-50 (R-50), ResNet-101 (R-101) and ViT-B (T). Fol-
lowing previous works, we report the instance-wise accuracy for
ResNet-50, and the class-wise accuracy for ResNet-101 and ViT.

Net Method Acc  Method Acc
Source-only 55.3 CDAN (NeurIPS’18) [44] 70.0
DANN(ICML'15) [17] 57.4  SENTRY (ICCV’21) [55] 76.7
MDD (ICML’19) [96] 74.6  CST (NeurIPS’21) [43] 80.6

R-50 | GVB (CVPR’20) [9] 75.3  ToAlign (NeurIPS’21) [78] 75.5
+ EIDCo 713 +EIDCo 78.0
+ FixMatch 79.3  + FixMatch 80.2
+ FixMatch + EIDCo  82.0  + FixMatch + EIDCo 83.8
Source-only 52.4  TSA (CVPR’21) [38] 78.6
ADR (ICLR’18) [59] 74.8 MCC (ECCV’20) [23] 78.8

R-101 SWD (CVPR’19) [31] 764 CRST+SUDA (CVPR’22) [94] 80.9

BNM (CVPR’20) [8] 70.4 CRST+CaCo (CVPR’22) [21] 81.6
CRST (ICCV’19) [102] 78.1 MCC+NWD (CVPR’22) [4] 83.7
GVB (CVPR'20)[9] 775 ToAlign (NeurIPS’21) [78]  80.1

+ EIDCo 79.7  +EIDCo 82.9
+ FixMatch 84.9  + FixMatch 86.3
+ FixMatch + EIDCo  87.0  + FixMatch + EIDCo 88.3
ViT-B 72.6  TVT(WACV’23) [87] 83.92
T CDTrans (ICLR’22) [82] 88.4  SSRT (CVPR’22) [68] 88.76
Baseline-B in SSRT [68]185.23  + FixMatch 86.61
+ EIDCo 86.37 + FixMatch + EIDCo 89.84

can be seen that our method can achieve great improve-
ment based on different baseline methods and backbones.
Based on the more powerful ViT model, the improvement
over the strong baseline (i.e. baseline in SSRT + FixMatch)
is still large (86.38% vs. 83.07%, 89.84% vs. 86.61%).
The performance of baseline+EIDCo is lower than base-
line+FixMatch. This is caused by the fact that high-
confidence samples contain more discriminative and infor-
mative knowledge, and the proportion of these is gradually
increased during the training process. There exists some in-
feriority of our method in certain adaptation cases compared
with other SOTA methods. It is reasonable because differ-
ent methods have advantages in certain adaptation scenar-
ios and drawbacks in others, owing to the diversity of data
distribution gaps. However, for average performance, our
method always achieves SOTA.

Table 3. Accuracy(%) of different SSDA methods on Office-Home
(OH) and DomainNet with ResNet34 (R-34) and ViT-B (T).

OH DomainNet

OH DomainNet

Net [Method Method

3-shot 1-shot 3-shot 3-shot 1-shot 3-shot

S+Labeled-T 662 56.9 60.0 ATDOC (CVPR’21) - 70.6 71.8
HDAN (NeurIPS’20) [22] -  69.5 71.3 CLDA (NeurIPS’21) [63] 75.5 719 753
APE (ECCV’20) [28] 740 67.6 71.7 DECOTA (ICCV’21)[89] - - 756
R34 CDAC (CVPR’21) [33] 74.8 73.6 76.0 ECACL-P (ICCV'21)[35] - 728 764
STar (CVPR’21) [64] - 700 732 MCL (IJICAI'22) [85] 77.1 744 765
MME (ICCV’19) [58]  73.1 66.4 68.9 ToAlign (NeurlPS'21)[78] 75.1 70.6 73.0

+ EIDCo 74.8 68.1 71.0 +EIDCo 75.8 719 742

+ FixMatch 75.5 723 74.8 + FixMatch 76.4 727 754

+ FixMatch + EIDCo 78.6 75.6 78.0 +FixMatch+ EIDCo 79.0 758 783

T Baseline-B in SSRT [68] 85.3 77.6 80.2 + FixMatch 88.0 848 857
+ EIDCo 87.0 81.6 82.5 +FixMatch + EIDCo 89.3 86.2 87.1

Semi-Supervised DA. Table 3 shows the mean accuracy
on Office-Home and DomainNet, respectively. Combined

Table 4. Accuracy(%) of different MSDA methods on DomainNet
with ResNet101 (R-101) and ViT-B (T).

