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Abstract

Multi-modality image fusion aims to combine different
modalities to produce fused images that retain the com-
plementary features of each modality, such as functional
highlights and texture details. To leverage strong genera-
tive priors and address challenges such as unstable train-
ing and lack of interpretability for GAN-based generative
methods, we propose a novel fusion algorithm based on
the denoising diffusion probabilistic model (DDPM). The
fusion task is formulated as a conditional generation prob-
lem under the DDPM sampling framework, which is fur-
ther divided into an unconditional generation subproblem
and a maximum likelihood subproblem. The latter is mod-
eled in a hierarchical Bayesian manner with latent vari-
ables and inferred by the expectation-maximization (EM)
algorithm. By integrating the inference solution into the
diffusion sampling iteration, our method can generate high-
quality fused images with natural image generative priors
and cross-modality information from source images. Note
that all we required is an unconditional pre-trained gener-
ative model, and no fine-tuning is needed. Our extensive
experiments indicate that our approach yields promising
fusion results in infrared-visible image fusion and medical
image fusion. The code is available at https://github.
com/Zhaozixiang1228/MMIF-DDFM .

1. Introduction

Image fusion integrates essential information from multi-
ple source images to create high-quality fused images [37,
70, 27, 42], encompassing various source image types like
digital [20, 67, 74], multi-modal [58, 72], and remote sens-
ing [62, 76]. This technology provides a clearer repre-
sentation of objects and scenes, and has diverse applica-
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Figure 1: (a) Existing GAN-based fusion method workflow. (b)
Graph of the hierarchical Bayesian model in likelihood rectification,
linking the MMIF loss and our statistical inference model. (c) Our
DDFM workflow: the unconditional diffusion sampling (UDS)
module generates f t, while the likelihood rectification module,
based on (b), rectifies UDS output with source image information.
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Figure 2: Visualization of results on MSRS [51] and Road-
Scene [59] in Tab. 1. Hexagons formed by lines of different colors
represent the values of different methods across six metrics. Our
DDFM (marked in yellow) outperforms all other methods.

tions such as saliency detection [43, 40, 41], object detec-
tion [12, 2, 10, 55], and semantic segmentation [28, 11, 56].
Among the different subcategories of image fusion, Infrared-
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Visible image Fusion (IVF) and Medical Image Fusion (MIF)
are particularly challenging in Multi-Modality Image Fusion
(MMIF) since they focus on modeling cross-modality fea-
tures and preserving critical information from all sensors and
modalities. Specifically, in IVF, fused images aim to retain
both thermal radiation from infrared images and detailed
texture information from visible images, thereby avoiding
the limitations of visible images being sensitive to illumi-
nation conditions and infrared images being noisy and low-
resolution. While MIF can assist in diagnosis and treatment
by fusing multiple medical imaging modalities for precise
detection of abnormality locations [16, 9].

There have been numerous methods devised recently to
address the challenges posed by MMIF [26, 65, 29], and
generative models [7, 38] have been extensively utilized to
model the distribution of fused images and achieve satis-
factory fusion effects. Among them, models based on Gen-
erative Adversarial Networks (GANs) [34, 35, 33, 26] are
dominant. The workflow of GAN-based models, illustrated
in Fig. 1a, involves a generator that creates images contain-
ing information from source images, and a discriminator that
determines whether the generated images are in a similar
manifold to the source images. Although GAN-based meth-
ods have the ability to generate high-quality fused images,
they suffer from unstable training, lack of interpretability
and mode collapse, which seriously affect the quality of the
generated samples. Moreover, as a black-box model, it is
difficult to comprehend the internal mechanisms and behav-
iors of GANs, making it challenging to achieve controllable
generation.

Recently, Denoising Diffusion Probabilistic Models
(DDPM) [13] has garnered attention in the machine learning
community, which generates high-quality images by mod-
eling the diffusion process of restoring a noise-corrupted
image towards a clean image. Based on the Langevin dif-
fusion process, DDPM utilizes a series of reverse diffusion
steps to generate promising synthetic samples [46]. Com-
pared to GAN, DDPM does not require the discriminator
network, thus mitigating common issues such as unstable
training and mode collapse in GAN. Moreover, its generation
process is interpretable, as it is based on denoising diffusion
to generate images, enabling a better understanding of the
image generation process [57].

Therefore, we propose a Denoising Diffusion image
Fusion Model (DDFM), as shown in Fig. 1c. We formu-
late the conditional generation task as a DDPM-based pos-
terior sampling model, which can be further decomposed
into an unconditional generation diffusion problem and a
maximum likelihood estimation problem. The former satis-
fies natural image prior while the latter is inferred to restrict
the similarity with source images via likelihood rectifica-
tion. Compared to discriminative approaches, modeling the
natural image prior with DDPM enables better generation

of details that are difficult to control by manually designed
loss functions, resulting in visually perceptible images. As
a generative method, DDFM achieves stable and control-
lable generation of fused images without discriminator, by
applying likelihood rectification to the DDPM output.

