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Abstract

Robust pedestrian trajectory forecasting is crucial to
developing safe autonomous vehicles. Although previous
works have studied adversarial robustness in the context of
trajectory forecasting, some significant issues remain un-
addressed. In this work, we try to tackle these crucial
problems. Firstly, the previous definitions of robustness
in trajectory prediction are ambiguous. We thus provide
formal definitions for two kinds of robustness, namely la-
bel robustness and pure robustness. Secondly, as previous
works fail to consider robustness about all points in a dis-
turbance interval, we utilise a probably approximately cor-
rect (PAC) framework for robustness verification. Addition-
ally, this framework can not only identify potential coun-
terexamples, but also provides interpretable analyses of the
original methods. Our approach is applied using a pro-
totype tool named TRAJPAC. With TRAJPAC, we evalu-
ate the robustness of four state-of-the-art trajectory predic-
tion models — Trajectron++, MemoNet, AgentFormer, and
MID — on trajectories from five scenes of the ETH/UCY
dataset and scenes of the Stanford Drone Dataset. Using
our framework, we also experimentally study various fac-
tors that could influence robustness performance.

1. Introduction
Forecasting the movements of people based on their past

states is a crucial task in both human behavior comprehen-
sion and self-driving systems [47]. This task is commonly
referred to as pedestrian trajectory prediction. Although
current methods [49, 89, 5, 22, 67, 57, 55] for predicting hu-
man trajectory have achieved remarkable results, they still
face security risks due to their susceptibility to adversarial
attacks. As Fig. 1 shows, even a slight and hardly percepti-

true trajectory

original prediction

adversarial trajectories

neighbours trajectories

Figure 1. An example of adversarial attacks

ble alteration in the previous state can lead to a significant
variation in the prediction result.

Several works [95, 11, 37, 12, 98, 74] in the literature
study the robustness of trajectory prediction models through
the lens of adversarial attack and defense. However, many
of these methods are directly translated from problems in
image classification and still do not fully consider the spe-
cific circumstances of trajectory prediction tasks. As such,
they have several overlooked shortcomings for benchmark-
ing the robustness in forecasting problems. To this end,
this work endeavors to both theoretically and experimen-
tally analyse and mend these flaws.

The first problem is the current research does not pro-
vide an exact and formal definition of robustness for tra-
jectory prediction tasks. They emphasise that the adversar-
ial trajectory is “natural and feasible” [95] or “close to the
nominal trajectories” [11] but lacks a mathematical defini-
tion for what constitutes robustness (i.e., notion of robust-
ness radius). Unlike the robustness of classification tasks,
trajectory prediction is framed as a regression problem. As
such, directly translating the definition of robustness from
image classification to trajectory prediction is nontrivial.
I.e., at what level of alignment between the prediction and
ground truth can the model be deemed robust? For this rea-
son, we provide a formal definition (Sect. 3.2) that explic-
itly defines the acceptable perturbation radius of historical
trajectories. Our definition formally unifies the semantic
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definitions of robustness in previous works.
Secondly, the current research only evaluates the effec-

tiveness of attacks by measuring the difference between the
post-attack predicted path and the ground truth, but fails to
take into account the difference between the post-attack
prediction and the pre-attack prediction. It is unclear
whether robustness should be measured by the difference
between post-attack output and pre-attack output, or the gap
between post-attack prediction and ground truth. In order
to address this issue, we present two novel definitions of
robustness: label robustness, which quantifies robustness
in prediction accuracy after attacks; and pure robustness,
which measures robustness in prediction stability after at-
tacks.

It should be noted that due to the inherent indeterminacy
in human behavior, numerous stochastic prediction tech-
niques have been introduced to capture the multi-modality
of future movements. Even for unperturbed examples, the
predictions of these models at identical inputs may be dif-
ferent. This presents a challenge to our definition of pure
robustness. To address this issue, we propose to compare
post-attack predictions with the empirical distribution of
pre-attack predictions. The pure robustness can then be
thought of as a measure of disjointness between an adver-
sary and the model’s original forecast distribution.

Thirdly, the current literature on robustness in trajectory
prediction focuses on benchmarking susceptibility to adver-
sarial attacks, while overlooking the more rigorous prob-
lem of verification. That is to say, current works fail to
consider robustness about all points in a disturbance in-
terval. This is largely due to the computational infeasi-
bility of such a procedure in continuous state spaces. To
make verification more practical, we take inspiration from
DEEPPAC [51] and probabilistically relax our definitions
of robustness. In doing so, we allow efficient verification
in a probably approximately correct (PAC) framework. We
quantify the uncertainty associated with our method with
PAC guarantees on the confidence and error rate. Moreover,
our method involves learning a PAC locally linear model,
which we show can be leveraged to find adversaries com-
parable to those found in classical attack methods like pro-
jected gradient descent [53].

