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Abstract

Weakly supervised object localization (WSOL) remains
challenging when learning object localization models from
image category labels. Conventional methods that discrim-
inatively train activation models ignore representative yet
less discriminative object parts. In this study, we propose
a generative prompt model (GenPromp), defining the first
generative pipeline to localize less discriminative object
parts by formulating WSOL as a conditional image denois-
ing procedure. During training, GenPromp converts image
category labels to learnable prompt embeddings which are
fed to a generative model to conditionally recover the in-
put image with noise and learn representative embeddings.
During inference, GenPromp combines the representative
embeddings with discriminative embeddings (queried from
an off-the-shelf vision-language model) for both represen-
tative and discriminative capacity. The combined embed-
dings are finally used to generate multi-scale high-quality
attention maps, which facilitate localizing full object extent.
Experiments on CUB-200-2011 and ILSVRC show that
GenPromp respectively outperforms the best discriminative
models by 5.2% and 5.6% (Top-1 Loc), setting a solid base-
line for WSOL with the generative model. Code is available
at https://github.com/callsys/GenPromp.

1. Introduction
Weakly supervised object localization (WSOL) is a chal-

lenging task when provided with image category super-
vision but required to learn object localization models.
As a pioneered WSOL method, Class Activation Map
(CAM) [67] defines global average pooling (GAP) to gen-
erate semantic-aware localization maps based on a dis-
criminatively trained activation model. Such a fundamen-
tal method, however, suffers from partial object activation
while often missing full object extent, Fig. 1(upper). The
nature behind the phenomenon is that discriminative mod-
els are born to pursue compact yet discriminative features
while ignoring representative ones [3, 20].
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Figure 1: Comparison of our generative prompt model
(GenPromp) with the discriminatively trained activa-
tion model. GenPromp aims to localize less discriminative
object parts by formulating WSOL as a conditional image
denoising procedure. Red, green, and black arrows respec-
tively denote information propagation during training, in-
ference, and training & inference. fd, fr, and fc denote the
discriminative, representative, and combined embeddings.

Many efforts have been proposed to alleviate the par-
tial activation issue by introducing spatial regularization
terms [32, 33, 34, 52, 59, 60, 65, 66], auxiliary localiza-
tion modules [33, 36, 54, 55], or adversarial erasing strate-
gies [13, 14, 34, 65]. Nevertheless, the fundamental chal-
lenge about how to use a discriminatively trained classifica-
tion model to generate precise object locations remains.

In this study, we propose a generative prompt model
(GenPromp), Fig. 1(lower), which formulates WSOL as
a conditional image denoising procedure, solving the
fundamental partial object activation problem in a new
and systematic way. During training, for each category
(e.g.goldfish in Fig. 1) in the predetermined category
set, GenPromp converts each category label to a learn-
able prompt embedding (fr) through a pre-trained vision-
language model (CLIP) [40]. The learnable prompt embed-
ding is then fed to a transformer encoder-decoder to condi-
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Figure 2: Activation maps and localization results using discriminative and representative embeddings. A proper
combination (w=0.6) of discriminative embeddings fd with representative embedding fr as the prompt produces precise
activation maps and good WSOL results (Red and green boxes respectively denote GT boxes and localization results).

tionally recover the noisy input image. Through multi-level
denoising, the representative features of input images are
back-propagated from the transformer decoder to the learn-
able prompt embedding, which is updated to the represen-
tative embedding fr.

During inference, GenPromp linearly combines learned
representative embeddings (fr) with discriminative embed-
dings (fd) to obtain both object generative and discrimi-
nation capability, Fig. 2. fd is queried from a pre-trained
vision-language model (CLIP), which incorporates the cor-
respondence between text (e.g.category labels) with vi-
sion feature embeddings. The combined embedding (fc)
is used to generate attention maps at multiple levels and
timestamps, which are aggregated to object activation maps
through a post-processing strategy. On CUB-200-2011 [49]
and ImageNet-1K [45], GenPromp respectively outper-
forms the best discriminative models by 5.2% (87.0% vs.
81.8% [55]) and 5.6% (65.2% vs. 59.6% [55]) in Top-1
Loc.

The contributions of this study include:

• We propose a generative prompt model (GenPromp),
providing a systematic way to solve the inconsistency
between the discriminative models with the generative
localization targets by formulating a conditional image
denoising procedure.

