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Abstract

Domain adaptive semantic segmentation aims to adapt a
model trained on labeled source domain to unlabeled tar-
get domain. Self-training shows competitive potential in
this field. Existing methods along this stream mainly focus
on selecting reliable predictions on target data as pseudo-
labels for category learning, while ignoring the useful re-
lations between pixels for relation learning. In this paper,
we propose a pseudo-relation learning framework, Relation
Teacher (RTea), which can exploitable pixel relations to ef-
ficiently use unreliable pixels and learn generalized repre-
sentations. In this framework, we build reasonable pseudo-
relations on local grids and fuse them with low-level rela-
tions in the image space, which are motivated by the reli-
able local relations prior and available low-level relations
prior. Then, we design a pseudo-relation learning strat-
egy and optimize the class probability to meet the relation
consistency by finding the optimal sub-graph division. In
this way, the model’s certainty and consistency of predic-
tion are enhanced on the target domain, and the cross-
domain inadaptation is further eliminated. Extensive ex-
periments on three datasets demonstrate the effectiveness
of the proposed method. The code will be available at
https://github.com/DZhaoXd/RTea.

1. Introduction
Semantic segmentation is a challenging problem of as-

signing each pixel a class label in an image. Driven by deep
neural networks, significant progress has been made in this
field. Despite these efforts, a segmentation model trained
with a specific domain does not generalize well to other do-
mains. It is known to be caused by the domain gap between
the training (source) and testing (target) domains [13]. To
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Figure 1: Overview of our motivation. In A, previous
self-training methods select reliable pseudo-labels for cate-
gory learning. In B, our method reasonably utilizes reliable
pseudo-labels and unreliable ones for relation learning.

solve this problem, unsupervised domain adaptation (UDA)
is proposed to improve the segmentation model’s adaptabil-
ity to the target domain.

Domain alignment is one of the mainstream UDA se-
mantic segmentation methods, aiming to align the distribu-
tion of source and target domains in input [30, 60, 25, 4],
feature [53, 32, 19, 22, 35, 65, 50, 56], or output spaces
[48, 33, 49]. Works along this line achieve positive adapta-
tion benefits but the lack of specific target domain knowl-
edge leads to slight improvement [39, 68, 66].

To this end, self-training methods [27, 10, 1, 69, 64, 67]
are proposed to mine target-specific knowledge. These
methods use the pseudo-labels generated by the pre-adapted
model to further train the model on the target domain.
Consequently, the quality of pseudo-labels for training di-
rectly determines the performance of self-training. Fol-
lowing this key point, reliability measure-based and uncer-
tainty estimation-based self-training methods are proposed
[71, 27, 69, 10, 1, 64, 52]. These methods reduce the noise
interference of pseudo-labels for category learning, bring-
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ing considerable performance improvement.
In this paper, we explore the potential of self-training

from another perspective, as shown in Fig. 1. In Fig. 1
A, previous self-training methods perform category learn-
ing on reliable pseudo-labels and discard unreliable ones.
However, we find that not only category learning but re-
lation learning can be performed in pseudo-labels to further
improve the adaptability of the model. In Fig. 1 B, we argue
that relation learning in pseudo-labels can be performed in
two ways: 1© The relations between reliable pseudo-labels
can be additionally used for representation learning to build
a more generalized representation space. 2© By establish-
ing the relations between reliable and unreliable pseudo-
labels, discarded pixels can also be effectively used for self-
training to increase the certainty of the model. In this way,
the available knowledge contained in pseudo-labels can be
fully exploited, both reliable and unreliable pixels.

To achieve the above goals, building reasonable relations
between pixels is the core. Dense pixel relations can be rep-
resented by a relation matrix (or affinity matrix) [8, 20, 29],
modeling the similarity between pixels on an image. Due
to massive noise contained in the pseudo-labels, the relation
matrix constructed by them also contain noisy relations. We
explore two observational priors to guide the building of re-
lations, as shown in Fig. 2. We use the predictions of the
unadapted model for the target images to observe noise dis-
tribution of relations. Comparing Fig. 2 (e) and (f), we
observe that high-level relations built by pseudo-labels are
noisy in long-distance association but are reliable within lo-
cal areas, which are termed as reliable local relations prior.
We analyze this because the insufficiently adapted model
cannot transfer global semantics and can only give reason-
able relations in local regions. Besides, in Fig. 2(d), we
further explore the low-level relations built on each local
grid in image space using Gaussian kernel. We find that
the low-level relations in local grids can capture the bound-
aries of objects and contain exploitable relations, which are
termed as available low-level relations prior. We argue that
such relations, although lacking in semantics, provides class
boundary clues can be reasonably exploited.