Finally, there is a lack of exploration into the inter-
pretability of adversarial attacks on trajectory predic-
tion models. Oftentimes, perturbations added to one fea-
ture have greater influence on the output than perturbations
added to other features. For example, in trajectory forecast-
ing one might expect noise at the agent’s current position to
have greater impact on the output than noise added to the
agent’s original position. Using our PAC linear model, we
aim to identify the features most sensitive to perturbation
and provide an interpretable explanation for our findings.
Moreover, our interpretability analysis provides a stronger

understanding of what trajectory forecasting models “see”
when making future predictions.

Our main contributions are summarised as follows:

1. To the best of our knowledge, we are the first to
formally define robustness for trajectory prediction
models, namely label robustness and pure robustness,
which allows us to specify the prediction accuracy and
stability of the models after attacks. (Sect. 3)

2. We propose TRAJPAC, a framework for robustness
verification of trajectory forecasting models. It takes
inspiration from DEEPPAC [51] in that we regard the
complex trajectory prediction model as a black box
and learn a local PAC model by sampling. Due to the
stochasticity in trajectory forecasting models, this gen-
eralisation is theoretically non-trivial. With the learned
PAC model, we show how to conduct the analysis of
robustness and interpretation for trajectory prediction
models. (Sect. 4)

3. We use TRAJPAC to evaluate the robustness of
four state-of-art trajectory forecasting models on the
ETH/UCY dataset and three of them on the Stanford
Drone Dataset. Our TRAJPAC shows good scalability
on various trajectory forecasting models and different
robustness properties. It is highly efficient, as the run-
ning time for model learning and verification is within
seconds. Although TRAJPAC only provides a PAC
guarantee, we claim that it is empirically sound be-
cause no counterexamples can be found by PGD [53]
on all the cases where the PAC model learned by TRA-
JPAC is robust. Also, we find that TRAJPAC is ca-
pable of finding adversarial examples comparable to
PGD. Through an interpretation analysis, we study the
potential factors that contribute to robustness. (Sect. 5)

2. Related Work
Pedestrian Trajectory Prediction. Based on the ob-

served paths, the goal of a human trajectory forecasting sys-
tem is to estimate future positions. Early work in trajectory
prediction utilised deterministic approaches such as social
forces [29, 56], Markov processes [42, 80], and RNNs [1,
58, 78]. However, as human behavior is inherently unpre-
dictable, numerous stochastic prediction methods have been
proposed to model the multiple possible outcomes of future
movements. Among these methods, works utilizing gener-
ation frameworks, such as [21, 23, 27, 43, 65, 72, 96, 4, 24,
48, 77] using GAN [25] and [18, 35, 45, 52, 66, 75, 94]
using CAVE [71], have achieved good experimental per-
formance. Recently, new methods like [19, 55, 73] using
Encoder-Decoder structures have been applied to this task
because of the flexibility of these structures in encoding var-
ious contextual features. MID [26] proposes a new stochas-
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tic framework with motion indeterminacy diffusion, which
formulates the trajectory prediction problem as a process
from an ambiguous walkable region to the desired trajec-
tory. In contrast to parameter-based frameworks that opti-
mize model parameters using training data, Memonet [90]
proposes a new instance-based framework based on retro-
spective memory, which memorizes various past trajectories
and their corresponding intentions. In this work, we choose
to analyse the robustness of four distinct multi-modal pre-
diction methods: Trajectron++ [66], MemoNet [90], Agent-
Former [94] and MID [26].

Adversarial Robustness. Deep learning models have
been demonstrated to be susceptible to adversarial attacks
[14, 20, 15, 86, 92, 88, 31, 85, 82, 28, 87, 38, 39]. How-
ever, in the context of autonomous vehicles, there’s lit-
tle study on the adversarial robustness of trajectory fore-
casters. Several studies [95, 11, 37, 12, 98, 74] have ex-
amined the adversarial robustness of trajectory prediction
models using the lens of adversarial attack and defense,
but these studies still experience essential flaws that we
have detailed in Sect. 1. Traditional verification meth-
ods [8, 41, 50, 69, 70, 76, 93, 40] can provide guaranteed ro-
bustness verification results, but they are unable to deal with
the size of modern neural networks. Statistical methods are
proposed in [6, 7, 13, 54, 81, 83, 84, 51] to assess the lo-
cal robustness of deep neural networks with a probably ap-
proximately correct (PAC) guarantee, namely the network
satisfies a probabilistic robustness property with a certain
level of confidence. This type of method can better address
the limitations of traditional robustness verification meth-
ods. In this work, we conduct research in this direction to
investigate the robustness of trajectory prediction.

Interpretation Analysis. Deep learning systems have
led to significant advancements in many aspects of our lives.
However, their black-box nature poses challenges for many
applications. It is generally difficult to rely on a system
that cannot provide explanations for its decisions. This has
spurred a substantial amount of research on explainable AI
methods [44, 79, 59, 16, 60, 34, 36, 68, 30, 3, 32, 97], which
supplement network predictions with explanations that hu-
mans can understand. However, there is currently limited
research focused on providing explanations for the trajec-
tory prediction of different methods. In our study, we train
a PAC model to offer an interpretable analysis of the origi-
nal model.

3. Problem Formulation

In this section, we present the formal modeling of tra-
jectory prediction models and the formal specification of
robustness in such models.