• We propose to query discriminative embeddings from
an off-the-shelf vision-language model using image la-
bels as input. Combining the discriminative embed-
dings with the generative prompt model facilitates lo-
calizing objects while depressing backgrounds.

• GenPromp significantly outperforms its discriminative
counterparts on commonly used benchmarks, setting a
solid baseline for WSOL with generative models.

2. Related Work
Weakly Supervised Object Localization. As a simple-

yet-effective method, CAM [67] localizes objects by intro-
ducing global average pooling (GAP) to an image classi-
fication network. CAM is also extended from WSOL to
weakly supervised detection [12, 50, 62] and segmentation
[10, 51, 55, 63]. However, CAM suffers from partial activa-
tion, i.e., activating the most discriminative parts instead of
full object extent. The reason lies in the inconsistency be-
tween the discriminative models (i.e., classification model)
with the generative target (object localization).

To solve the partial activation problem, adversarial eras-
ing, discrepancy learning, online localization refinement,
classifier-localizer decoupling, and attention regularization
methods are proposed. As a spatial regularization method,
adversarial erasing [13, 14, 34, 48, 60, 65] online removes
significantly activated regions within feature maps to drive
learning the missed object parts. With a similar idea, spa-
tial discrepancy learning [21, 59] leverages adversarial clas-
sifiers to enlarge object areas. Through classifier-localizer
decoupling, PSOL [61] partitions the WSOL pipeline into
two parts: class-agnostic object localization and object clas-
sification. For class-agnostic localization, it uses class-
agnostic methods to generate noisy pseudo annotations and
then perform bounding box regression on them without
class labels. While online refinement of low-level features
improves activation maps for WSOL [54], BAS [52] spec-
ifies a background activation suppression strategy to assist
the learning of WSOL models. C2AM [55] generates class-
agnostic activation maps using contrastive learning without
category label supervision. FAM [36] optimizes the object
localizer and classifiers jointly via object-aware and part-
aware attention modules. TS-CAM [20] and LCTR [11]
utilize the attention maps defined on long-range feature de-
pendency of transformers to localize objects.
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Despite the progress, existing methods typically ignore
the fundamental challenge of WSOL, i.e. discriminative
models are required to perform representative (localization)
tasks.

Vision-Language Models. Vision-language models
have demonstrated increasing importance for vision tasks.
In the early years, great efforts are paid to label image-text
pairs which are important for vision-language model train-
ing [8, 15, 42, 58]. In recent years, the born-ed association
relations of image and text on the Web facilitate collecting
a massive quantity of image-text pairs [7, 37, 40, 46, 47],
which requires much lower annotation cost compared to
those manually annotated datasets (See supplementary for
details). Such image-text pairs enable building the associa-
tion between image category labels and visual feature em-
bedding, which is the foundation of this study. Based on the
massive quantity of image-text pairs, we pre-train two com-
ponents of GenPromp (i.e.Stable diffusion [43], CLIP [40])
with two large image-text pair datasets. In specific, we pre-
train the image denoising model using LAION-5B [46] and
the CLIP model on WIT [40].

Generative Vision Models. As the foundation of most
generative vision models, GAN [22] defines an adversar-
ial training process, where it simultaneously trains a gen-
erative model and a discriminative model. Many efforts
have been made to improve GAN such as better optimiza-
tion strategies [2, 24, 35, 38, 56], conditional image gener-
ation [27, 29, 30] and improved architecture [6, 28, 41, 64].
Recently, a generative vision paradigm, i.e., denoising dif-
fusion probabilistic models (DDPM) [26] become popular
and have the potential to surpass GAN in several vision gen-
eration tasks such as image generation [17, 19, 39, 43, 44]
and image editing [23, 25, 31]. DDPM have also been
adapted to some perception tasks such as object detec-
tion [9] and image segmentation [1, 5, 53], which inspires
this study for WSOL.

Viewing categories labels as prompt embeddings is an
important feature of GenPromp, which originates from con-
ditional image generation tasks. This follows DDPM which
feeds a language description encoded by the language
model (e.g.BERT [16]) to the generative model for sematic-
aware image generation. Existing works [19, 25, 31, 44]
have proposed to learn the representative embeddings from
user-provided images that contains a new object or a new
style, which drive DDPM to generate synthesis images that
contains that object or style. Inspired by this learning
paradigm, GenPromp is proposed to learn the representative
embeddings of each category, which are crucial for object
localization.

