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Abstract

Contrastive learning has shown promising potential for
learning robust representations by utilizing unlabeled data.
However, constructing effective positive-negative pairs for
contrastive learning on facial behavior datasets remains
challenging. This is because such pairs inevitably en-
code the subject-ID information, and the randomly con-
structed pairs may push similar facial images away due to
the limited number of subjects in facial behavior datasets.
To address this issue, we propose to utilize activity de-
scriptions, coarse-grained information provided in some
datasets, which can provide high-level semantic informa-
tion about the image sequences but is often neglected in pre-
vious studies. More specifically, we introduce a two-stage
Contrastive Learning with Text-Embeded framework for
Facial behavior understanding (CLEF ). The first stage is a
weakly-supervised contrastive learning method that learns
representations from positive-negative pairs constructed us-
ing coarse-grained activity information. The second stage
aims to train the recognition of facial expressions or facial
action units by maximizing the similarity between the im-
age and the corresponding text label names. The proposed
CLEF achieves state-of-the-art performance on three in-
the-lab datasets for AU recognition and three in-the-wild
datasets for facial expression recognition.

1. Introduction

Facial expression is one of the most natural signals to an-
alyze human emotion and behavior. Ekman [13] has indi-
cated that facial expressions of emotion are universal across
human cultures and categorized them, apart from neutral ex-
pression, into six categories: anger, disgust, fear, happiness,
sadness, and surprise. Then contempt was added as another
basic emotion, according to the work [35]. Furthermore, fa-
cial expressions are coded by specific facial muscle move-
ments, called Action Units (AUs) in Facial Action Coding
System (FACS) [14]. Automatic Facial Expression Recog-
nition (FER) and Action Unit recognition (AUR) have been
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(a) Self-supervised contrastive learning pairs
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Activity-I:
Talk to the
experimenter and
listen to a joke ...

Activity-II:
Experience an
unpleasant smell.
The target ...

(b) Activity-based weakly-supervised contrastive learning pairs

Figure 1: (a) shows the self-supervised contrastive learn-
ing paring, where green represents positive pairs and red
represents negative pairs. In a batch, the only positive sam-
ples for an anchor are its augmentations, while all others
are negative. Even if the last image is similar (same person
and same expression) to the anchor, it will be pushed away
from the anchor as a negative sample. (b) is the illustra-
tion of the proposed weakly-supervised contrastive learn-
ing method: samples from the same activity in a batch are
selected as positive and the remaining are negative. The
textual activity descriptions are used as coarse-grained in-
formation to guide contrastive learning, for example, “talk
to the experimenter and listen to a joke ...”

core problems in facial analysis, attracting significant inter-
est in the computer vision community.

Recently, many deep learning-based approaches [29, 54,
39,42, 56, 18, 4] have been proposed and achieved state-of-
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the-art performance in FER and AUR. A variety of meth-
ods [54, 52, 26, 62] aimed to disentangle the expression or
AU features from various disturbing factors, such as iden-
tity, ethnic background, pose, etc. Along with the develop-
ment of Self-Supervised Learning (SSL), unlabeled data is
utilized for learning good representations to improve recog-
nition performance. Chang et al. [4] proposed a rule that
divides the face into eight regions, which are then fed in
a contrastive learning component. Shu et al. [43] explored
three core strategies in self-supervised contrastive learning
to enforce expression-specific representations and minimize
interference from other facial attributes. FaRL [64] pro-
posed a vision-language pre-training model with a large
number of facial image-text pairs to learn facial representa-
tion. To build an appropriate self-supervised learning task,
fine-grained auxiliary information, such as landmarks and
image captions, is typically required, which in turn requires
more data processing.

On the other hand, several works have investigated the
different relations between AU pairs and their applications.
SRERL [22] was developed to learn the appearance repre-
sentation of the semantic relationships between AUs by a
graph convolutional network. Yang et al. [56] proposed a
cross-modal attention module to enhance the image repre-
sentations by including AU semantic descriptions. How-
ever, due to the low consistency between the data structure
of image and text, attention-based integration may not fully
exploit the potential of textual data. Some works also mod-
eled the AUs’ relationships with the expressions to improve
the FER performance. Cui et al. [10] employed a Bayesian
Network(BN) to capture the generic knowledge on relation-
ships among AUs and expression. In our work, we are in-
terested in learning the direct relationships between expres-
sions and between AUs in a simpler way. Moreover, pre-
vious studies on relationship learning have rarely explored
the representation of ground truth labels, instead focusing
on fitting the model with numerical labels, thus sparking
our interest in investigating label representation.