Our contributions are organized in three aspects:
• We introduce a DDPM-based posterior sampling model

for MMIF, consisting of an unconditional generation
module and a conditional likelihood rectification mod-
ule. The sampling of fused images is achieved solely
by a pre-trained DDPM without fine-tuning.
• In likelihood rectification, since obtaining the likeli-

hood explicitly is not feasible, we formulate the op-
timization loss as a probability inference problem in-
volving latent variables, which can be solved by the
EM algorithm. Then the solution is integrated into the
DDPM loop to complete conditional image generation.
• Extensive evaluation of IVF and MIF tasks shows that

DDFM consistently delivers favorable fusion results,
effectively preserving both the structure and detail in-
formation from the source images, while also satisfying
visual fidelity requirements.

2. Background
2.1. Score-based diffusion models

Score SDE formulation. Diffusion models aim to gen-
erate samples by reversing a predefined forward process
that converts a clean sample x0 to almost Gaussian sig-
nal xT by gradually adding noise. This forward process
can be described by an Itô Stochastic Differential Equation
(SDE) [49]:

dx = −β(t)

2
xtdt+

√
β(t)dw, (1)

where dw is standard Wiener process and β(t) is predefined
noise schedule that favors the variance-preserving SDE [49].

This forward process can be reversed in time and still in
the form of SDE [1]:

dx =
[
−β(t)

2 xt − β(t)∇xt
log pt(xt)

]
dt+

√
β(t)dw, (2)

where dw corresponds to the standard Wiener process run-
ning backward and the only unknown part ∇xt

log pt(xt)
can be modeled as the so-called score function sθ(xt, t) with
denoising score matching methods, and this score function
can be trained with the following objective [15, 48]:

EtEx0Ext|x0

[
‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22

]
, (3)

where t is uniformly sampled over [0, T ] and the data pair
(x0,xt) ∼ p0(x)p0t(xt|x0).
Sampling with diffusion models. Specifically, an uncon-
ditional diffusion generation process starts with a random
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noise vector xT ∼ N (0, I) and updates according to the
discretization of Eq. (2). Alternatively, we can understand
the sampling process in the DDIM fashion [46], where the
score function can also be considered to be a denoiser and
predict the denoised x̃0|t from any state xt at iteration t:

x̃0|t =
1√
ᾱt

(xt + (1− ᾱt)sθ(xt, t)), (4)

and x̃0|t denotes the estimation of x0 given xt. We use the
same notation αt = 1 − βt and ᾱt =

∏t
s=1 αs following

Ho et al. [13]. With this predicted x̃0|t and the current state
xt, xt−1 is updated from

xt−1 =

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̃0|t + σ̃tz, (5)

where z ∼ N (0, I) and σ̃2
t is the variance which is usu-

ally set to 0. This sampled xt−1 is then fed into the next
sampling iteration until the final image x0 is generated. Fur-
ther details about this sampling process can be found in the
supplementary material or the original paper [46].
Diffusion models applications. Recently, diffusion models
have been improved to generate images with better quality
than previous generative models like GANs [5, 39]. More-
over, diffusion models can be treated as a powerful genera-
tive prior and be applied to numerous conditional generation
tasks. One representative work with diffusion models is sta-
ble diffusion which can generate images according to given
text prompts [44]. Diffusion models are also applied to
many low-level vision tasks. For instance, DDRM [19] per-
forms diffusion sampling in the spectral space of degradation
operator A to reconstruct the missing information in the ob-
servation y. DDNM [64] shares a similar idea with DDRM
by refining the null-space of the operator A iteratively for
image restoration tasks. DPS [3] endorses Laplacian ap-
proximation to calculate the gradient of log-likelihood for
posterior sampling and it is capable of many noisy non-linear
inverse problems. In ΠGDM [47], the authors employ few
approximations to make the log-likelihood term tractable
and hence make it able to solve inverse problems with even
non-differentiable measurements.