3. Preliminaries
Diffusion models learn a data distribution p(x) by grad-

ually denoising a normally distributed variable, which

corresponds to learning a reverse process of a Markov
Chain [26]. Stable diffusion [43] leverages well-trained per-
ceptual compression model E to transfer the denoising dif-
fusion process from the high-dimensional pixel space to a
low-dimensional latent space, which reduces the computa-
tional burden and increases efficiency. The objective func-
tion of Stable diffusion is defined as

L(θ, f) = Ex,ϵ,t

[
||ϵ− ϵθ(zt, t, f)||22

]
, (1)

zt =
√
αtE(x) +

√
1− αtϵ, t ∈ T, (2)

where ϵ ∼ N(0, 1) is sampled from the normal distribu-
tion and ϵθ(◦, t, f) is the neural backbone, which is imple-
mented as an attention-unet conditioned on time t and the
prompt embedding f . E is implemented as a VQGAN [18]
encoder. zt is the noisy latent of the input image x at time
t, t ∈ T = {1, 2, · · · , 1000}. {αt}t∈T denotes a set of
hyperparameters that steer the levels of noise added.

4. Generative Prompt Model
GenPromp consists of a training stage (Fig. 3) and a fine-

tuning stage (Fig. 4). In the training stage, the discrim-
inative embedding fd is queried from a pre-trained CLIP
model (Querying Discriminative Embeddings), mean-
while a representative embedding fr is specified for each
category (Learning Representative Embedding.). In the
finetuning stage, fd and fr are used to prompt the backbone
network finetuning (Model Finetuning). The trained mod-
els and combined prompt embeddings (Combining Em-
beddings) are used to predict attention maps for WSOL
(Fig. 5).

Querying Discriminative Embeddings. The embed-
ding fd is queried from a pre-trained CLIP model [40],
which uses a prompt string (p) as input and outputs a lan-
guage feature vector. As CLIP is pre-trained with a discrim-
inative loss (i.e., contrastive loss), fd is therefore discrimi-
native.

During training, for a given category (e.g.goldfish in
Fig. 3), the prompt is obtained by filling the category label
string to a template (e.g.“a photo of a goldfish”).
During inference, however, the image category labels are
unavailable. An intuitive way is using a pre-trained clas-
sifier to predict the category of the input image. Unfortu-
nately, some category labels correspond to strings of mul-
tiple words, which imply multiple tokens and multiple at-
tention maps. Such multiple attention maps with noise
would deteriorate the localization performance. To ad-
dress this issue, we heuristically select the last token of the
first string to initialize the prompt, which is referred to as
the meta token. For example, we select goldfish for
category string “goldfish, Carassius auratus”
and select ray for category string “electric ray,
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Figure 3: Training pipeline of GenPromp. The discrim-
inative embedding fd is queried from a CLIP model while
the representative embedding fr is learned through optimiz-
ing an image denoising model.

crampfish, numbfish, torpedo”. The meta to-
ken of a category is typically the name of its superclass.

To query discriminative embedding fd from the CLIP
model, the prompt p is converted to an ordered list of
numbers (e.g.[a→302, photo→1125, of→539, a→302,
goldfish→806])1. This procedure is performed by
looking up the dictionary of the Tokenizer. The list of
numbers is used to index the embedding vectors v(p) =
[v302, v1125, v539, v302, v806] through an index-based Em-
bedding layer. Such embedding vectors (language vec-
tors) are input to a pre-trained vision-language model
(CLIP) [40] to generate the discriminative language embed-
ding fd, as

fd = CLIP(v(p)). (3)

Learning Representative Embedding. Using solely the
discriminative embedding fd, GenPromp could miss repre-
sentative yet less discriminative features. As an example
in the second column and second row of Fig. 2, the activa-
tion map of the tower obtained by prompting the network
with fd suffers from partial object activation. The repre-
sentative embedding fr is thereby introduced as a prompt
learning procedure, as shown in Fig. 3. In specific, the dic-
tionary of the Tokenizer is extended by involving a new to-
ken (i.e., ⟨goldfish⟩), which is referred to as the concept
token. The prompt with the concept token is encoded to the
representative embedding fr through the pre-trained CLIP
model.