In order to overcome the above limitations, it iS nec-
essary to investigate the following two issues: i) whether
there is any coarse-grained information, which can be eas-
ily obtained and simple to use without compromising the
performance; ii) whether there is any approach to enrich
the relationship information of the label representation.

To address the above two issues, we propose a text-
driven contrastive learning method, called CLEF, to utilize
both the coarse-grained information and text-embedded la-
bels. The proposed method comprises two stages, both us-
ing a unified vision-text architecture known as CLIP [38].
In pre-training, for each anchor in a batch, we consider pos-
itive samples from the same activity and negative samples
from different activities. The activity descriptions are used
as coarse-grained labels to guide the weakly-supervised

Table 1: Activity description samples in BP4D. See more
descriptions in the Supplementary Material.

Activity Description

Talk to the experimenter and listen to a joke (Inter-
Al | view). The target emotion is happiness or amuse-
ment

Watch and listen to a recorded documentary and
A2 | discuss their reactions. The target emotion is sad-
ness

Experience sudden, unexpected burst of sound.
The target emotion is surprise or startle

Play a game in which they improvise a silly song.
The target emotion is embarrassment

A3

A4

contrastive learning model that aims to minimize the intra-
activity differences in representations. Table 1 shows some
samples of activity descriptions of BP4D [58]. Figure 1b
shows how we leverage the activity descriptions to create
positive-negative pairs. Each activity contains multiple ex-
pressions, but our pairing construction can increase the pos-
sibility of grouping images with the same expression into
positive ones. The distance between images belonging to
different activities increases, even if the images have the
same identities, which encourages the encoder to focus on
the activity features rather than the identity features. Mean-
while, the activity text description does not contain any
identity information, allowing the text encoder to avoid en-
coding identity features. Cross-modal contrastive learning
is therefore designed to push image features close to such
textual features. Performing on these pairs can enhance the
learning of better representations, which in turn improves
the performance of FER or AUR in downstream tasks.

In fine-tuning, we apply vision-text contrastive learning
directly to classification tasks. Supervised contrastive learn-
ing adapts the image representation to be close to its cor-
responding label name feature, while self-supervised con-
trastive loss encourages the feature of label names and de-
scriptions to be similar, enriching the semantic information
of the label representation. Therefore, we believe such label
representation is more powerful than the numerical label.
The recognition prediction is based on finding the most sim-
ilar label names of the testing image, following the method
used in CLIP [38]. The main contributions of this paper are
summarized in three aspects:

1. We proposed a weakly-supervised contrastive learning
method that effectively leverages coarse-grained activ-
ity information. It not only requires less data process-
ing but also learns better representations.

2. We explore the use of text-driven contrastive learning
on FER and AUR tasks, where the performance is im-
proved by incorporating textual information.

20752



3. Extensive experiments have been conducted on 3 in-
the-lab datasets and 3 in-the-wild datasets. The pro-
posed method achieves state-of-the-art performance in
all 6 datasets, demonstrating the effectiveness of the
proposed method.

2. Related works
2.1. Facial Expression Recognition

In order to improve the performance of facial expres-
sion recognition, various deep neural networks are designed
with different insights on FER to obtain powerful repre-
sentations. Researchers have conducted a series of stud-
ies [54, 30, 39, 40] aiming to decompose different at-
tributes from facial behavioral representations and learn ro-
bust expression-related features. Another line of methods
has aimed to enhance intra-class compactness and reduce

inter-class compactness in feature extractions [25, 3]. Ad-
ditionally, several works explore the attention mechanism
on FER to obtain the discriminative features [52, 23, 27].

Furthermore, multi-task learning has been employed in var-
ious approaches, including involving facial landmark learn-
ing [11], AU recognition [20, 10], and others. Recently,
due to the successful recognition performance on laboratory
databases, more researchers attempt to perform FER model
on in-the-wild databases, which typically contain signifi-
cant label noises. As a result, addressing such noisy la-
bel issues has become a popular topic in the recent research
community, as evidenced by several works [51, 42, 59, 60].

2.2. Facial Action Uniti Recognition

In recent years, deep learning has been applied to facial
action unit recognition, leading to significant improvements
in performance. Some works have focused on learning bet-
ter facial features by emphasizing important local regions,
also known as regions of interest (ROI) [63, 26, 41]. Con-
sidering the interdependency between different AUs, sev-
eral works have applied graph neural networks (GCN) to
model these relations [44, 45, 22, 33]. Recent works in-
volved multiple techniques to improve the recognition ac-
curacy, including transformer methods [ 8], self-supervised
methods [4], and semi-supervised methods [47]. Focus
on the input data, some recent work [55, 57, 28] utilized
multi-modal learning methods with other modalities, such
as depth images, and thermal images.