2.2. Multi-modal image fusion

The deep learning-based multi-modality image fusion
algorithms achieve effective feature extraction and infor-
mation fusion through the powerful fitting ability of neu-
ral networks. Fusion algorithms are primarily divided into
two branches: generative methods and discriminative meth-
ods. For generative methods [34, 31, 35], particularly the
GAN family, adversarial training [7, 36, 38] is employed
to generate fusion images following the same distribution
as the source images. For discriminative methods, auto
encoder-based models [72, 23, 21, 28, 53, 22, 65] use en-
coders and decoders to extract features and fuse them on

a high-dimensional manifold. Algorithm unfolding mod-
els [4, 6, 73, 63, 75, 24] combine traditional optimization
methods and neural networks, balancing efficiency and in-
terpretability. Unified models [59, 66, 58, 68, 18] avoid the
problem of lacking training data and ground truth for specific
tasks. Recently, CDDFuse [69] addresses cross-modality fea-
ture modeling and extracts modality-specific/shared features
through a dual-branch Transformer-CNN architecture and
correlation-driven loss, achieving promising fusion results
in multiple fusion tasks. On the other hand, fusion meth-
ods have been combined with pattern recognition tasks such
as semantic segmentation [50] and object detection [26] to
explore the interactions with downstream tasks. Specifi-
cally, TarDAL [26] demonstrates an obvious advantage in
dealing with challenge scenarios with high efficiency. Self-
supervised learning [25] is employed to train fusion networks
without paired images. Moreover, the pre-processing regis-
tration module [60, 14, 54, 61] can enhance the robustness
for unregistered input images. Benefiting from the multi-
modality data, MSIS [17] achieves realizable and outstand-
ing stitching results.

2.3. Comparison with existing approaches

The methods most relevant to our model are optimization-
based methods and GAN-based generative methods. Con-
ventional optimization-based methods are often limited by
manually designed loss functions, which may not be flexible
enough to capture all relevant aspects and are sensitive to
changes in the data distribution. While incorporating nat-
ural image priors can provide extra knowledge that cannot
be modeled by the generation loss function alone. Then,
in contrast to GAN-based generative methods, where un-
stable training and pattern collapse may occur, our DDFM
achieves more stable and controllable fusion by rectifying
the generation process towards source images and perform-
ing likelihood-based refinement in each iteration.

3. Method

In this section, we first present a novel approach for ob-
taining a fusion image by leveraging DDPM posterior sam-
pling. Then, starting from the well-established loss function
for image fusion, we derive a likelihood rectification ap-
proach for the unconditional DDPM sampling. Finally, we
propose the DDFM algorithm, which embeds the solution of
the hierarchical Bayesian inference into the diffusion sam-
pling. In addition, the rationality of the proposed algorithm
will be demonstrated. For brevity, we omit the derivations
of some equations and refer interested readers to the sup-
plementary material. It is worth noting that we use IVF as
a case to illustrate our DDFM, and MIF can be carried out
analogously to IVF.
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3.1. Fusing images via diffusion posterior sampling

We first give the notation of the model formulation. In-
frared, visible and fused images are denoted as i ∈RHW ,
v∈R3HW and f ∈R3HW , respectively.

We expect that the distribution of f given i and v, i.e.,
p (f |i,v), can be modeled, thus f can be obtained by sam-
pling from the posterior distribution. Inspired by Eq. (2), we
can express the reverse SDE of diffusion process as:

df=
[
−β(t)

2 f−β(t)∇ft
log pt (f t|i,v)

]
dt+

√
β(t)dw, (6)

and the score function, i.e., ∇ft
log pt(f t|i,v), can be cal-

culated by:

∇ft
log pt(f t|i,v)=∇ft

log pt(f t)+∇ft
log pt(i,v|f t)

≈∇ft
log pt(f t)+∇ft

log pt(i,v|f̃0|t)
(7)

where f̃0|t is the estimation of f0 given f t from the uncon-
ditional DDPM. The equality comes from Bayes’ theorem,
and the approximate equation is proved in [3].

In Eq. (7), the first term represents the score function
of unconditional diffusion sampling, which can be readily
derived by the pre-trained DDPM. In the next section, we ex-
plicate the methodology for obtaining∇ft

log pt(i,v|f̃0|t).

3.2. Likelihood rectification for image fusion

Unlike the traditional image degradation inverse problem
y = A(x) + n where x is the ground truth image, y is
measurement and A(·) is known, we can explicitly obtain
its posterior distribution. However, it is not possible to ex-
plicitly express pt(i,v|f t) or pt(i,v|f̃0|t) in image fusion.
To address this, we start from the loss function and estab-
lish the relationship between the optimization loss function
`(i,v, f̃0|t) and the likelihood pt(i,v|f̃0|t) of a probabilis-
tic model. For brevity, f̃0|t is abbreviated as f in Secs. 3.2.1
and 3.2.2.