Net | Method Mean Acc  Method Mean Acc
Source-Only 329 CMSS (ECCV’20) [88] 46.5
ADDA (CVPR’17) [72] 322 HDAN (NeurIPS’20) [22] 47.6
DCTN (CVPR’18) [81] 38.2 T-SVDNet (ICCV’21) [36] 47.0

R101 MCD (CVPR’18) [60] 385 LtC-MSDA (ECCV’20) [75] 47.4
M?3SDA-3 (ICCV’19) 42.6 PFSA (CVPR’21) [16] 48.5
MLMSDA (Arxiv'20) [40] 44.3 STEM (ICCV’21) [50] 534
ToAlign (NeurIPS°21) [78] 48.3 + FixMatch 49.5
+ EIDCo 48.9 + FixMatch + EIDCo 51.7

T Baseline-B in SSRT [68] 58.0 + FixMatch 59.4
+ EIDCo 58.8 + FixMatch + EIDCo 62.0

with FixMatch, our method can achieve new SOTA per-
formance on both tasks based on MME and ToAlign. It
should be noted that CLDA [63] regards the classifier as a
projection head, while we propose a novel Class Relation-
ship Enhanced Features (CRF). It can be seen that our CRF
consistently outperforms CLDA.

Multi-Source UDA. Table 4 shows the result on Domain-
Net. For ResNet-101 backbone, our EIDCo loss brings
about 2.2% improvement over the strong baseline. While
other methods focus on selecting source samples or combin-
ing knowledge from multiple source domains, our method
mainly explores the data structure in the target domain and
exceeds most current methods. For ViT-B backbone, our
method can still bring significant improvement.

5.4. Analysis and Discussion

Ablation studies of different components. Table 5
shows the ablation study results of different components
in our proposed method. The experiment is conducted on
UDA Office-Home. The first row (#0) shows the perfor-
mance of GVB-+FixMatch.

We first investigate the necessity of low-confidence sam-
ples in the original feature space. The results are shown in
rows #1-3. It can be seen that using all samples (#1) only
brings very limited improvements. Using high-confidence
samples (#2) will slightly decrease the performance, in-
dicating the category collision in IDCo loss needs to be
carefully addressed. In contrast, using only low-confidence
samples (#3) can boost the performance.

Rows #4-6 validate the effectiveness of our Class Rela-
tionship Enhanced Features (CRF). It can be seen that com-
bining low-confidence samples with CRF can get the best
result. The result in row #5 show that category collision
still hinders feature learning of IDCo loss even with CRF.

Rows #7-8 validate the effect of target-dominated cross-
domain mixup. Directly adding cross-domain mixup can
bring 0.2% improvements. In this case, there are still high-
confidence samples for IDCo loss. When adopting target-
dominated mixup, only low-confidence samples are adopted
in IDCo loss, and the performance can be further improved
by 0.5%.
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Table 5. Ablation studies of the proposed methods under the set-
ting of UDA Office-Home with GVB baseline.

Samples for IDCo loss Cross-Domain Target
All  High Low Mixup

K Acc
Dominated

72.7
73.0
v 72.3

v 73.3
73.4
72.4
74.4
4 74.6
4 v 75.1

<

SIS R MRV N ECRN SR R
N

N NSNS

v
v
v

Ablation studies within CRF. Our proposed CRF can be
seen as a boost version of original feature. Based on CRF,
the classifier weights are involved in EIDCo loss, which
can introduce semantic information. By adding class re-
lationship embedded inter class term, the informative rela-
tionship between samples is further encoded. Table 6 show
the superiority of our CRF compared with original features.