SEV-Net [56] is the first work that exploited semantic
text-embedding of AU description on AUR, where the AU
relationships are learned by these descriptions. The cross-
modal attention mechanism between semantic embeddings
and image features is used to enhance the discriminative
features. Instead of cross-modal attention, we employ text-
driven contrastive learning to enhance image-text features,
which then improves performance on both FER and AUR.

2.3. Contrastive Learning

Recently, We have witnessed the potential of contrastive
learning in representation learning. The principle of con-
trast learning is to make positive sample pairs consistent and
negative sample pairs exclusive. It has been widely applied
to unsupervised learning works [6, 17, 7] with outstanding
success in representation learning. SupCon [19] extends
contrastive learning to a fully supervised setting, named Su-
pervised contrastive learning. In this work, data belonging
to the same class are selected as positive samples, and data
from different classes as negative.

Text-driven Recognition. Text-driven recognition has
become an active area in both Natural Language Process-
ing (NLP) and Computer Vision (CV). In this area, com-
mon tasks include visual question answering [1], image
captioning [50], and image-text retrieval [8]. Pioneering
work CLIP [38] not only demonstrates that image-text con-
trastive learning achieves promising performance for vi-
sual representation learning but also brings textual super-
vision into the classic recognition tasks in CV. Researchers
have extended this vision-language model to other areas,
such as object detection [16], image segmentation [2 1], and
video action recognition [53]. Recent FaRL [64] explores
this vision-language model on facial representation learn-
ing by pre-training on a variety of facial image-text pairs.
However, only the image encoder was evaluated on sev-
eral downstream tasks. In contrast, CLEF utilizes the text
encoder in downstream facial behavior analysis tasks, re-
sulting in better performance than using only the image en-
coder.

LIHr + L{A

[ Contrastive loss

L] I I

Image shared Image Text

Encoder ‘_’V_e_léﬁt Encoder Encoder

Talk to the experimenter and
listen to a joke. The target
emotion is happiness or
amusement.

A

Contrastive loss ]

Figure 2: An overview of the architecture of the proposed
CLEF in pre-training. L and L4 indicate supervised
contrastive loss between images and between images and
activity descriptions, respectively.

3. Methodology

Our proposed framework consists of two stages, and
each is built with an image-text encoder, the same as
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the eyes squint slightly, wrinkles
appear at the corners of the eyes ...

a photo of a
person with { }

a photo of a
person with { }

a photo of a face
where { }

the eyebrows are lower and pulled
closer together, and the inner ...
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a cropped photo
| offace that {} |

the eyebrows are raised, and

horizontal wrinkles would ...

T

Figure 3: An overview of the architecture of the proposed CLEF in the downstream FER task. It is based on the CLIP model
which consists of an image encoder and a text encoder. Ly indicates supervised contrastive loss between images and label
names. The self-supervised contrastive loss £py between label descriptions and label names is jointly adapted.

CLIP [38]. Figure 2 and Figure 3 show the overview of
architectures in pre-training and fine-tuning respectively.

3.1. Pre-training

In pre-training, we aim to learn robust deep representa-
tion and alleviate the influence of identity variation. There-
fore, we designed a contrastive learning task that pulls to-
gether features from the same activity and pushes them
away from features of other activities. Sets of images, ac-
tivities, and activity labels are defined by I, A, and YA,
Given n samples in a mini-batch, we generate two augmen-
tations, X7, and X!. The extracted feature representations
by image encoder g(-) and text encoder h(-) are 2/ = g(x7),

I'= g(z"), and 24 = h(z?) where 2! € X!, & € X!,
and z* € A. Meanwhile, the labels are duplicated to 2n
as YA, Inspired by the work [19], we consider images and
their corresponding textual activity descriptions under the
same activity as positive samples. We propose the cross-
modal supervised contrastive loss and leverage the coarse-
grained activity label to guide contrastive learning in pre-
training.

Cross-modal Supervised Contrastive Loss: The con-
trastive loss, in the scenario of z, y pairs, at temperature € is
defined as:

o exp(z¢ - 257 /e)
Lo = Z 2N > log (1

Kexp( 7P )e)

where the symbol (-) denotes the inner (dot) product, J =
2N (y),j # i K = {i}?,k # 4, and a, 3 are from the
extracted multi-modal feature sets. N; = {j € {i},

yJ = yl A1 contains a set of indices of positive samples with

label y7.