Before learning, the representative embedding fr is ini-
tialized as the discriminative embedding fd. When learn-
ing representative embedding, images belonging to a same
category are collected to form the training set. Each in-
put image is encoded to the latent variable z0 by the VQ-
GAN encoder, Fig. 3. Different levels of noises are added
to z0 to have a noisy latent zt through Eq. 2. The noisy

1⟨BOS⟩,⟨EOS⟩ and padding tokens are omitted for clarity.
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Figure 4: Finetuning pipeline of GenPromp.

latent zt is fed to the attention-unet ϵθ to produce multi-
layer feature maps Fl,t, where l ∈ L index the encoded fea-
tures of different layers. The Tokenizer Embedding layer in
Fig. 3 incorporate embeddings for each word/token, where
the embeddings (i.e., vr) of the corresponding concept to-
kens (e.g., ⟨goldfish⟩) are trainable. By optimizing a
denoising procedure defined by stable diffusion, the repre-
sentative embedding fr is learned, as

f∗
r = argmin

fr

L(θ, fr). (4)

Benefiting from the property of the generative denoising
model, f∗

r can identify the common features among objects
in the training set, learning representative features that de-
fine each category. As shown in the last column and sec-
ond row of Fig. 2, the activation map of tower obtained
by prompting the network with fr activates the full object
area.

Model Finetuning. As shown in Fig. 4, after obtaining
the representative embeddings f∗

r for all image categories,
the backbone network (attention-unet parameterized by ϵθ)
is finetuned on the WSOL dataset, as

θ∗ = argmin
θ

L(θ, fd) + L(θ, f∗
r ), (5)

which further optimizes the diffusion model using both fd
and f∗

r as prompts to reduce the domain gap between the
model and the target dataset.

Combining Embeddings. After model finetuning, the
discriminative and representative embeddings (fd and fr)
are linearly combined, as

fc = w · fr + (1− w) · fd, (6)

where w ∈ [0, 1] is an experimentally determined weighted
factor. As shown in Fig 2, for the category towel, a large
w activates background noise. Meanwhile, a small w could
cause partial object activation. An appropriate w can bal-
ance the discriminative features and representative features
of the categories, achieving the best localization perfor-
mance.
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Figure 5: Inference pipeline of GenPromp. By performing a conditional denoising procedure, GenPromp produces object
activation maps at multiple levels and timesteps. Two prompts (“a photo of a goldfish” and “a photo of a ⟨goldfish⟩”) are
encoded to discriminative embedding fd and representative embedding fr, which are combined to fc. fc performs cross-
attention with the features of the encoder and decoder in the image denoising model to obtain attention maps.

5. Weakly Supervised Object Localization
As shown in Fig. 5, WSOL is defined as a conditional

image denoising procedure. Similar to the training proce-
dure, each input image is encoded to the latent variable z0
by the VQGAN encoder. Different levels of noise are added
to z0 to generate noisy latent zt through Eq. 2. The noisy
latent zt is fed to the finetuned attention-unet ϵθ∗ to pro-
duce multi-layer feature maps Fl,t, where l ∈ L index the
encoded features of different layers. Meanwhile, the input
image is classified with a classifier pre-trained on the target
dataset to obtain the category label, which is used to initial-
ize two prompts (e.g.goldfish and ⟨goldfish⟩). Ac-
cording to Eq. 3, the two prompts are encoded to discrimi-
native embedding fd and representative embedding fr. The
two embeddings are then combined to fc, which is the con-
dition for the image denoising model. Through performing
denoising, cross attention maps are generated by using Fl,t

as the Query vector and fc as the Key vector, as

ml,t = CrossAttn(Fl,t, fc), l ∈ L, t ∈ T. (7)

One notable capability of GenPromp is to generate at-
tention maps {ml,t}l∈L,t∈T which exhibit distinct charac-
teristics based on the specific layer l at time t, as shown
in Fig. 6. The characteristics of these attention maps can
be concluded as follows: (1) Attention maps with higher
resolution can provide more detailed localization clues but
introduce more noise. (2) Attention maps of different layers
can focus on different parts of the target object. (3) Smaller
t provides a less noisy background but tends to partial ob-
ject activation. (4) Larger t activates the target object more
completely but introduces more background noise. Based
on these observations, we propose to aggregate attention
maps at multiple layers and timesteps to obtain a unified

activation map, as

M =
1

|L| · |T |
∑

l∈L,t∈T

ml,t

max(ml,t)
. (8)

Experimentally, we find that aggregating the attention maps
of spatial resolutions 8× 8 and 16× 16 at time steps 1 and
100 produces the best localization performance. A thresh-
olding approach [65] is then applied to predict the object
locations based on the unified activation map.