3.1. Trajectory Prediction
Denote by xt 2 R2 the spatial coordinate of an agent

at timestamp t, then a trajectory over T timestamps is a
sequence of the coordinates represented by a matrix X 2
R2⇥T . Considering the current timestamp as t = 0, we
mark the timestamps as t = �Tp + 1,�Tp + 2, . . . , 0
for a past trajectory over Tp timestamps. Then, let X0 2
R2⇥T be the past trajectory of the to-be-predicted agent
and X1, X2, . . . , XN be those of N neighbouring agents.
For t = 1, 2, . . . , Tf , we use Yf to denote the ground truth
of the future trajectory of the to-be-predicted agent. The
goal of trajectory prediction is to train a prediction model
g : (R2⇥Tp)N+1 ! R2⇥Tf , so that the predicted future tra-
jectory Y = g(X0, X1, . . . , XN ) is as close to the ground-
truth Yf as possible.

In current trajectory prediction models, stochastic pre-
diction techniques have been introduced to capture the
multi-modality of future movements, so the output of such
trajectory prediction models are not deterministic, but prob-
abilistic. In this work, due to the random mechanism widely
used in trajectory prediction models, we consider the output
g(X0, . . . , XN ) of a trajectory prediction model as a prob-
ability distribution on the Borel measurable space R2⇥Tf .
We write Y 2 g(X0, . . . , XN ) if Y is in the support of the
probability distribution g(X0, . . . , XN ).

3.2. Robustness of Prediction Models
Although existing works have explored the robustness of

trajectory prediction models [95, 11, 37, 12, 98, 74], they
fail to provide a formal definition of robustness. Instead,
these works quantify robustness by their vulnerability to ad-
versarial attacks. Therefore, we first provide rigorous def-
initions for robustness in the context of trajectory forecast-
ing.

To describe a robustness region, we employ the L1-
norm, which is most often used in robustness verification.
For an input trajectory X̂ 2 R2⇥T , we consider any spatial
coordinate xt of the trajectory can be disturbed in the closed
L1-norm ball with the center xt and the radius r > 0.
Then, we use B(X̂, r) to denote the set of the disturbing tra-
jectories generated from X̂ , i.e., B(X̂, r) = {X 2 R2⇥T |
||X � X̂||1  r}.

Since trajectory prediction models are regression mod-
els, we cannot define local robustness as that in classifica-
tion tasks, where the robustness property can be naturally
given with the output scores. To define robustness in trajec-
tory prediction models, we adapt the same intuition as that
in global robustness [64], which requires that the output per-
turbation should be uniformly bounded. The output pertur-
bation can be formalised as a metric D : R2⇥Tf ⇥R2⇥Tf !
[0,+1). If we use the ground truth Yf to measure the out-
put perturbation, we have the following definition of label
robustness:
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Figure 2. ADE of the adversarial trajectory prediction for label
robustness and pure robustness.

Definition 1 (Label Robustness) Let X̂ = (X̂0, X̂1, . . . ,
X̂N ) be the past trajectories of the to-be-predicted agent
and its N neighbouring agents, and Yf is ground truth of
the future trajectories of the to-be-predicted agent. Given a
prediction model g, an evaluation metric D, a safety con-
stant s, then g is label-robust at X̂ w.r.t. the perturbation
radius r > 0 if for any Xi 2 B(X̂i, r) (i = 0, 1, . . . , N )
and any Y 2 g(X0, X1, . . . , XN ), we have D(Y, Yf)  s.

Robustness in models with random mechanism is quite
different, where we require that D(Y, Yf)  s for any pos-
sible output trajectory Y . In Def. 1, we always assume
that the input X is chosen from the dataset, so that its
ground truth Yf is accessible. Since we measure the dis-
tance from the ground truth, a label-robust model intuitively
has good performance in prediction and tolerance to adver-
saries. However, label robustness has the limitation that we
must have the ground truth Yf , so it is difficult to adapt it
to the robustness regions where we do not know the ground
truth. For such a consideration, we define pure robustness,
where distance is measured from the output of X̂ in the
model:

Definition 2 (Pure Robustness) Let X̂ = (X̂0, X̂1, . . . ,
X̂N ) be the past trajectories of the to-be-predicted agent
and its N neighbouring agents. Given a prediction model
g, an evaluation metric D, a safety constant s, then g is
purely robust at X̂ w.r.t. the perturbation radius r > 0
if for any Xi 2 B(X̂i, r) (i = 0, 1, . . . , N ) and any
Y 2 g(X0, X1 . . . , XN ), there exists Ŷ 2 g(X̂), s.t.
D(Y, Ŷ )  s.

We call it pure robustness since the distance is measured
from the output of the model, in which situation only toler-
ance to adversaries is described. In Def. 2, we make more
modifications for the random mechanism, since the output
g(X) is also a distribution. For an output trajectory Y , we
look for a trajectory Ŷ 2 g(X̂) such that their distance at-
tains the minimum, and pure robustness requires that this
minimum distance should be smaller than the safety con-
stant s. In Fig. 2 we show the difference between label ro-
bustness and pure robustness.