Given the /1 € {Z1 71}, 214 € {21, Z*}, the final
loss in pre-training is:

£pre o Lsup +£sup (2)

/.ZSI”IP encourages similar representations for images from
the same activity, while £} encourages similar representa-
tions between images and their corresponding texts. Given
that similar facial behaviors are more likely to appear within
the same activity, the encoder tends to focus on capturing
facial behavior features while avoiding personal attributes
features, such as identity, gender, and ethnicity.

3.2. Fine-tuning

Unlike the previous work [64] which only utilized the
image encoder in downstream facial analysis tasks, our ap-
proach is in the scenarios of both image and text, as we be-
lieve that text contains useful information for facial behav-
ior analysis. Given a set of images, label names, and label
descriptions. i.e., I, N, D. Similar to the pre-training, the
extracted features representations are {2/, 2%, 2} by im-
age encoder g(-) and text encoder h(-). Our loss functions
include self-supervised contrastive loss and supervised con-
trastive loss for name-description and image-label pairs re-
spectively. The self-supervised contrastive loss, in the sce-
nario of name-description pairs, is given as

i exp(z?” - z;V/T)

1
Lpy =——= ) log 3)
C 2 S b 2 )

where C' is the class number, e.g., 12 AUs, and 8 expres-
sions. T is a learnable parameter of the temperature to scale
the logits.
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The supervised-contrastive learning for image-text pairs
is jointly trained. We design different supervised contrastive
losses based on cross-entropy and binary cross-entropy loss,
as FER is a multi-class classification problem and AUR is a
multi-label problem. In the FER task, the loss is defined as,

1 B C N c
555\7 -z Z Z exp(z] - 2 /7)y; (4)

ZJ 1e><p( -z /7)

where B is the batch size, w is the weight, y is the target of
ground truth.
The loss in AUR is formulated as,

InN=-— ZZ (weyslog(o(z] - 2l 7))+
=1 c=1
(1 —y)log(1 - o(z] -z} /7)) (5)

where o is the activation function sigmoid(-).
Consequently, the total loss function in fine-tuning is de-
fined as:

L:fine = (AC?N + EDN)/ZO (6)

where the « € {fe,au}, A is a hyperparameter.

The loss function £y forces the image features to be
close to the target textual features of label names. The self-
supervised contrastive loss Lpy leverages the inter-class
difference of semantic information to enhance the feature
extracted from the text encoder. By jointly training both
self-supervised and supervised contrastive components, our
method learns not only the inter-class relations but also fea-
tures in shared latent space across modalities, where the
textual feature is unbiased to every subject identity. The
algorithms’ pseudocodes in PyTorch-style are shown in the
Supplementary Material.

3.3. Text Prompting

Following CLIP [38], we also use prompt templates to
augment the original label in our method. We only use one
prompt template “a photo of a person with {label name}.”
for label names, e.g., “a photo of a person with happiness.”,
a photo of a person with inner brow raiser.”. For label de-
scriptions we prepare multiple prompt templates on them,
e.g., “a photo shows a person that {label description}.”, “a
cropped photo of face that {label description}.”. Consider-
ing the limited number of label descriptions in databases,
instead of ensembling all prompt templates by their mean
textual representation, we randomly select one prompt tem-
plate in training. Similarly, activity descriptions are also
randomly applied with prompt templates, e.g., “a photo of
an activity that {activity description}.”, “a photo of a person
from an activity that {activity descrlptlon}.” The detail of
prompting is in the Supplementary Material.

4. Experiments

The proposed CLEF is compared with the state-of-the-
art methods on six popular databases for FER and AUR
tasks. Furthermore, we conduct ablation studies to verify
the component-wise contribution of our method.

4.1. Databases
4.1.1 AU Databases

BP4D [58] contains 41 subjects captured in laboratory
environments. There are 8 activities designed to elicit dif-
ferent spontaneous emotions, resulting in 41 x 8 video
clips. Expert coders select the most expressive 20 seconds
of each video clip for AU coding, producing 140,000 la-
beled frames. Following the work [26], we split all labeled
frames into subject-exclusive 3-fold with 12 AUs for both
two stages.

BP4D+ [01] consists of 140 subjects with a total of 1.5
M frames in the same laboratory environments. For each
subject, 20 seconds from 4 activities are annotated, resulting
in 192,000 labeled frames. First, the 140 subjects are split
into four-fold, following the same setting in [57]. In pre-
training, we equally sample 480,000 frames from all 1.5 M
frames by 10 activity categories. In fine-tuning, 12 AUs, the
same as in BP4D, are selected for AU recognition.