3.2.1 Formulation of the likelihood model

We first give a commonly-used loss function [22, 65, 30, 69]
for the image fusion task:

min
f
‖f − i‖1 + φ‖f − v‖1. (8)

Then simple variable substitution x=f−v and y=i−v are
implemented, and we get

min
x
‖y − x‖1 + φ‖x‖1. (9)

Since y is known and x is unknown, this `1-norm op-
timization equation corresponds to the regression model:
y = kx + ε with k fixed to 1. According to the relation-
ship between regularization term and noise prior distribution,
ε should be a Laplacian noise and x is governed by the

Laplacian distribution. Thus, in Bayesian fashion, we have:

p(x)=LAP (x; 0, ρ)=
∏
i,j

1

2ρ
exp

(
−|xij |

ρ

)
,

p(y|x)=LAP (y;x, γ)=
∏
i,j

1

2γ
exp

(
−|yij−xij |

γ

)
,

(10)

where LAP(·) is the Laplacian distribution. ρ and γ are
scale parameters of p(x) and p(y|x), respectively.

In order to prevent `1-norm optimization in Eq. (9) and
inspired by [30, 71], we give the Proposition 1:

Proposition 1. For a random variable (RV) ξ which obeys
a Laplace distribution, it can be regarded as the coupling of
a normally distributed RV and an exponentially distributed
RV, which in formula:

LAP(ξ;µ,
√
b/2) =

∫∞
0
N (ξ;µ, a)EXP(a; b)da. (11)

Remark 1. In Proposition 1, we transform `1-norm opti-
mization into an `2-norm optimization with latent variables,
avoiding potential non-differentiable points in `1-norm.

Therefore, p(x) and p(y|x) in Eq. (10) can be rewritten
as the following hierarchical Bayesian framework:

yij |xij ,mij ∼ N (yij ;xij ,mij)
mij ∼ EXP (mij ; γ)
xij |nij ∼ N (xij ; 0, nij)
nij ∼ EXP (nij ; ρ)

(12)

where i = 1, . . . ,H and j = 1, . . . ,W . Through the above
probabilistic analysis, the optimization problem in Eq. (9)
can be transformed into a maximum likelihood inference
problem.

In addition, following [30, 50], the total variation penalty
item r(x) = ‖∇x‖22 can be also added to make the fusion
image f better preserve the texture information from v,
where∇ denotes the gradient operator. Ultimately, the log-
likelihood function of the probabilistic inference issue is:

`(x) = log p(x,y)− r(x)

= −
∑
i,j

[
(xij − yij)2

2mij
+

x2
ij

2nij

]
− ψ

2
‖∇x‖22,

(13)

and probabilistic graph of this hierarchical Bayesian model
is in Fig. 1b. Notably, in this way, we transform the optimiza-
tion problem Eq. (8) into a maximum likelihood problem
of a probability model Eq. (13). Additionally, unlike tradi-
tional optimization methods that require manually specified
tuning coefficients φ in Eq. (8), φ in our model can be adap-
tively updated by inferring the latent variables, enabling the
model to better fit different data distributions. The validity
of this design has also been verified in ablation experiments
in Sec. 4.3. We will then explore how to infer it in the next
section.
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3.2.2 Inference the likelihood model via EM algorithm

In order to solve the maximum log-likelihood problem in
Eq. (13), which can be regarded as an optimization problem
with latent variables, we use the Expectation Maximization
(EM) algorithm to obtain the optimal x. In E-step, it calcu-
lates the expectation of log-likelihood function with respect
to p

(
a, b|x(t),y

)
, i.e., the so-called Q-function:

Q
(
x|x(t)

)
= Ea,b|x(t),y[`(x)]. (14)

Then in M-step, the optimal x is obtained by

x(t+1) = arg max
x
Q
(
x|x(t)

)
. (15)

Next, we will show the implementation detail in each step.
E-step. Proposition 2 gives the calculation results for the
conditional expectation of latent variables, and then gets the
derivation of Q-function.

Proposition 2. The conditional expectation of the latent
variable 1/mij and 1/nij in Eq. (13) are:

E
mij |x

(t)
ij ,yij

[
1

mij

]
=

√
2(yij − x(t)ij )2

γ
,

E
nij |x

(t)
ij

[
1

nij

]
=

√
2[x

(t)
ij ]2

ρ
.

(16)

Proof. For convenience, we set m̃ij ≡ 1/mij and ñij ≡
1/nij . From Eq. (12) we know that mij∼EXP (mij ; γ)=
Γ(mij ; 1, γ). Thus, m̃ij ∼ IG (1, γ), where Γ(·, ·) and
IG(·, ·) are the gamma distribution and inverse gamma dis-
tribution, respectively.

Then we can get the posterior of m̃ij by Bayes’ theorem:

log p (m̃ij |yij , xij) = log p (yij |xij ,mij) + log p (m̃ij)

=− 3

2
log m̃ij −

m̃ij (yij − xij)2

2
− 1

γm̃ij
+ constant.