With these aspects in mind, we propose a pseudo-
relation learning-based self-training framework, Relation
Teacher (RTea), forcing the student model to learn the
pseudo-relations between pixels from the teacher model and
achieve co-evolution for both models. In this framework,
with the guidance of the above two priors, we first use
pseudo-labels to build high-level relations in each divided
grid, which avoids being misled by long-distance relation-
ships. Then, we fuse low-level relations in image space into
high-level relations to attenuate noisy relations and assist
semantic relations in identifying category boundaries. Next,
we explore the way of learning pseudo-relations and de-
vise a novel pseudo-relations loss, which optimizes the class
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Figure 2: Overview of two observational priors. (b) is the
source-only model’s prediction, (d) is the local relation map
in image space built by Gaussian kernel in each grid, (e) is
the pseudo-relation matrix. (f) is the relation matrix built by
ground truth.

probability to meet the relation consistency by finding the
optimal sub-graph division from the global pseudo-relation
of each class. It has two advantages over the naive relation-
learning loss: one is global relational modeling, which can
be easily implemented by matrix multiplication; the other
is threshold-free learning by dynamically weighting class
probabilities and pseudo-relations.

With RTea, the model’s certainty and consistency of pre-
diction can be enhanced on the target domain, and the cross-
domain inadaptation is further eliminated. Sufficient ex-
periments show our method can further mine the available
knowledge in pseudo-labels, and it can be easily incorpo-
rated into existing self-training method to further boost their
performance.

2. Related work
Unsupervised Domain Adaptation (UDA). UDA meth-
ods can be divided into domain alignment and self-training.
Alignment-based methods narrow the domain gap by align-
ing distributions at different levels, e.g., input [12, 30, 25,
60], feature [32, 33, 7, 50, 56, 22] and output [48, 49, 59].
Although they achieve positive adaptation benefits, the lack
of specific target domain knowledge leads to slight im-
provement. To this end, self-training methods are proposed
to train the network with pseudo-labels for the target do-
main, which can be divided into two categories, offline and
online pseudo-label-based methods. Offline self-training
(OFFST) methods saves the target domain pseudo-labels
generated by the pre-trained model and use them to train
the model iteratively [27, 10, 37]. To avoid noise interfer-
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ence, these methods select high-quality pseudo-labels via
threshold setting [70, 71], consistent prediction [68], and
pseudo-label prototypes [64]. These methods require ad-
ditional storage of pseudo-labels and an iterative training,
which is not conducive to practical use. Online self-training
(ONST) uses the model’s output during training as super-
vision without saving intermediate results [58, 4, 51, 1].
ONST avoids the inconvenience of multiple training rounds
and manual intervention between consecutive rounds in
OFFST. Our work is designed in online self-training fash-
ion. Besides, our method further mines the available knowl-
edge in pseudo-labels from the novel perspective of pixel
relations, which can further promote pseudo-label learning
and boosting self-training performance.
Relation Learning (RL) in Semantic Segmentation. In
supervised semantic segmentation, capturing relations be-
tween pixels is continuously studied at feature [8, 20, 29]
and output layers[24, 17]. At the feature layer, several work
[8, 20, 62, 29] use the label-guided pixel relation to build a
compact feature space, in which features of the same class
are close and of different classes are far. At the output
layer, AAF [24] and CDGC [17] exploit pixel relations in
the ground truth to correct the output probabilities, forcing
the model to adjust both the classifier and the feature extrac-
tor to output reasonable relations and semantic structure.
These supervised RL methods achieve huge performance
improvements, emphasizing the importance of maintaining
the relation between pixels. However, in the UDA task, the
lack of annotations makes it impossible to build relations as
these works. Our method proposes a novel pseudo-relation
building and learning strategy so that the above advantages
can be also achieved to the UDA segmentation task.
Pseudo Label Correction. As a classic technique of semi-
supervised learning, pseudo-labeling has shown favorable
competitive advantages in many visual tasks with limited
labels. Due to the limitation of confidence bias and er-
ror accumulation [41], pseudo-labeling are easy to over-
fit the noise and lead to model divergence[61]. Some pi-
oneering works alleviate the problems from pseudo-label
selection[63], negative label learning[41], contrastive learn-
ing [55], model calibration [23, 54]. However, the task-
specific and domain-dependent design limits the applica-
tion of these methods in complex cross-domain tasks. In
contrast, our work proposes a novel perspective to rectify
pseudo-labels and a tailored solution for cross-domain seg-
mentation tasks.