DISFA [36] contains videos from the left view and right
view of 27 subjects. In the same manner as [56], we choose
8 of 12 AUs with AU intensities higher or equal to 2 as
positive samples. The model trained on BP4D is then fine-
tuned to the DISFA dataset, which is following the setting
in [26, 22]. Fl-score is reported based on subject-exclusive
3-fold cross-validation.

4.1.2 FE Databases

AffectNet [37] is currently the largest FER dataset, in-
cluding 440,000 images with manual annotation of 8§ basic
expressions. AffectNet-7 refers to a manually annotated set
without contempt class, resulting in 283,901 and 3,500 im-
ages for training and testing respectively. AffectNet-8 in-
cludes all expression images with 287,568 training samples
and 4,000 testing samples.

RAF-DB [24] is labeled by 15,000 facial images with
7 expressions, i.e., neutral, happiness, surprise, sadness,
anger, disgust, and fear. Following the previous work set-
ting [42], we choose 12,271 images for training and the re-
maining 3,068 for testing.

FERPIlus [?] is an extended version of FER2013 [15],
where 8 emotions (with contempt) are annotated. It con-
tains 28,709 training images, 3,589 validation images, and
the remaining 3,589 testing images. For a fair comparison,
we report the accuracy on the test set with the same setting
from [52].
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Table 2: F1 scores in terms of 12 AUs on BP4D. Bold numbers indicate the best performance; bracketed numbers indicate

the second best.

Methods ‘ AUl AU2 AU4 AU6 AU7 AUIO AUI2 AU14 AU15 AU17 AU23 AU24‘ Avg
EAC [26] 390 352 486 761 729 819 862 588 375 59.1 359 358 | 559
DSIN[9] 51.7 404 560 76.1 735 799 854 627 373 629 388 41.6 | 589
JAA-Net[41] | 472 440 549 775 746 840 869 619 43.6 603 427 419 | 60.0
HMP-PS[46] | 53.1 46.1 560 765 769 821 864 648 515 63.0 499 545 | 634
SEV-Net[560] | 582 504 583 819 739 878 875 616 526 622 446 476 | 639
FAUTI 18] 51.7 493 [61.0] 77.8 795 829 863 [67.6] 519 63.0 43.7 [56.3] 64.2
PIAP[47] 55.0 [50.3] 512 [80.0]1 79.7 847 90.1 656 514 [63.8] [50.5] 509 | 644
KSRLI[4] 533 474 562 794 807 851 890 674 559 619 485 49.0 | 645
ANFL [33] 527 443 609 799 [80.1] [85.3] [89.2] 69.4 [554] 644 498 55.1 | [65.5]
CLEF ‘ [55.8] 468 633 795 776 836 878 673 552 635 53.0 578 ‘ 65.9

Table 3: F1 scores in terms of 8 AUs on DISFA. Bold numbers indicate the best performance; bracketed number indicate the

second best.

Methods ‘ AUl AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg
EAC [26] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
DSIN [9] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6
JAA-Net[41] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
HMP-PS[46] 38.0 459 65.2 50.9 50.8 76.0 93.3 67.6 61.0
SEV-Net[56] 553 53.1 61.5 [53.6] 38.2 71.6 95.7 41.5 58.8
FAUT[ 18] 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
PIAP[47] 50.2 51.8 [71.9] 50.6 54.5 [79.7] [94.1] 57.2 63.8
KSRL[4] [60.4] [59.2] 67.5 52.7 51.5 76.1 91.3 [57.7] [64.5]
ANFL [33] 54.6 471 [72.9] 54.0 55.7 76.7 91.1 53.0 63.1
CLEF | 643 61.8 68.4 49.0 [55.2] 72.9 89.9 570 | 648
4.2. Implementation Details from FaRL [64] during this stage. mage augmentation tech-

Model Architecture. The proposed model consists of a
text encoder h(-) of transformer [49] model, and an image
encoder g(-) of ViT [12] model to learn textual features and
visual features respectively. Specifically, the image encoder
is ViT-B/16 with 12-layer and 768-width, resulting in 87M
parameters with the input of 3 x 224 x 224. The input im-
age is first split into 14 x 14 patches, and then 14 x 14 patch
embeddings are obtained by linear projection. A learnable
cls token is inserted at the beginning of these embeddings,
and then we can get 197 embeddings by adding position
embeddings. The text encoder is a 12-layer, 512-width, and
8-head Transformer with 63M parameters. The length of
the input text token is 77, and truncation or padding is per-
formed if the input length does not match. We project fea-
tures from both the image cls token and the text eos token
to 512 widths as the output logits. Finally, we calculate the
contrastive losses by the normalized output logits.