(17)
Subsequently, we have

p (m̃ij |yij , xij)=IN
(
m̃ij ;

√
2 (yij−xij)2

/γ, 2/γ

)
, (18)

where IN (·, ·) is the inverse Gaussian distribution. For the
posterior of ñij , it can be obtain similar to Eq. (17):

log p (ñij |xij) = log p (xij |nij) + log p (ñij)

= −3

2
log ñij −

ñijx
2
ij

2
− 1

ρñij
+ constant,

(19)

and therefore

p (ñij |xij) = IN
(
ñij ;

√
2x2

ij/ρ, 2/ρ
)
. (20)

Finally, the conditional expectation of 1/mij and 1/nij are
the mean parameters of the corresponding inverse Gaussian
distribution Eqs. (18) and (20), respectively. �

Remark 2. The conditional expectation computed by Propo-
sition 2 will be used to derive the Q-function below.

Afterwards, the Q-function Eq. (14) is derived as:

Q = −
∑
i,j

[m̄ij

2
(xij−yij)2+

n̄ij
2
x2ij

]
− ψ

2
‖∇x‖22

∝ −‖m� (x− y)‖22 − ‖n� x‖22 − ψ‖∇x‖
2
2,

(21)

where m̄ij and n̄ij represent E
mij |x(t)

ij ,yij
[1/mij ] and

E
nij |x(t)

ij
[1/nij ] in Eq. (16), respectively. � is the element-

wise multiplication. m andn are matrices with each element
being

√
m̄ij and

√
n̄ij , respectively.

M-step. Here, we need to minimize the negative Q-function
with respect to x. The half-quadratic splitting algorithm is
employed to deal with this problem, i.e.,

min
x,u,k

||m� (x− y)||22 + ||n� x||22 + ψ||u||22,

s.t. u = ∇k,k = x.
(22)

It can be further cast into the following unconstraint opti-
mization problem,

min
x,u,k

||m� (x− y)||22 + ||n� x||22 + ψ||u||22

+
η

2

(
||u−∇k||22 + ||k − x||22

)
.

(23)

The unknown variables k,u,x can be solved iteratively in
the coordinate descent fashion.
Update k: It is a deconvolution issue,

min
k
Lk = ||k − x||22 + ||u−∇k||22. (24)

It can be efficiently solved by the fast Fourier transform (fft)
and inverse fft (ifft) operators, and the solution of k is

k = ifft

{
fft(x) + fft(∇)� fft(u)

1 + fft(∇)� fft(∇)

}
, (25)

where · is the complex conjugation.
Update u: It is an `2-norm penalized regression issue,

min
u
Lu = ψ||u||22 +

η

2
||u−∇k||22. (26)

The solution of u is

u =
η

2ψ + η
∇k. (27)

Update x: It is a least squares issue,

min
x
Lx = ||m�(x−y)||22+||n�x||22+

η

2
||k−x||22. (28)

The solution of x is

x = (2m2 � y + ηk)� (2m2 + 2n2 + η), (29)
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where � denotes the element-wise division, and final estima-
tion of f is

f̂ = x+ v. (30)

Additionally, hyper-parameter γ and ρ in Eq. (10) can be
also updated after the sampling from x (Eq. (29)) by

γ =
1

hw

∑
i,j

E[mij ], ρ =
1

hw

∑
i,j

E[nij ]. (31)

3.3. DDFM

Overview. In Sec. 3.2, we present a methodology for obtain-
ing a hierarchical Bayesian model from existing loss function
and perform the model inference via the EM algorithm. In
this section, we present our DDFM, where the inference so-
lution and diffusion sampling are integrated within the same
iterative framework for generating f0 given i and v. The
algorithm is illustrated in Algorithm 1 and Fig. 3.

There are two modules in DDFM, the unconditional diffu-
sion sampling (UDS) module and the likelihood rectification,
or say, EM module. The UDS module is utilized to provide
natural image priors, which improve the visual plausibility
of the fused image. The EM module, on the other hand,
is responsible for rectifying the output of UDS module via
likelihood to preserve more information from the source
images.

Unconditional diffusion sampling module. In Sec. 2.1, we
briefly introduce diffusion sampling. In Algorithm 1, UDS
(in grey) is partitioned into two components, where the first
part estimates f̃0|t using f t, and the second part estimates
f t−1 using both f t and f̂0|t. From the perspective of score-
based DDPM in Eq. (7), a pre-trained DDPM can directly
output the current∇ft

log pt(f t), while∇ft
log pt(i,v|f̃0|t)

can be obtain by the EM module.