To specify the definition of robustness, we still need to
determine the evaluation metric D to measure the difference
of two trajectories. Here we employ Average Displacement
Error (ADE) [2, 1, 27, 48], which refers to the mean L2

distance between all coordinates of ground truth and those

of the predicted trajectory. For two trajectories Y1 and Y2

over timestamps t = 1, 2, . . . , T , we generalise ADE with
L2 norm to measure the distance between them:

ADE(Y1, Y2) =
1

T

TX

t=1

kyt1 � yt2k2.

In this work, we consider the label/pure robustness with
D = ADE. Note that other semantic metrics, such as met-
rics based on specific directions in [95], are also fully ap-
plicable to the above framework. In this work, we focus on
robustness verification of trajectory prediction models:

Given a trajectory prediction model g, we deter-
mine whether g is label-robust (or purely robust)
at a given input X̂ w.r.t a given radius r.

4. Methodology
The most popular trajectory prediction models, includ-

ing [21, 23, 72, 18, 52, 66, 94, 19, 55, 73, 26, 90], are all
very large with stochastic output. As such, it is quite diffi-
cult to adopt traditional verification methods like SMT solv-
ing [40, 41] or abstract interpretation [70, 93] to verify their
robustness properties.

In [51], Li et al. proposed a black-box DNN verifica-
tion algorithm DEEPPAC, where they relax the definition
of robustness in a probabilistic way, allowing them to ver-
ify robustness at individual input regions using only a finite
number of samples. This probably approximately correct
(PAC) framework involves first learning a PAC model, an
arbitrary function which (with probability close to 1 at a
given confidence level) approximates the DNN at the in-
put region within a margin of discrepancy. Next, using this
PAC model we can verify the robustness at the input region
with guarantees on the confidence and error rate. Due to its
black-box nature, DEEPPAC can be adapted to the robust-
ness verification of trajectory prediction models. Moreover,
the stochasticity of such models can be captured by PAC
guarantees. We call our adapted method TRAJPAC, and in
this section we detail how TRAJPAC is employed for ro-
bustness analysis of trajectory forecasting models.

4.1. PAC Model Learning
In Defs. 1 and 2, the robustness of a trajectory prediction

model requires the distance between the perturbed predic-
tion and the ground truth/original prediction to be bounded
by a safety constant. Thus, to analyse the label/pure ro-
bustness, we learn a model approximating the correspond-
ing distance D(Y, ·) with the PAC guarantee and further
infer its maximal values. Here we denote �(X) as the
distribution D(g(X), ·), where X = (X>

0 , . . . , X>
N ) and

Xi 2 B(X̂i, r) for each i. Similar to DEEPPAC, we
choose the function template to be an affine function, i.e,
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e�(X) = X ·↵+�, where ↵ and � are constant real vectors
which will be learned from sampling. There are several rea-
sons why we learn an affine function: First, the robustness
properties we consider are all local robustness with a small
neighboring region as the input region, and theoretically a
continuous function can be approximated by an affine func-
tion with a very small error in a small region; after we learn
the PAC model, we need to analyse how robust the PAC
model is, and this analysis will be very easy and efficient if
the PAC model is affine; also, an affine PAC model provides
more accessible insight for model explanation.

To learn a function e� that fits � well, especially for
a verification purpose, we desire that the difference of the
two functions in the robustness region should be uniformly
bounded by a margin � � 0 as small as possible, so we have
the following optimization problem:

min�

s.t. supd2�(X) |e�(X)��(X)|  �,
8X 2 B(X 0

0, r)⇥ · · ·⇥B(X 0
N , r).

(1)

Generally it is difficult to solve (1), since it has an uncount-
able number of constraints. Also, �(X) is stochastic in na-
ture, which makes solving this optimisation problem non-
trivial. Inspired by DEEPPAC and [91], we can relax the
problem (1) to finitely many constraints from the samples:

min�

s.t. |e�(X)��(X)|  �,
8X 2 X , 8d 2 D(X),

(2)

where X ✓ B(X 0
0, r)⇥· · ·⇥B(X 0

N , r) is a finite set of sam-
ples extracted independent and identically distributed from
some distribution ⇡, and D(X) ✓ D(g(X), ·) is a finite set
of samples from the distribution D(g(X), ·). This relax-
ation is slightly different from that in [51], because we need
to sample not only in the robustness region, but also in the
distribution of the output distance D(g(X), ·). The relaxed
problem (2) is a linear programming (LP), whose optimal
can be obtained efficiently. Since we only consider a finite
subset of constraints, the optimal of (2) does not necessar-
ily satisfy all the constraints in (1). In [51], a PAC guaran-
tee can be constructed if we have enough samples, and we
modify this result into our setting of trajectory prediction
models, where stochastic output is considered.