Pre-training setup. BP4D and BP4D+ contain the ac-
tivity descriptions for our weakly-supervised contrastive
learning in the first stage. Model parameters are loaded

niques such as random cropping, horizontal flipping, and
random rotation are used. We set the batch size by 64 and
choose Adamw [32] optimizer with 0.01 weight decay. The
model has been trained 5 epochs with 1 epoch warmup, fol-
lowed by cosine decay [3 1] with a minimal learning rate of
1.e-6. The fixed temperature € is set at 0.25.

Downstream tasks setup. In downstream fine-tuning, Ir
of 2x 10~ % is set in BP4D, AffectNet, RAF-DB and 10~ in
DISFA and FER+. The model is trained with 64 batch-size
and an Adamw optimizer. The evaluation metric for AUR is
the averaged F1-score over all AUs, and for FER it is accu-
racy. Hyperparameter A is set to 2 and its investigation is in
the Supplementary Material. Other implementation details
can also be found in the Supplementary Material.

4.3. Comparison with the State of the Art
4.3.1 Facial Action Unit recognition

We compare our method with several state-of-the-art works,
namely EAC [26], DSIN [9], JAA-Net [4 1], HMP-PS [46],
SEV-Net [56], FAUT [18], PIAP [47], KSRL [4] and
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Table 4: F1 scores in terms of 12 AUs on BP4D+. Bold numbers indicate the best performance; bracketed numbers indicate

the second best.

Methods \ AUl AU2 AU4 AU6 AU7 AUI0 AUI2 AUI4 AUI5 AU17 AU23 AU24\ Avg
ViT [12] 456 382 355 859 883 903 [89.0] 819 458 488 572 346 | 616
CLIP [38] 494 [39.7] [38.9] 85.7 87.6 [90.6] [89.0] 80.6 449 503 56.1 328 | 62.1
EAC [26] 437 39.0 140 856 872 905 88.7 884 457 490 [57.3] 43.6 | 61.1
JAA [41] 46.0 413 360 86.5 [88.5] 905 89.6 81.1 434 510 560 326 | 619
SEV-Net [56] | 47.9 408 312 869 875 89.7 889 [826] 399 556 594 27.1 | 615
MFT [57] [48.4] 37.1 344 856 88.6 90.7 888 810 47.6 [51.5] 556 369 | [62.2]
CLEF \ 475 39.6 40.2 [86.5] 87.3 90.5 89.9 81.6 [47.0] 46.6 543 [41.5]\ 63.1
ANFL [33] on BP4D and DISFA datasets. Table 2 shows Table 5: Facial expression recognition accuracies on 3 FER

the comparison result on BP4D in terms of the F1-score of
12 AUs. Overall, CLEF achieves outstanding performance
on the widely used database and outperforms the state-of-
the-art methods in 3 AUs, namely AU4, AU23, and AU24.
In addition, the quantitative results on the DISFA database
are reported in Table 3, where CLEF achieves the best per-
formance on average F1-score in terms of 8 AUs.

Table 4 shows the comparison results of our proposed
method CLEF with ViT [12], CLIP [38], EAC [26],
JAA [41], SEV-Net [56], and MFT [57] on the BP4D+
database. ViT and CLIP are used as the baseline methods,
while the results of EAC and JAA are reported in the work
of MFT. Our method performs better than the state-of-the-
art methods in terms of 12 AUs, with an overall improve-
ment of 1.4%.

4.3.2 Facial Expression Recognition

To demonstrate the generalization ability of CLEF, we
also conduct experiments on the facial expression recog-
nition task. The performance of CLEF is evaluated on
the facial expression recognition task, and the results are
shown in Table 5 on three commonly used in-the-wild
FER databases. The state-of-the-art works are including
RAN [52], SCN [51], RUL [59], DMUE [42], VTFF [34]
and the most recent EAC [60]. The model is fine-tuned from
the pre-trained CLEF on BP4D+. Our method achieves
the best performance than other state-of-the-art methods on
AffectNet-7, RAF-DB, and FER+, while slightly lower than
DMUE under AffectNet-8.