Table 6. Ablation studies of CRF in different datasets under UDA
setting. For both datasets, we use ResNet-50 backbone.

# Method Office-Home VisDA-2017
0 GVB+FixMatch 72.7 79.3
1 + Our EIDCo w/ original feature 73.6 80.1
2 + Our EIDCo W/ 5. 75.1 82.0

Effectiveness on weaker baselines From the results on
different domain adaptation tasks(i.e., Table 1, 2, 3 and
4), we can see that FixMatch exceeds ours based on the
same baseline, and the improvement is more significant
when combined with FixMatch. This is because it uses
high-confidence samples with more discriminative knowl-
edge and less noise, and is complementary to ours. How-
ever, our method is effective on various baselines, and re-
sults on weaker ones are shown below. It can be seen that
our EIDCo can bring consistent improvements on different
baselines.

Table 7. Results on different baselines under UDA setting.

Source only + EIDCo |[DANN [17] + EIDCo |CDAN [44] + EIDCo
Office-Home 46.1 52.6(+6.5) 57.6 60.3 (+2.7) 65.8 67.6 (+1.8)
VisDA-2017 553 60.7 (+5.4) 57.4 61.9(+4.5) 70.0 73.8 (+3.8)

Visualization of features. To better understand the effect
of CRF which can incorporate semantic information, we vi-
sualize the target domain features. As shown in Figure 4,
the classifier weights in our CRF are closer to the features,
indicating that the classifier weights are more representative
of the learned features. We can also see that the target fea-
tures of our method are more compact, which shows that
our method can make IDCo loss effective for learning dis-
criminative features.

® Features * Classifier weights

® Alarm_Clock ® Bottle ® Flowers ® Bucket ® Couch

IDCo loss with our CRF

IDCo loss on original feature

Strong Baseline

Figure 4. The t-SNE visualization of classifier weights and target
domain features of different methods under the setting of UDA
Office-Home C— A with GVB baseline. Best viewed in color.

Ea« O 0=

Target Domain:| High-confidence right prediction‘ High-confidence wrong prediction

Real uﬂgm

Low-confidence right prediction’ Low-confidence wrong prediction

Source Domain:

Clipart

Figure 5. ”Alarm Clock” samples predicted by the strong baseline
(i.e. GVB+FixMatch) and our method under the setting of UDA
Office-Home C—R. Most predictions are the same, but our method
can correct some hard samples (surrounded by blue boxes) com-
pared with the strong baseline.

Visualization of samples. Here we provide visualization
of the right predictions and failure cases of strong base-
line (i.e. GVB+FixMatch) and our method. The results are
shown in Figure 5. It can be seen that the failure cases have
a different shape and appearance from source samples. The
differences between strong baseline and our method are in-
dicated by samples with blue boxes, which are misclassified
by strong baseline but corrected by our method.
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Figure 6. Sensitivity analysis of hyperparameters. The black lines
represent accuracy of strong baseline (i.e. GVB-+FixMatch).

Hyperparameter sensitivity. Here we analyze the hyper-
parameter sensitivity under the setting of UDA on Office-
Home R—C with GVB baseline. We consider four hy-
perparameters, as shown in Figure 6. For the probability
threshold 7 in the baseline, our method can achieve similar
accuracy around 0.95. The 7 also affects the performance
of strong baseline (i.e. GVB-+FixMatch). It can be seen that
our method is more stable than FixMatch given different 7.
For other hyperparameters, it is evident that they are stable
within specific ranges.
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6. Conclusion

In this paper, we first analyze the limitations of instance
discrimination contrastive loss for domain adaptation tasks,
including the category collision and inadequate semantic in-
formation. For the first limitation, we propose to exploit
low-confidence samples. For the second limitation, we pro-
pose to introduce domain-invariant and accurate semantic
information through class relationship enhanced features
and target-dominated cross-domain mixup. Extensive do-
main adaptation experiments show the effectiveness of pro-
posed method, which achieves state-of-the-art performance.
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