6. Experiments
6.1. Experimental Settings

Datasets. We evaluate GenPromp on two commonly
used benchmarks, i.e., CUB-200-2011 and ImageNet-1K.
CUB-200-2011 is a fine-grained bird dataset that contains
200 categories of birds with 5994 training images and 5794
test images. ImageNet-1K is a large-scale visual recogni-
tion dataset containing 1,000 categories with 1.2 million
training images and 50,000 validation images.

Evaluation Metrics. We follow the previous methods
and use Top-1 localization accuracy (Top-1 Loc), Top-5 lo-
calization accuracy (Top-5 Loc), and GT-known localiza-
tion accuracy (GT-known Loc) as the metrics. For localiza-
tion, a bounding box prediction is positive when it satisfies:
(1) the predicted category label is correct, and (2) the IoU
between the bounding box prediction and one of the ground-
truth boxes is greater than 50%. GT-known indicates that it
considers only the IoU constraint regardless of the classifi-
cation result.

Implementation Details. GenPromp is implemented
based the Stable diffusion model [43], which is pre-trained
on LAION-5B [46]. The text encoder, i.e., CLIP, is pre-

6355



8x8 16x16
64x6432x3216x1632x3264x64Input Image

t=1 t=10 t=100 t=200 t=500 t=1000

Activation map
generation

Attention-unet (%$)

Figure 6: Aggregation of cross attention maps. Attention maps with respect to multiple resolutions and multiple noise
levels (timesteps t) are aggregated to obtain the final localization map.

Method Loc Back. Cls Back.
CUB-200-2011 ImageNet-1K

Top-1 Loc Top-5 Loc GT-known Loc Top-1 Loc Top-5 Loc GT-known Loc

CAMCVPR’16 [67] VGG16 41.1 50.7 55.1 42.8 54.9 59.0
TS-CAMICCV’21 [20] Deit-S 71.3 83.8 87.7 53.4 64.3 67.6

LCTRAAAI’22 [11] Deit-S 79.2 89.9 92.4 56.1 65.8 68.7
SCMECCV’22 [4] Deit-S 76.4 91.6 96.6 56.1 66.4 68.8

CREAMCVPR’22 [57] InceptionV3 71.8 86.4 90.4 56.1 66.2 69.0
BASCVPR’22 [52] ResNet50 77.3 90.1 95.1 57.2 67.4 71.8

PSOLCVPR’20 [61] DenseNet161 EfficientNet-B7 80.9 90.0 91.8 58.0 65.0 66.3
C2AMCVPR’22 [55] DenseNet161 EfficientNet-B7 81.8 91.1 92.9 59.6 67.1 68.5
GenPromp (Ours) Stable Diffusion EfficientNet-B7 87.0 96.1 98.0 65.1 73.3 74.9

GenPromp† (Ours) Stable Diffusion EfficientNet-B7 87.0 96.1 98.0 65.2 73.4 75.0

Table 1: Performance comparison of the proposed GenPromp approach with the state-of-the-art methods on the CUB-200-
2011 test set and ImageNet-1K validation set. Loc Back. denotes the localization backbone, Cls Back. denotes the backbone
for classification, and † the prompt ensemble strategy, which ensembles the localization results from multiple prompts. Please
refer to the supplementary for more comparison details.

trained on WIT [40]. During training, we resize the in-
put image to 512×512 and augment the training data with
RandomHorizontalFlip and ColorJitter. We then optimize
the network using AdamW with ϵ=1e−8, β1=0.9, β2=0.999
and weight decay of 1e−2 on 8 RTX3090. In the training
stage, we optimize GenPromp for 2 epochs with learning
rate 5e−5 and batch size 8 for each category in CUB-200-
2011 and ImageNet-1K. In the finetuning stage, we train
GenPromp for 100,000 iterations with learning rate 5e−8
and batch size 128.