4.4. Zero-shot Evaluation

We evaluate our model using zero-shot settings, where
training a model with Neutral, Happiness, and Fear on Af-
fectNet and test it by Sadness, Surprise, Disgust, and Anger
on RAF-DB and FER+. See the results in the left part of
Table 6. Additionally, we also evaluated FER on all expres-
sions using a BP4D+ AUR model, shown in the right section
of Table 6. Label descriptions are used to infer the model.
Since the model is unaware of the unseen label names, label

databases. AN-7: AffectNet-7, AN-8: AffectNet-8. Bold
numbers indicate the best performance; racketed numbers
indicate the second best.

Methods | AN-7  AN-8 RAF-DB FER+
RAN [52] 59.50 - 86.90  88.55
SCN [51] 6340 6023  87.03  88.01
RUL [59] 61.43 - 88.98  88.75
DMUE [42] - 62.84 8876  88.64
VTFF[34] | 6480 6185  88.14 888l
EAC [60] | [65.32] - [89.99]  [89.64]
CLEF | 65.66 [62.77]  90.09  89.74

descriptions are used in inference. Zero-shot is challenging,
but CLEF outperforms the baseline FaRL obviously.

Table 6: Zero-shot results on RAF-DB and FER+

Methods | RAF-DB FER+ | RAF-DB  FER+

FaRL 16.21 25.73 13.10 21.20

CLEF 29.14 34.40 29.47 24.90
4.5. Ablation Study

To evaluate the effectiveness of each component in
CLEEF, we conducted ablation studies on both AUR and FER
tasks. We assessed the contributions of each important com-
ponent in our method, i.e., pre-trained stage with images
(PD), pre-trained stage with activity texts (PA), image en-
coder (I), label names (N), and label description (D). It is
worth noting that the text encoder is trainable only when N
or D is available. Otherwise, the image feature is followed
by a linear projection as the output for supervised learn-
ing. N and D are also two modalities that contribute to the
contrastive losses in Equations 3, 4, 5. Table 7 shows the
performance of various combinations of the components.
The original CLIP and FaRL are used as the baseline meth-
ods for comparison. The result shows our model effec-
tively learns features in the pre-training stage and leads to
an improvement in recognition performance. Specifically,
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Table 7: Evaluation of key components on BP4d and RAF-
DB. Results indicate F1-score on BP4D, while accuracy on
RAF-DB. PA: pre-trained with activity texts. PI: pre-trained
with image. I: image encoder. N: label names. D: label
descriptions.

Methods PA PI I N D ‘ BP4D RAF-DB
CLIP v 63.4 87.88
CLIP v 7/ 64.0 88.72
CLIP v vV /| 644 89.70
FaRL v 63.7 88.31
FaRL v  / 64.1 88.69
FaRL v vV /| 646 88.78
CLEF /7 65.0 89.67
CLEF v /v 7/ 64.2 89.34
CLEF v 7/ 64.7 88.57
CLEF v v v/ 64.9 89.57
CLEF v vV vV V| 648 89.44
CLEF v v/ v | 657 89.73
CLEF v v v v V| 659 90.09

using the image encoder alone in pre-training (PI) results
in some improvement (65.0 on BP4D), adding the textual
activity (PA) and text encoder (ND) further improves the
performance (65.9 on BP4D). Additionally, regardless of
pre-training, a model with the text encoder using N and D
achieves better performance than a single image encoder.

Contrastive learning between names and descriptions not
only enhances the text feature from names but also expands
the distinction among different descriptions. If names such
as ‘Disgust’, and ‘Fear’ are isolated points in a high dimen-
sional space, descriptions such as ‘...eyebrows are pulled
down... and ‘...eyebrows are pulled up...’ are more likely
to be surfaces interacted at specific points. Hence, when
utilizing contrastive learning, the distance between the cor-
responding name-description becomes closer, while the dis-
tance between inter-descriptions is also further. The best
performance is achieved by using both names and descrip-
tions, which demonstrated that there’s an optimal balance
between ‘distinction’ and ‘similarity’.

Weight-shared Text Encoder We share the weight of
the text-encoder to extract the features of label names and
label descriptions respectively in fine-tuning. We assume
label names and label descriptions are projected in the same
features space, where the distance depends on words combi-
nations; Otherwise, the contrastive learning of relationships
is limited by cross-spaces. Meanwhile, feeding the names
and descriptions into different text encoders could reduce
the input diversities, which can lead to performance degra-
dation.