EM module. The role of the EM module is to update
f̃0|t⇒ f̂0|t. In Algorithm 1 and Fig. 3, the EM algorithm
(in blue and yellow) is inserted in UDS (in grey). The pre-
liminary estimate f̃0|t produced by DDPM sampling (line 5)
is utilized as the initial input for the EM algorithm to obtain
f̂0|t (line 6-13), which is an estimation of the fused image
subjected to likelihood rectification. In other words, EM
module rectify f̃0|t to f̂0|t to meet the likelihood.

3.4. Why does one-step EM work?

The main difference between our DDFM and conven-
tional EM algorithm lies in that the traditional method re-
quires numerous iterations to obtain the optimal x, i.e., the
operation from line 6-13 in Algorithm 1 needs to be looped
many times. However, our DDFM only requires one step
of the EM algorithm iteration, which is embedded into the
DDPM framework to accomplish sampling. In the following,
we give Proposition 3 to demonstrate its rationality.

Algorithm 1 DDFM

Input:
Infrared image i, Visible image v, T , {σ̃t}Tt=1

Output:
Fused image f0.

1: fT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: % DDPM Part 1: Obtain f̃0|t
4: ŝ← sθ (f t, t)
5: f̃0|t ← 1√

ᾱt
(f t + (1− ᾱt) ŝ)

6: % E-step: Update latent variables
7: x̃0 = f̃0|t − v, y = i− v
8: Evaluate expectations by Eq. (16).
9: Update hyper-parameters γ, ρ by Eq. (31).

10: % M-step: Obtain f̂0|t via Likelihood Rectification
11: k← arg mink Lk (x̃0,u) (Eq. (25))
12: u← arg minu Lu (∇k) (Eq. (27))
13: f̂0|t ← arg minx Lx (k,u, x̃0) +v (Eq. (29)&(30))
14: % DDPM Part 2: Estimate f t−1

15: z ∼ N (0, I)

16: f t−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
f t +

√
ᾱt−1βt

1−ᾱt
f̂0|t + σ̃tz

17: end for

M-stepDDPM Part

E-step

: Step 1
: Step 2
: Step 3

: Step 1
: Step 2
: Step 3

Vanilla DDPM

Figure 3: Computational graph of our DDFM in one iteration. Dif-
ferent from the vanilla DDPM, likelihood rectification is completed
via the EM algorithm, i.e., the update from f̃0|t ⇒ f̂0|t.

Proposition 3. One-step unconditional diffusion sampling
combined with one-step EM iteration is equivalent to one-
step conditional diffusion sampling.

Proof. The estimation of f̂0|t in conditional diffusion sam-
pling, refer to Eq. (4), could be expressed as:

f̂0|t (f t, i,v) =
1√
ᾱt

[f t + (1− ᾱt) sθ (f t, i,v)] (32a)

=
1√
ᾱt
{f t+(1−ᾱt)[sθ(f t)+∇ft

log pt(i,v|f t)]} (32b)

≈f̃0|t (f t) +
1− ᾱt√
ᾱt
∇ft log pt

(
i, v|f̃0|t

)
(32c)

=f̃0|t (f t)− ζt∇x̃0Lx (i,v, x̃0) . (32d)

Eqs. (32a) to (32c) are respectively based on the definition of
Score-based DDPM, Bayes’ theorem, and proof in [3]. For
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Figure 4: Visual comparison of “01462” from M3FD IVF dataset.

Infrared Visible FusionGAN GANMcC U2Fusion

RFNet TarDAL DeFusion UMFusion Ours (DDFM)

Figure 5: Visual comparison of “FLIR 08248” from RoadScene IVF dataset.

Eq. (32d), although optimization Eq. (28) has a closed-form
solution (Eq. (29)), it can also be solved by gradient descent:

x̂0 = x̃0 +∇x̃0Lx (k,u, x̃0) = x̃0 +∇x̃0Lx (i,v, x̃0) (33)

where the second equation holds true because as the input
for updating x̂0 (Eq. (29)), k and u are functions of i and v.
ζt in Eq. (32d) can be regraded as the update step size.

Hence, conditional sampling f̂0|t(f t, i,v) can be split
as an unconditional diffusion sampling f̃0|t(f t) and one-
step EM iteration∇x̃0

Lx(i,v, x̃0), corresponding to UDS
module (part 1) and EM module, respectively. �

Remark 3. Proposition 3 demonstrates the theoretical ex-
planation for the rationality of inserting the EM module
into the UDS module and explains why the EM module only
involves one iteration of the Bayesian inference algorithm.

4. Infrared and visible image fusion
In this section, we elaborate on numerous experiments for

IVF task to demonstrate the superiority of our method. More
related experiments are placed in supplementary material.