6.2. Main Results

Performance Comparison with SOTA Methods. In
Table 1, the performance of the proposed GenPromp is
compared with the state-of-the-art (SOTA) models. On
CUB-200-2011 dataset, GenPromp achieves localization

accuracy of Top-1 87.0%, Top-5 96.1%, which surpasses
the SOTA methods by significant margins. Specifically,
GenPromp achieves surprisingly 98.0% localization accu-
racy under GT-known metric, which shows the effectiveness
of introducing generative model for WSOL. GenPromp out-
performs the SOTA method C2AM [55] by 5.2% (87.0%
vs. 81.8%) and 5.0% (96.1% vs. 91.1%) under Top-1 Loc
and Top-5 Loc metrics respectively. When solely consider-
ing the localization performance (using GT-known Loc met-
ric), GenPromp significantly outperforms the SOTA method
SCM [4] by 1.4% (98.0% vs. 96.6%). On the more chal-
lenging ImageNet-1K dataset, GenPromp also significantly
outperforms the SOTA method C2AM [55] and BAS [52]
by 5.6% (65.2% vs. 59.6%), 6.0% (73.4% vs. 67.4%), and
3.2% (75.0% vs. 71.8%) under Top-1 Loc, Top-5 Loc and
GT-known Loc metrics respectively. Such strong results
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Figure 7: Object localization results of GenPromp using
different prompt words. Words belonging to the same su-
perclass activate the same object (upper), and words from
different superclasses tend to activate different regions (up-
per and lower).

clearly demonstrate the superiority of the generative model
over conventional discriminative models for weakly super-
vised object localization.

Localization Results with respect to Prompt Embed-
dings. The localization results of GenPromp are shown
in Fig. 7. In the first row of Fig. 7(upper), for the image
with category spaniel, the discriminative prompt embed-
ding fd fails to activate the legs, while the representative
prompt embedding fr activates full object extent but suffer-
ing from the background noise. By combining fd and fr,
fc fully activates the object regions while maintaining low
background noise. In the second row of Fig. 7(upper), we
show the localization maps with prompt embeddings gen-
erated by different categories. Interestingly, categories that
are highly related to spaniel (i.e., dog, husky) can
also correctly activate the foreground object, which indi-
cates that GenPromp is robust to the classifiers. When using
the categories that are less related to spaniel (i.e., man,
tower) will introduce too much background noise and fail
to localize the objects.

As shown in Fig. 7(lower), for the test images which
contain multiple objects from various classes, GenPromp

meta token
!!, !" = 30, 15

concept token
!!, !" = 26, 12

Perplexity :  7

Iterations :  5000

Distance metric : ⨀
(Dot product) !

*

Figure 8: Statistical result of the embedding vectors of the
meta token and the concept token for ImageNet-1K cate-
gories using tSNE. σx, σy respectively denote the standard
deviation of the points in the x and y directions.

Finetune Embedding
ImageNet-1K

Top-1 Loc Top-5 Loc GT-kno. Loc

1 fd 61.2 69.0 70.4
2 fr(w/o init) 44.6 50.2 51.3
3 fr 64.0 72.1 73.7
4 fc(w/o init) 56.2 63.2 64.5
5 fc 64.5 72.7 74.2

6 ✓ fd 62.0 69.8 71.4
7 ✓ fr 64.9 73.1 74.6
8 ✓ fc 65.1 73.3 74.9

Table 2: Ablation studies of GenPromp.

is able to generate high quality localization maps when
given the corresponding prompt embeddings (generated us-
ing corresponding categories). The result demonstrates
GenPromp can not only generate representative localization
maps but also be able to discriminate object categories, re-
vealing the potential of extending GenPromp to more chal-
lenging weakly supervised object detection or segmentation
task.

Statistical Result with respect to Token Embeddings.
In Fig. 8, the embedding vectors of the meta token are
uniformly distributed in the two-dimensional feature space
(yellow dots). After learning the representative embed-
dings/features of the categories, the embedding vectors of
the concept token become uneven (blue dots), i.e. less dis-
criminative indicated by less deviation σx and σy , which re-
veals the inconsistency between representative and discrim-
inative embeddings.

6.3. Ablation Study

Baseline. We build the baseline method by using solely
the discriminative embedding fd (Line 1 of Table 2). The
performance (61.2% Top-1 Loc Acc.) of the baseline out-
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Method Loc Back. Cls Back. Params.
ImageNet-1K

Top-1 Loc Top-5 Loc GT-known Loc Top-1 Cls Top-5 Cls

TS-CAM [20] Deit-S (ImageNet-1K) 22.4M 53.4 64.3 67.6 74.3 92.1
TS-CAM [20] ViT-H (LAION-2B [46], ImageNet-1K) 633M 42.1 49.9 52.2 77.4 93.7

GenPromp† Stable Diffusion EfficientNet-B7 1017M + 66M 65.2 73.4 75.0 85.1 97.2

Table 3: Performance comparison with respect to model size and training data. With a larger backbone and pre-training
dataset, the discriminatively trained method TS-CAM does not achieve higher performance.