Such an assumption means our model not only reduces
the model size but also achieves better performance than the

(a) Baseline (b) CLEF

Figure 4: t-SNE visualization of the expression features on
RAF-DB.
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(a) Cosine similarity matrix be- (b) Pearson correlation coeffi-
tween features of label descrip- cient matrix of label name fea-
tions and label names trained on tures trained on RAF-DB
RAF-DB

Figure 5: Visualization of similarities on RAF-DB. SU:
Surprise, FE: Fear, DI: Disgust, HA: Happiness, SA: Sad-
ness, AN: Anger, NE: Neutral. D: description, N: name

application of two separated text encoders. Hence, we con-
tinue to conduct experiments based on two individual text
encoders on BP4D, achieving the average F1-score of 64.5,
which is worse than using weight-shared text encoders.

4.6. Visualization

Figure 4 shows t-SNE [48] visualization of visual ex-
pression features extracted by the baseline method (FaRL)
and the proposed CLEF on RAF-DB, respectively. The
expression features extracted by the baseline method are
not easily distinguishable from different facial expressions,
while the proposed CLEF effectively enhances the separa-
bility of different classes. In particular, CLEF makes the
differences among neutral, disgust, and sadness more pro-
nounced compared to the baseline. We visualized the sim-
ilarity matrix and correlation coefficient matrix of the text
features on RAF-DB, which is shown in Figure 5.

We also visualize the relevancy between the image and
corresponding text queries by GAE [5] in Figure 6. The im-
age heatmap is arranged in increasing order of relevance
from blue to red, while the text heatmap is arranged by
increasing green intensity. Examples of 8 expressions on
AffectNet and 8 AUs on BP4D can be seen in Figure 6a
and Figure 6b, respectively. The text heatmap shows atten-
tion to relevant semantic words in the text, while the image

20758



diagonal , widening the
mouth may part, exposing tecth

aphoto of fé

a photo of heutral

grimace

(a) Heatmap samples of 8 expressions on AffectNet

a photo of Anget

a photo of surprise

a photo of GORtEMpL

a photo of lid tightener
(AUT)

a photo of cheek raiser
(AU6)

thed

a photo of upper lip raiser
(AU10)

>

a photo of lip Eafet puller

(AUI2)

a photo of chin raiser

(AU17)

uld appear on
old go slack , the
n loosely and

a photo of lip tightner
(AU23)

(b) Heatmap samples of 8 AUs on BP4D.

Figure 6: Visualization of the relevancy heatmap between image-name and image-description pairs using GAE [5]. In (b),
the (AU id) just indicates which AU it is, but not in the textual label name.

heatmap localizes the corresponding regions of the face by
querying the label name or label description. We observe
that the same face regions are highlighted when querying
for label names and label descriptions, indicating that the
text encoder has successfully learned to extract semantic
knowledge even from the label names.

5. Discussion

Advanced Paring Method. Unlike widely used object
detection databases, which typically contain thousands of
categories with distinct identities, facial behavior databases
have limitations in terms of both the number of expression
categories and identities, rendering traditional paring meth-
ods less efficient. Pairing in CLEF is activity-based, where
each activity is deliberately designed to elicit a specific
expression, resulting in images with expression intensity,
ranging from none to onset, peak, and offset. Hence, the
probability of grouping similar expressions is higher than
self-supervised pairing (only the anchor itself is positive).

Easy Extension. Using texts as label names facilitates
easy extension with other information. For example, inten-
sity details can be integrated into label names by including
phrases, “with low intensity”, or “with high intensity”.

Limitation. While our pre-trained CLEF can improve
the performance of downstream tasks on various databases,
it has certain limitations. 1) Our pre-training approach re-
lies on prior knowledge of coarse-grained textual descrip-
tions, which may not be available in some databases. We
plan to address this issue in future updates by generating
coarse-grained text descriptions. 2) We use a fixed prompt

template for label names, and a random template for label
descriptions, where the prompting is not fully explored. 3)
Variations in performance across AUs can be caused by se-
mantic descriptive writing. Thus, further investigation into
description writing is necessary.

6. Conclusion

This paper has proposed a weakly-supervised text-driven
contrastive method that leverages the coarse-grained ac-
tivity information to learn advanced facial representations.
The method minimizes intra-activity feature differences and
maximizes inter-activity feature differences while disentan-
gling the effects of subject identity features. By incorpo-
rating textual label names and descriptions, the proposed
network can directly be applied to FER and AUR tasks.
CLEF achieves SOTA results on 3 widely used in-the-lab
databases for AUR and 3 in-the-wild databases for FER.
Ablation experiments show the effectiveness of weakly-
supervised contrast learning in pre-training, as well as the
validity of using textual information from activity, label
name, and label description. Compared to previous fine-
grained pre-training methods, such as detecting landmarks,
our coarse-grained approach requires less data processing
while still achieving improvements.
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