4.1. Setup

Datasets and pre-trained model. Following the protocol
in [26, 25], IVF experiments are conducted on the four test
datasets, i.e., TNO [52], RoadScene [59], MSRS [51], and
M3FD [26]. Note that there is no training dataset due to that
we do not need any fine-tuning for specific tasks but directly
use the pre-trained DDPM model. We choose the pre-trained
model proposed by [5], which is trained on ImageNet [45].

Metrics. We employ six metrics including entropy (EN),
standard deviation (SD), mutual information (MI), visual
information fidelity (VIF), QAB/F , and structural similarity
index measure (SSIM) in the quantitative experiments to
comprehensively evaluate the fused effect. The detail of
metrics is in [32].

Implement details. We use a machine with one NVIDIA
GeForce RTX 3090 GPU for fusion image generation. All
input images are normalized to [−1, 1]. ψ and η in Eq. (23)
are set to 0.5 and 0.1, respectively. Please refer to the sup-
plementary material for selecting ψ and η via grid search.
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Table 1: The quantitative results of IVF task, with the best and second-best values in boldface and underline, respectively.

Dataset: MSRS Fusion Dataset [51] Dataset: M3FD Fusion Dataset [26]
EN ↑ SD ↑ MI ↑ VIF ↑ Qabf ↑ SSIM ↑ EN ↑ SD ↑ MI ↑ VIF ↑ Qabf ↑ SSIM ↑

FGAN [34] 5.60 17.81 1.29 0.40 0.13 0.47 FGAN [34] 6.51 28.14 2.07 0.44 0.30 0.75
GMcC [35] 6.20 25.95 1.79 0.57 0.28 0.74 GMcC [35] 6.68 32.23 2.01 0.58 0.36 0.93
U2F [58] 6.06 29.80 1.55 0.59 0.46 0.76 U2F [58] 6.84 34.05 1.95 0.73 0.49 0.98
RFN [60] 6.07 26.82 1.36 0.54 0.46 0.81 RFN [60] 6.67 31.04 1.71 0.67 0.44 0.91
TarD [26] 5.39 22.74 1.32 0.38 0.16 0.45 TarD [26] 6.67 38.83 2.38 0.54 0.29 0.87
DeF [25] 6.85 40.20 2.25 0.74 0.56 0.92 DeF [25] 6.79 36.39 2.32 0.65 0.44 0.94
UMF [54] 5.98 23.56 1.38 0.47 0.29 0.58 UMF [54] 6.73 32.46 2.23 0.66 0.40 0.97

Ours 6.88 40.75 2.35 0.81 0.58 0.94 Ours 6.86 38.95 2.52 0.80 0.49 0.95

Dataset: RoadScene Fusion Dataset [59] Dataset: TNO Fusion Dataset [52]
EN ↑ SD ↑ MI ↑ VIF ↑ Qabf ↑ SSIM ↑ EN ↑ SD ↑ MI ↑ VIF ↑ Qabf ↑ SSIM ↑

FGAN [34] 7.12 40.13 1.90 0.36 0.26 0.61 FGAN [34] 6.74 34.41 1.78 0.42 0.25 0.66
GMcC [35] 7.26 43.44 1.86 0.49 0.34 0.81 GMcC [35] 6.86 35.51 1.64 0.53 0.28 0.83
U2F [58] 7.16 38.97 1.83 0.54 0.49 0.96 U2F [58] 7.02 38.52 1.41 0.63 0.43 0.93
RFN [60] 7.30 43.37 1.64 0.49 0.43 0.88 RFN [60] 6.93 34.95 1.21 0.55 0.37 0.87
TarD [26] 7.31 47.24 2.15 0.53 0.41 0.86 TarD [26] 7.02 49.89 1.89 0.54 0.28 0.83
DeF [25] 7.31 44.91 2.09 0.55 0.46 0.86 DeF [25] 7.06 40.70 2.04 0.64 0.43 0.92
UMF [54] 7.29 42.91 1.96 0.61 0.50 0.98 UMF [54] 6.83 36.56 1.66 0.65 0.42 0.94

Ours 7.41 52.61 2.35 0.75 0.65 0.98 Ours 7.06 51.42 2.21 0.81 0.49 0.95

Table 2: Ablation experiment results. Bold indicates the best value.

Configurations EN SD MI VIF Qabf SSIM
DDPM r(x) φ

I
√

\ 7.19 41.82 2.11 0.60 0.42 0.92
II

√
\ 7.33 44.12 2.29 0.69 0.52 0.93

III
√ √

0.1 7.25 43.16 2.26 0.66 0.49 0.90
IV

√ √
1 7.26 42.37 2.24 0.66 0.47 0.91

Ours
√ √

\ 7.41 52.61 2.35 0.75 0.65 0.98

4.2. Comparison with SOTA methods

In this section, we compare our DDFM with the state-of-
the-art methods, including the GAN-based generative meth-
ods group: FusionGAN [34], GANMcC [35], TarDAL [26],
and UMFusion [54]; and the discriminative methods group:
U2Fusion [58], RFNet [60], and DeFusion [25].