3. Methodology

3.1. Background and Overview

This paper focuses on the unsupervised domain adapta-
tion (UDA) semantic segmentation, where source domain
data Xs = {xs} with pixel-level labels Ys = {ys}

and unlabeled target domain data Xt = {xt} are given.
Our goal is to train a segmentation model G that can work
well on target domain. G consists of a feature extractor F
and a classifier C. Given sampled image x ∈ Xs ∪ Xt,
F mapping x to the feature space f = F (x), and C cate-
gorizes each feature in f to obtain a class probability map
p = C(F (x)) ∈ Rh×w×K . For the source domain, the
cross entropy loss Ls is calculated to optimize the model,

Ls = − 1

|Xs|
∑
xs∈Xs

logC(F (xs))(ys). (1)

For the target domain, to narrow the domain gap, self-
training methods adopt pseudo-labels ŷt generated by the
pre-adapted model to retrain the unadapted model,

Lst = − 1

|Xt|
∑
xt∈Xt

logC(F (xt))(ŷt). (2)

In this way, the model’s adaptability can be enhanced by
relearning the knowledge of the pseudo-labels in the target
domain. However, using Eq. 2 tends to interfere with train-
ing because the pseudo-labels contain massive noise. Thus,
some works select high-confidence pseudo-labels by setting
threshold ζk for each class,

ŷt =

{
arg maxk p

k
t , if max(pkt ) > ζk

ignore , otherwise,
(3)

where pkt is the k-th class probability score. In Eq. 3, the ζk

determines the quality of the selected pixels, which needs
to be dynamically adjusted according to the adaptation de-
gree. Thus, in the subsequent works, scholars [58, 4, 51, 1]
mainly focus on setting reasonable thresholds or uncertainty
estimation strategies to select reliable pixels.

In this paper, we explore the potential of self-training
from another perspective. Different from mining cate-
gory knowledge in pseudo-labels, we propose to mine re-
lation knowledge in pseudo-relations between pixels. The
overview of our method is shown in Fig 3. For the source
domain, images are input to the student model, which is
optimized by the Ls. For the target domain, the original
image and its data-transformed version are input into the
student model and teacher model, respectively. After that,
the output of the teacher model is used to build pseudo-
relations Spr to further supervise the student model of cat-
egory learning by Lst and relation learning by Lpr. We de-
tail the pseudo-relation Spr building in Sec.3.2, and detail
the pseudo-relation learning by optimizing Lpr in Sec.3.3.

3.2. Pseudo-relation Building

In the supervised segmentation task, relations can be
driven by ground truth, which is not achievable for the UDA
segmentation. Thus, how to build the relations between
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Figure 3: The overall pipeline of the proposed Relation Teacher that includes a student model and a teacher model. Slow,
Shigh and Spr represent low-level relation matrix, high-level relation matrix and pseudo-relation matrix. Lst is the traditional
loss function for pseudo-label learning. Lpr is the proposed loss function for pseudo-relation learning.

pixels in the target domain is the key. A naive solution is
to build by measuring the class similarity between pseudo-
labels from a pre-adapted model. Given any two pixels p(t,i)
and p(t,j) (i, j = 0, 1, 2, ..., w × h) on the class probability
map pt ∈ Rh×w×K of the target domain, the high-level re-
lation between them can be defined as,

s(i,j) = SIM(p(t,i), p(t,j)), (4)

where SIM(·, ·) is the cosine similarity measure. Extending
this relation to all pixels in an image, we can derive a high-
level relation matrix S = {s(i, j)} ∈ Rhw×hw. However,
such a relation modeling mechanism will introduce massive
noise due to the unadapted model. As mentioned in reliable
local relations prior, these noises are mainly in the long-
distance relations but relations in local grids are relatively
accurate.

To this end, we devise a local relation modeling mech-
anism. We divide the target image into N × N grids
{Gl}

hw/N2

l=1 and model the relations inside the grid. Then
the high-level relation matrix for each grid can be obtained,

Shigh = {s(m,n)}(m,n)∈Gl
∈ RN

2×N2

. (5)

Nonetheless, local pseudo-relations may still contain noise
due to domain shifts.