Theorem 1 Let ✏ > 0 and ⌘ > 0 be the pre-defined er-
ror rate and the significance level, respectively, and K the
number of samples. If

K � 2

✏

✓
ln

1

⌘
+ 2Tp(N + 1) + 1

◆
, (3)

then with confidence at least 1 � ⌘, the optimal �⇤ of (2)
satisfies all the constraints in (1) but at most a fraction of

Predictor

ADE ( Label / Pure)

PAC Model

learn the distance

analysing

Distance Evaluator

Label / Pure Robustness
input trajectories

sampling

YES / NO / UNKNOWN

ground truth / original prediction

Figure 3. Framework of robustness analysis

probability ✏, i.e., P
⇣
|e�(X)��(X)| � �⇤

⌘
 ✏, where

the probability measure P is the independent coupling of
the sampling distribution ⇡ and the random mechanism in
the model g(·).

Thm. 1 generalises the DEEPPAC method to trajectory
prediction models, where we are faced with a regression
model with random output, and different robustness proper-
ties. The essential difference is that the probability distribu-
tion P, which is used for describing the PAC guarantee, is
not the sampling distribution, but its coupling with the ran-
dom mechanism of the model. The proof of Thm. 1 can be
found in Appendix A.

Now our black-box framework of robustness analysis
for trajectory prediction models is explicit, as is shown in
Fig. 3. Given the error rate ✏ and the significance level ⌘,
we extract K samples in B(X0, r)⇥ · · ·⇥B(XN , r), where
K satisfies (3). With the samples, we construct the linear
programming problem (2) and obtain (one of) its optimal,
which gives the coefficients ↵ and � in the PAC model e�
and the margin �⇤, and they will further help us analyse how
robust the model is.

The optimisation of focused learning proposed in [51]
still fits in our settings, and we use it in our implementation.
More details can be found in Appendix B.

4.2. Robustness Analysis
We follow a similar robustness analaysis procedure to

DEEPPAC. When the optimisation problem (2) is solved,
we obtain the PAC model e� as well as the optimal margin
�⇤. Intuitively, e�(X) ± �⇤ approximates the upper/lower
bound of �(X) in the robustness region with the PAC guar-
antee. It is easy to see that, if the maximum of e�(X)+�⇤ is
smaller than what the robustness property requires, i.e., the
parameter s in Def. 1 or Def. 2, then it holds under the same
PAC guarantee. Since e� is an affine function, its maximum
in a box region can be easily computed.

There are three circumstances that may occur in the ro-
bustness analysis:
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• The maximum of e�(X) + �⇤ is smaller than s. In
this case, the robustness property holds with a PAC
guarantee, and actually the models satisfies the so-call
PAC-model robustness defined in [51]. The analysis
outputs YES. It is worth mentioning that, PAC-model
robustness is far stronger than PAC robustness, espe-
cially that obtained from statistical methods like hy-
pothesis testing or confidence interval calculation, be-
cause we have a model e� witnessing the robustness
property PAC-true.

• The maximum of e�(X) + �⇤ is strictly larger than s,
and we can find a true counterexample. In the model
learning phase, if there exists a sample that violates
the property, then it is a true counterexample. Also,
when we calculate the maximum of e�(X) + �⇤, the
maximum point argmax e�(X) is likely to be a coun-
terexample, and we run it in the original model to see
whether it is a true counterexample. Once the PAC-
model robustness does not hold, and we find a true
counterexample in either way, the analysis outputs NO,
i.e., the robustness property does not hold, with a true
counterexample.

• It may occur that the maximum of e�(X)+�⇤ is strictly
larger than s, but we cannot find a true counterexam-
ple. In this case, it is not sufficient to judge whether
the model is robust or not according to the learned PAC
model, so the analysis outputs UNKNOWN.

We remark that, in the first circumstance where the PAC-
model robustness holds, we do not further check whether
there is a true counterexample, because even if it exists, it
does not violate the PAC-model robustness, in which the
violation of the robustness property may occur with proba-
bility no more than the error rate ✏.

4.3. Interpretation Analysis
The PAC model we learn can also provide insight into

two key features used by forecasting models when mak-
ing predictions: the critical paths and the critical steps
of agents. These two features are intuitive in the real world.
For example, the movements of a person in front of you
are more significant than the movements of someone be-
hind you, and certain steps (e.g., changing direction) have
greater impact than others.

As our PAC model is an affine function, there is a corre-
sponding coefficient for every spatial coordinate in the in-
put trajectory. The greater this coefficient magnitude is, the
greater the impact of the corresponding coordinate’s change
on the prediction’s label/pure ADE. We denote the l1 nor-
malized vector of coefficient magnitudes as the sensitivity
of our PAC model.

Therefore, spatial coordinates with high sensitivity val-
ues are identified as the critical steps, and trajectories with

high average sensitivities are the critical paths. These crit-
ical steps and paths reflect which features in the historical
trajectories can lead to vulnerabilities in the model. Not
only does this give us a more interpretable understanding of
how the model makes predictions, but it also allows us to
analyse the key features that affect the model’s robustness.
Additionally, we can handcraft potential adversaries by only
perturbing these key features, making our counterexamples
highly intuitive.

5. Experiments
In this section, we evaluate our PAC-model robustness

analysis method. We implement our algorithm TRAJPAC
as a prototype. Its implementation is based on Python 3.7.8.
Experiments are conducted on a Windows 11 PC with AMD
R7, GTX 3070Ti, and 16G RAM. All the implementation
and data used in this section are publicly available1.