Qualitative comparison. We show the comparison of fu-
sion results in Figs. 4 and 5. Our approach effectively com-
bines thermal radiation information from infrared images
with detailed texture information from visible images. As
a result, objects located in dimly-lit environments are con-
spicuously accentuated, enabling easy distinguishing of fore-
ground objects from the background. Moreover, previously
indistinct background features due to low illumination now
possess clearly defined edges and abundant contour informa-
tion, enhancing our ability to comprehend the scene.

Quantitative comparison. Subsequently, six metrics previ-
ously mentioned are utilized to quantitatively compare the
fusion outcomes, as presented in Tab. 1. Our method demon-
strates remarkable performance across almost all metrics,

affirming its suitability for different lighting and object cat-
egories. Notably, the outstanding values for MI, VIF and
Qabf across all datasets signify its ability to generate images
that adhere to human visual perception while preserving the
integrity of the source image information.

4.3. Ablation studies

Numerous ablation experiments are conducted to con-
firm the soundness of our various modules. The above six
metrics are utilized to assess the fusion performance for the
experimental groups, and results on the Roadscene testset
are displayed in Tab. 2.

Unconditional diffusion sampling module. We first verify
the effectiveness of DDPM. In Exp. I, we eliminate the
denoising diffusion generative framework, thus only the
EM algorithm is employed to solve the optimization Eq. (8)
and obtain the fusion image. In fairness, we keep the total
iteration number consistent with DDFM.

EM module. Next, we verify the components in the EM
module. In Exp. II, we removed the total variation penalty
item r(x) in Eq. (13). Then, we remove the Bayesian infer-
ence model. As mentioned earlier, φ in Eq. (8) can be auto-
matically inferred in the hierarchical Bayesian model. There-
fore, we manually set φ to 0.1 (Exp. III) and 1 (Exp. IV),
and used the ADMM algorithm to infer the model.

In conclusion, the results presented in Tab. 2 demonstrate
that none of the experimental groups is able to achieve fusion
results comparable to our DDFM, further emphasizing the
effectiveness and rationality of our approach.

8089



CT MRI FusionGAN GANMcC U2Fusion

RFNet TarDAL DeFusion UMFusion Ours (DDFM)

Figure 6: Visual comparison for MIF task.

Table 3: The quantitative results of the MIF task, with the best and
second-best values in boldface and underline, respectively.

Dataset: Harvard Medical Fusion Dataset [8]
EN ↑ SD ↑ MI ↑ VIF ↑ Qabf ↑ SSIM ↑

FGAN [34] 4.05 29.20 1.53 0.39 0.18 0.23
GMcC [35] 4.18 42.49 1.74 0.50 0.42 0.35
U2F [58] 4.14 48.89 1.80 0.50 0.55 1.14
RFN [60] 4.75 40.81 1.62 0.43 0.56 0.40
TarD [26] 4.61 60.64 1.44 0.33 0.21 0.25
DeF [25] 4.21 61.65 1.85 0.62 0.59 1.40
UMF [54] 4.61 27.28 1.62 0.40 0.27 0.30

Ours 4.64 63.11 1.99 0.76 0.60 1.41

5. Medical image fusion
In this section, MIF experiments are carried out to verify

the effectiveness of our method.

Setup. We choose 50 pairs of medical images from the Har-
vard Medical Image Dataset [8] for the MIF experiments, in-
cluding image pairs of MRI-CT, MRI-PET and MRI-SPECT.
The generation strategy and evaluation metrics for the MIF
task are identical to those used for IVF.

Comparison with SOTA methods. Qualitative and quanti-
tative results are shown in Fig. 6 and Tab. 3. It is evident that
DDFM retains intricate textures while emphasizing struc-
tural information, leading to remarkable performance across
both visual and almost all numerical metrics.

6. Conclusion
We propose DDFM, a novel generative image fusion algo-

rithm based on the denoising diffusion probabilistic model
(DDPM). The generation problem is split into an uncon-
ditional DDPM to leverage image generative priors and a

maximum likelihood sub-problem to preserve cross-modality
information from source images. We model the latter using
a hierarchical Bayesian approach and its solution based on
EM algorithm can be integrated into unconditional DDPM
to accomplish conditional image fusion. Experiments on
infrared-visible and medical image fusion demonstrate that
DDFM achieves promising fusion results.
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