Figure 9: Localization accuracy under IoUs on ImageNet-
1K using different embedding combination weights w.

performs the SOTA methods, which indicates the great ad-
vantage of introducing the generative model for WSOL.

Representative Embedding. When using the trained
representative embedding fr initialized by fd (Line 3 of Ta-
ble 2), GenPromp outperforms the baseline by 2.8% (64.0%
vs. 61.2%) under Top-1 Loc metric, which validates the im-
portance of the representative features of categories for ob-
ject localization. We also train representative embedding fr
which is random initialized (Line 2 of Table 2). The perfor-
mance of fr drops to very low-level suffering from the local
optimal embeddings.

Embedding Combination. By combining fr and fd, the
performance of GenPromp can be further boost to 64.5% in
Top-1 Loc (Line 5 of Table 2). We also conduct experi-
ments to show the effect of the combination weight w on
ImageNet 1K dataset. The performance keeps consistent
when the combination weight w falls to [0.4, 0.8], as shown
in Fig. 9. With a proper w, GenPromp is able to generate
discriminative while representative prompt embeddings and
active full object extent with the least background noise.

Model Finetuning. By filling the domain gap through
finetuning the backbone network (attention-unet), a perfor-
mance gain of 0.6% (65.1% vs. 64.5%) can be achieved in
Top-1 Loc (Line 8 of Table 2).

Model Size and Training Data. In Table 3, we re-
implement TS-CAM with larger backbone (e.g.ViT-H) and
more training data (e.g.LAION-2B). The re-implemented
TS-CAM achieves higher classification accuracy while
much lower localization accuracy compared to the Deit-S
based TS-CAM. We attribute this to the inherent flaw of the
discriminatively trained classification model, i.e., local dis-
criminative regions are capable of minimizing image clas-

Timesteps
ImageNet-1K

Top-1 Loc Top-5 Loc GT-known Loc

1 64.6 72.7 74.3
10 64.8 72.9 74.5

100 64.9 73.1 74.6
200 64.6 72.7 74.3
500 59.4 66.9 68.3

1000 42.8 48.3 49.3
1+100 65.1 73.3 74.9

1+100+200 65.1 73.3 74.9
1+100+200+500 64.1 72.2 73.7

Table 4: Performance under test timesteps.

Resolution
ImageNet-1K

Top-1 Loc Top-5 Loc GT-known Loc

8 58.5 65.7 67.1
16 62.5 70.5 72.0
32 38.0 42.7 43.6
64 17.5 19.9 20.3

8+16 65.1 73.3 74.9
8+16+32 64.2 72.2 73.7

Table 5: Performance under attention map resolutions.

sification loss, but experience difficulty in accurate object
localization. A larger backbone and more training data even
make this phenomenon even more serious.

Effect of Timesteps and Resolutions. In Tables 4 and
5, we evaluate the performance by aggregating attention
maps under different timesteps and spatial resolutions. It
can be seen that aggregating the attention maps of spatial
resolutions 8× 8 and 16× 16 at time steps 1, 100 produces
the best localization performance.

7. Conclusion and Future Remark
To solve the partial object activation brought by discrim-

inatively trained activation models in a systematic way, we
propose GenPromp, which formulates WSOL as a condi-
tional image denoising procedure. During training, we use
the learnable embeddings to conditionally recover the input
image with the aim to learn the representative embeddings.
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During inference, GenPromp first combines the trained rep-
resentative embeddings with another discriminative embed-
dings from the pre-trained CLIP model. The combined em-
beddings are then used to generate attention maps at mul-
tiple timesteps and resolutions, which facilitate localizing
the full object extent. GenPromp not only sets a solid
baseline for WSOL with generative models but also pro-
vides fresh insight for handling vision tasks using vision-
language models.

When claiming the advantages of GenPromp, we also
realize its disadvantages. One major disadvantage is its de-
pendency on large-scale pre-trained vision-language mod-
els, which could slow down the inference speed and raise
the requirement for GPU memory cost. Such a disadvan-
tage should be solved in future work.
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