Datasets. We evaluate our method using the public
pedestrian trajectories forecasting benchmarks ETH/UCY
[61, 46] and the Stanford Drone Dataset (SDD) [63]. The
ETH and UCY dataset group consists of five different
scenes – ETH and HOTEL (from ETH), and UNIV, ZARA1
and ZARA2 (from UCY) and all the scenes report the po-
sition of pedestrians in world coordinates and hence the re-
sults are in metres. All the prediction models in our paper
use the “leave one-out” method [27, 33, 43, 66] for training
and evaluation. We follow the existing works that observing
8 frames (3.2 seconds) trajectories and predicting the next
12 frames (4.8 seconds). We randomly choose three pre-
dicted trajectories from each scenes for analysis, noted as
(frame ID , person ID). Experiments regarding SDD can be
found in Appendix D.

Prediction Models. In our paper, we analyse four state-
of-art multi-model prediction models: Trajectron++ [66],
AgentFormer [94], MemoNet [90] and MID [26].

Sampling. The sampling distribution ⇡ is the uniform
distribution on the robustness region. When we calculate
the ADE of the samples, we use a modified version of ADE,
the minimum average displacement error of K trajectory
samples, which is a standard metric for trajectory prediction
[27, 65, 66, 62, 17]. We claim that this will not break the
PAC guarantee in Thm. 1. More details can be found in
Appendix C. In our experiment, we choose K = 20.

Implementation details. In the later part, we choose
1 meter/0.5 meters to be the safety constant for label/pure
robustness analysis with the perturbation radius r = 0.03
meters, respectively. Experiments with varying values of r
can be found in Appendix E. As for PAC model learning,
we choose ⌘ = 0.01 and ✏ = 0.01.

In what follows, we are going to answer the research
questions below:

1https://github.com/ZL-Helios/TrajPAC
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Scene ID Label Robustness Pure Robustness
Traj++ Memo AgentF MID Traj++ Memo AgentF MID

(4400, 79) # 3 7 7 # 3 7 3
(6490, 127) 3 3 7 7 3 3 7 3ETH

(10340, 257) # # 7† 7 # 3 7 7
(7550, 157) 3 3 7 # 3 3 3 3

(10530, 236) 3 3 # 3 3 3 3 3Hotel
(15030, 345) 3 3 3 3 3 3 3 3

(4430, 69) # 3 7 7 3 3 3 3
(6050, 102) 3 3 7 7 3 3 # 3Zara1
(8680, 142) 7† # 7† 3 # 3 3 3

(3400, 65) 3 3 7 3 3 3 3 3
(7430, 141) 3 3 7 7 3 3 # #Zara2

(10030, 195) 7 3 7 7 7 # # 3
(1840, 105) 7 7 7† 7 # 3 # 3
(4820, 202) 7† 7 7† # # 3 # 3Univ
(5250, 297) 3 3 7 3 # 3 # 3

Table 1. Label/pure robustness verification. We mark 3 if it is
PAC-model robust, i.e., the robustness analysis returns YES, 7 if
the PAC-model with the optimal margin is not robust and we find a
true counterexample, i.e., the robustness analysis returns NO, and
# otherwise, i.e., the robustness analysis returns UNKNOWN. We
use † to indicate that PGD attacks successfully, i.e., the adversary
found by PGD exceeds the robustness threshold.

Method Average Sampling Rate (iteration/s) Average PAC-Model
Learning Time (s)ETH Hotel Zara1 Zara2 Univ

Traj++ 51.50 52.15 52.27 51.87 52.26 1.02
MemoNet 0.99 1.92 1.91 1.32 0.94 1.05

AgentFormer 15.57 16.22 16.30 15.38 12.38 1.10
MID 0.14 0.13 0.13 0.14 0.13 0.15

Table 2. The average sampling rate, in iterations per second, of
each model at each scene. The diffusion-based model (MID) has
the longest sampling rate, in which 10000 samples require a time
of ⇠20 hours. Because of this, we opt to use fewer samples for its
scenario optimization process, resulting in the faster PAC learning
time.

RQ1: Does TRAJPAC perform well in verifying robust-
ness?
RQ2: Can TRAJPAC precisely capture the robustness per-
formance of the prediction models?
RQ3: Can TRAJPAC provide intuitive analysis of the ro-
bustness performance of different prediction models?

5.1. Robustness Analysis of Different Models
First, we evaluate the performance of TRAJPAC on

giving robustness verification. This includes whether the
model can achieve robustness prediction for a given safety
constant and perturbation radius, whether it can be applied
to a wide range of models with high validation efficiency,
and whether those cases verified as robust demonstrate good
anti-attack performance.

As shown in Tab. 1, as a black-box method, TRAJPAC
can analyse label and pure robustness of different trajec-
tory prediction models, showing good scalability. The sam-
pling time varies among different prediction models though,
yet time for PAC-model learning and robustness analysis
is quite short, as shown in Tab. 2. This demonstrates that
TRAJPAC is very efficient in analysing large trajectory pre-
diction models.

TRAJPAC only provides a PAC guarantee, so we are
concerned with the soundness of its robustness analysis.
We conduct PGD attacks on Trajectron++ and AgentFormer

Scene ADE20 (in metre), best-of-20 samples
Traj++ MemoNet AgentFormer MID

ETH 0.46 0.41 0.41 0.51
Hotel 0.15 0.14 0.30 0.15
Zara1 0.49 0.57 0.34 0.25
Zara2 0.36 0.33 0.27 0.27
Univ 0.69 0.54 0.62 0.31

Average ADE 0.43 0.40 0.39 0.30
Table 3. Average predicted ADE20 scores for the three verifica-
tion samples per scene.

like [11]. For the cases TRAJPAC outputs YES, PGD does
not find any true counterexamples, which implies that TRA-
JPAC is sound empirically. TRAJPAC is conservative in
analysing robustness: Even on the UNKNOWN cases, there
is no successful PGD attack. Also, TRAJPAC shows good
performance in finding counterexamples, as TRAJPAC can
find counterexamples to which PGD does not get access.

Due to the model performance on motion forecasting af-
fecting its label robustness, we provide the predicted ADE
in Tab. 3. The four methods show relatively similar average
performance without perturbation, so in terms of maintain-
ing accurate predictions in the face of perturbation, Mem-
onet does exhibit stronger label robustness, as emphasised
in [90]. Similar to the findings in [11], Trajectron++ ex-
hibits stronger label robustness compared to Agentformer.
We can see that the analysis results given by TRAJPAC are
consistent with other methods.

Answer RQ1: TRAJPAC shows good scalability, effi-
ciency and soundness in robustness analysis of different
trajectory prediction models. Its results of robustness
analysis are consistent with other methods.

5.2. Precision of the PAC models
Generally it is difficult to straight evaluate how precise

the PAC models learned by TRAJPAC are. Here we calcu-
late four ADE estimations, namely the ADE upper bound
given by the PAC model, the ADE of the adversary gen-
erated by our PAC model, the maximum ADE among the
samples required for training TRAJPAC, and the ADE of
the adversary from PGD attack; the first two are estimations
from the PAC model, while the latter two are ADE perfor-
mance of the model in the robustness region. In Fig. 4, we
present a detailed illustration of the four estimations.

First, the ADE upper bound given by TRAJPAC is very
close to (and still above) the maximum sampled ADE dur-
ing the model learning process, indicating that our PAC
model has captured the behavior of the original model well
and produced highly accurate ADE upper bounds, as shown
in Tab. 4. Furthermore, the robustness analysis results ob-
tained through our method still exhibit significant sound-
ness in Fig. 4, as the ADE of the linear adversary generated
from PAC model, as well as PGD adversary, are all smaller
than the ADE upper bound. Also, we notice that the ad-
versaries generated by our PAC model are as effective as
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Figure 4. Visualizations of the PAC ADE upper bounds (blue bars), maximum sampled ADE encountered in the PAC model learning
process (blue stripes), and ADE of linear and pgd adversaries (red and orange stripes respectively) from our PAC model and PGD attacks.

Figure 5. Sensitivity plots for each prediction model at sample (10030, 195) from scene Zara2. The green path is the agent trajectory and
the blue paths are neighboring trajectories. The size of the directional arrows are proportional to the sensitivity of our PAC linear model at
that position. The top right of each plot contains a heatmap of the top three critical paths. Darker colors in the heatmap represent higher
sensitivity values. The value inside each heatmap is the sum of all sensitivities in the path.

Scene
PAC ADE upper bound - max sampled ADE

(label robustness / pure robustness)
Traj++ MemoNet AgentFormer MID

ETH 0.28 / 0.10 0.13 / 0.07 0.31 / 0.18 0.45 / 0.11
Hotel 0.08 / 0.08 0.09 / 0.06 0.16 / 0.09 0.10 / 0.04
Zara1 0.21 / 0.09 0.19 / 0.13 0.35 / 0.15 0.13 / 0.04
Zara2 0.25 / 0.13 0.20 / 0.11 0.37 / 0.18 0.35 / 0.07
Univ 0.36 / 0.21 0.40 / 0.16 0.73 / 0.21 0.19 / 0.06

Average 0.24 / 0.12 0.20 / 0.11 0.38 / 0.16 0.24 / 0.06
Table 4. Differences between our computed PAC ADE upper
bound and the maximum sampled ADE during the model learn-
ing process.

Scene
|ADEpgd � ADElinear|

(label robustness / pure robustness)
Traj++ AgentFormer

ETH 0.10 / 0.05 0.34 / 0.04
Hotel 0.08 / 0.02 0.15 / 0.03
Zara1 0.04 / 0.03 0.12 / 0.12
Zara2 0.05 / 0.02 0.12 / 0.14
Univ 0.04 / 0.04 0.16 / 0.05

Average 0.06 / 0.03 0.18 / 0.08
Table 5. ADE of adversaries from PAC models and PGD.

PGD, since the ADE of the adversary generated by our PAC
model is very close to that of PGD adversary, as is depicted
in Tab. 5. From Fig. 4, the adversaries generated by our
method exhibit better overall attack effectiveness compared
to PGD in the analysis of pure robustness.

Answer RQ2: TRAJPAC can provide tight ADE up-
per bound of different prediction methods. Adversaries
generated from TRAJPAC exhibit comparable (and even
better) performance to adversaries found by PGD.

5.3. Interpretation Analysis
We perform an interpretation analysis on the sample

(10030, 195) in Zara2. Among the four methods, Memo-
Net is the only label-robust method, with a label ADE upper
bound of 0.98. Trajectron++ is the least robust, with an up-
per bound of 1.76. In Fig. 5 we visualise the critical steps of
different prediction methods, and shows the top three criti-
cal paths in each method. Based on Fig. 5, we emphasise the
following observations: Steps closer to the present are more
likely to be critical steps, and the trajectory of the agent it-
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self is often the critical path.
Our analysis also exposes potential vulnerabilities at

each sample. For instance, the critical paths captured by
MemoNet (190 and 193) are walking directly towards the
agent, whereas the critical paths captured by Trajectron++
(191 and 192) are walking away. Knowing this, black-box
attackers are able to handcraft adversaries by adding pertur-
bations to only these key positions. In particular, the critical
paths of Trajectron++ makes it more susceptible to attacks,
since defenses are more likely to focus on the paths walking
directly towards the agent, rather than those walking away.

Answer RQ3: TRAJPAC can identify key features that
contribute to the overall performance and robustness
through sensitivity analysis of the PAC model.

6. Conclusion
We present TRAJPAC for robustness verification of tra-

jectory prediction models. It is highly scalable, efficient,
empirically sound, and capable of generating adversaries
and interpretation. As for future works, we will consider
more realistic safety properties in trajectory prediction, and
how to use the verification results of trajectory prediction to
analyse the safety of autonomous driving scenarios.
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framework for verification and analysis of deep neural net-
works. In International Conference on Computer Aided Ver-
ification, pages 443–452. Springer, 2019. 3, 4

[42] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and
Martial Hebert. Activity forecasting. In Computer Vision–
ECCV 2012: 12th European Conference on Computer Vi-
sion, Florence, Italy, October 7-13, 2012, Proceedings, Part
IV 12, pages 201–214. Springer, 2012. 2

8336



[43] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 2, 6

[44] Peter Cho-Ho Lam, Lingyang Chu, Maxim Torgonskiy, Jian
Pei, Yong Zhang, and Lanjun Wang. Finding representa-
tive interpretations on convolutional neural networks. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1345–1354, 2021. 3

[45] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 336–345, 2017. 2

[46] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.
Crowds by example. In Computer graphics forum, vol-
ume 26, pages 655–664. Wiley Online Library, 2007. 6

[47] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson,
David Held, Soeren Kammel, J Zico Kolter, Dirk Langer,
Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE intelligent
vehicles symposium (IV), pages 163–168. IEEE, 2011. 1

[48] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Con-
ditional generative neural system for probabilistic trajectory
prediction. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6150–6156.
IEEE, 2019. 2, 4

[49] Lihuan Li, Maurice Pagnucco, and Yang Song. Graph-
based spatial transformer with memory replay for multi-
future pedestrian trajectory prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2231–2241, 2022. 1

[50] Renjue Li, Jianlin Li, Cheng-Chao Huang, Pengfei Yang, Xi-
aowei Huang, Lijun Zhang, Bai Xue, and Holger Hermanns.
Prodeep: a platform for robustness verification of deep neu-
ral networks. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pages
1630–1634, 2020. 3

[51] Renjue Li, Pengfei Yang, Cheng-Chao Huang, Youcheng
Sun, Bai Xue, and Lijun Zhang. Towards practical robust-
ness analysis for dnns based on pac-model learning. In Pro-
ceedings of the 44th International Conference on Software
Engineering, pages 2189–2201, 2022. 2, 3, 4, 5, 6, 14, 15

[52] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social nce: Con-
trastive learning of socially-aware motion representations. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15118–15129, 2021. 2, 4

[53] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 2

[54] Ravi Mangal, Aditya V Nori, and Alessandro Orso. Robust-
ness of neural networks: A probabilistic and practical ap-
proach. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), pages 93–96. IEEE, 2019. 3

[55] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: End-
point conditioned trajectory prediction. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part II 16, pages 759–776.
Springer, 2020. 1, 2, 4

[56] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Ab-
normal crowd behavior detection using social force model.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 935–942. IEEE, 2009. 2

[57] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory
prediction. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 14424–
14432, 2020. 1

[58] Jeremy Morton, Tim A Wheeler, and Mykel J Kochenderfer.
Analysis of recurrent neural networks for probabilistic mod-
eling of driver behavior. IEEE Transactions on Intelligent
Transportation Systems, 18(5):1289–1298, 2016. 2

[59] Meike Nauta, Ron Van Bree, and Christin Seifert. Neural
prototype trees for interpretable fine-grained image recogni-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14933–14943,
2021. 3

[60] Jayneel Parekh, Pavlo Mozharovskyi, and Florence d’Alché
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