To further mitigate unreliable relations in local grids,
we introduce low-level relation constraints in each grid.
The motivation stems from available low-level relations
prior that local low-level relations (RGB space) can be
well used to capture the edges and internal structures of

objects. Drawing on the traditional potential energy func-
tion constructing the potential energy field [43, 44, 38], we
use the Gaussian function to calculate the energy on the
RGBXY[43] space as low-level relation constraints,

Slow = {Ψ(m,n)}(m,n)∈Gl
∈ RN

2×N2

,

Ψ(m,n) = exp

(
−
∣∣∣∣Im − Inσ

∣∣∣∣2), (6)

where I(·) is the feature vector on RGBXY space, σ is the
bandwidth parameter of the Gaussian function. Due to the
nature of the Gaussian function[16], the value range of the
Slow are [0, 1], which is the same as that of Shigh. A higher
value indicates a stronger association between pixels. Al-
though it lacks high-level semantics, it can better regularize
relations (See Tab. 4 for verification). We linearly combine
the low- and high-level relations as final pseudo-relations,

Spr = αSlow + (1− α)Shigh, (7)

where the α is a hyper-parameter and is simply set to 0.5.

3.3. Pseudo-relation Learning

Following the paradigm of pseudo-label learning, we can
exploit the reliable relations in the pseudo-relation matrix to
perform pseudo-relation learning. Specifically, for any pixel
pair p(t,i) and p(t,j) in l-th grid, we can perform a pairwise
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relation loss [24, 17] in a pseudo manner as follows,

L̂pr =
∑
l

∑
i,j

KL(p(t,i)||p(t,j)) · 1(Spr;l(i, j) > Mup) +

(1−KL(p(t,i)||p(t,j))) · 1(Spr;l(i, j) < Mlow).
(8)

KL(·||·) is the Kullback-Leibler divergence between two
distributions. 1(·) is the indicator function for threshold-
ing. Mup and Mlow are upper and lower thresholds for fil-
tering unreliable relations. Optimizing this loss pulls the
class distribution of the pixel pairs with a pseudo-relation
higher than Mup closer and pushes those with a pseudo-
relation lower than Mlow further away. In this way, pseudo-
relation learning can assist pseudo-label learning (in Eq.2)
in the following aspects. Let the pixels used by Eq.2 be
denoted as reliable pixels, and the rest are unreliable ones.
1). Relations between reliable pixels. Those reliable inter-
and intra-class relations are informative and can be incor-
porated into learning as structural inference. 2). Relations
between reliable and unreliable pixels. Pushing or Pulling
the class probabilities of the unreliable pixels towards reli-
able ones will greatly enhance the confidence of the model.
3). Relations between unreliable pixels. Although we can-
not give these pixel pairs explicit class targets, implicit class
cues may help the model to enhance confidence. See further
instructions in Appendix A.

In practice, in L̂pr, the pair of class distribution input
to KL(·||·) should assign the more sharp one as the target.
This makes it require pair-by-pair index calculation, which
greatly increases the training time. Besides, Mup and Mlow

requires hyper-parameter search under different adaptation
tasks, hindering the flexibility of application. Here, we learn
from the idea of graph cut [57] and devise a new pseudo-
relation loss, which can be performed by matrix multiplica-
tion without explicit thresholding.

Specifically, in l-th grid, we construct an undirected
weighted graph G, treating all pixels in this grid as nodes
of the graph and the similarity between these pixels as the
weights of edges. Thus, the corresponding Spr;l can be seen
as a pseudo-adjacency matrix of the G. With the G, the K
classification problem is regarded as a graph cutting prob-
lem of cutting a graph into K subgraphs. Then, the k-th
class probability pkt;l of this grid is regarded as the prob-
ability of the corresponding nodes cut into k-th subgraph
(k ∈ [0,K − 1]). According to the properties of the graph,
we can calculate the soft cost of cutting the k-th subgraph
as follows,

cutk = p̂kt;lSpr;l1− p̂kt;lSpr;l(p̂kt;l)T . (9)

p̂kt;l ∈ R1×N2

is the vector flatten by pkt;l ∈ R1×N×N ,

1 ∈ RN2×1 is an all-ones vector. We show an example to il-
lustrate Eq.9 in Fig.4. The smaller the cut value, the smaller

a. Before learning pseudo-relation b. After learning pseudo-relation

Reliable pixelsUnreliable pixels

Hard cut

𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
𝑝𝑝4
𝑝𝑝5

1 0
1 0
1 0
0 1
0 1𝑃𝑃0𝑆𝑆𝑆

𝑃𝑃0𝑆𝑆𝑃𝑃0

class probability

4

5

3

2

1

+:
: 𝑆𝑆

𝑃𝑃:

: adjacency matrix

graph

Figure 4: We show an example of binary classification to
illustrate Eq.9. Given five samples and their class proba-
bility P , take the cut of class 0 as an example. P 0S1 is
the sum of all edges connected to the nodes of class 0, i.e.,
the green and dashed lines. P 0SP 0 is the sum of all edges
connecting two nodes of class 0, i.e., the green lines, and
P 0S1 − P 0SP 0 is the cost consumed of the 0 class. To
minimize the cost, nodes with high affinity should be clas-
sified into the same class, and vice versa.

the correlation between the subgraphs and the larger the cor-
relation within the subgraphs. Thus, cutk can be regarded
as a proxy, when the cutk value is small, the class proba-
bility pkt;l better conforms to the pseudo-relations Spr;l, and
vice versa. Moreover, the Eq.9 is derivable with respect to
pkt;l, and its gradient w.r.t. pk is,

∂cutk

∂pk
= Spr(1− 2pk). (10)

The proxy’s gradient is proportional to the Spr and 1− 2pk

, which implicitly weight high-confidence relations and re-
liable pixels (class probability far from 0.5). This explains
that unreliable edges (relations) on the graph play a minor
role in pulling or pushing away the class distribution, en-
abling adaptive weighting without threshold. Consequently,
we modify Eq.9 as a threshold-free pseudo-relation loss
function to optimize pt as follows,

Lpr =

hw/N2∑
l

K∑
k

p̂kt;lSpr(1− p̂kt;l)T . (11)

Lpr can be calculated using matrix multiplication in a sim-
ple and quick way.

3.4. Relation Teacher

We embed the learning of pseudo-relation into the opti-
mization of mean-teacher [45] framework to realize online
self-training as shown in Fig 3. The final optimization ob-
jective is,

Lf = Ls + λstLst + λprLpr. (12)

where λpr, λst are the trade-off coefficients. λst is set as
0.001 following SAC [1]. λpr is empirically set to 0.01 to
balance the loss value.

19195



Method ro
ad

si
de

w
al

k

B
ui

ld
in

g

W
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

.

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
bi

ke

bi
ke

mIoU

FADA (ECCV 2020) [50] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
FDA (CVPR 2020) [60] 92.5 53.3 82.3 26.5 27.6 36.4 40.5 38.8 82.2 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.8 27.7 46.4 50.4
IAST (ECCV 2020) [37] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

MetaCorr (CVPR 2021) [10] 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
RPT (CVPR 2021) [66] 89.2 43.3 86.1 39.5 29.9 40.2 49.6 33.1 87.4 38.5 86.0 64.4 25.1 88.5 36.6 45.8 23.9 36.5 56.8 52.6
SAC (CVPR 2021) [1] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

CFDAN (CVPR 2021) [36] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1
SDFA (ICCV 2021) [26] 94.8 59.4 86.2 40.5 29.5 25.5 43.8 34.7 85.9 34.9 89.5 63.4 30.8 88.3 42.6 50.7 25.3 35.7 40.9 52.8

ProDA (CVPR 2021) [64] 87.8 56 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
SimT (CVPR2022) [9] 94.2 60 88.5 30.3 39.7 41.2 47.8 60.8 88.6 47.3 89.3 71.5 45.0 90.7 54.2 60.2 0.0 51.8 58.4 58.9

CPST (CVPR 2022) [28] 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.5 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
Undoing (CVPR 2022) [31] 92.9 52.7 87.2 39.4 41.3 43.9 55 52.9 89.3 48.2 91.2 71.4 36 90.2 67.9 59.8 0 48.5 59.3 59.3

DAP (CVPR 2022) [21] 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87 73.6 38.6 91.3 50.2 52.9 0 50.2 63.5 59.8
CaCo (CVPR 2022) [18] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0
ADPL (TPAMI 2023) [3] 93.4 60.6 87.5 45.3 32.6 37.3 43.3 55.5 87.2 44.8 88 64.5 34.2 88.3 52.6 61.8 49.8 41.8 59.4 59.4

RTea (Ours) 95.4 67.1 87.9 46.1 44.0 46.0 53.8 59.5 89.7 49.8 89.8 71.5 40.5 90.8 55.0 57.9 22.1 47.7 62.5 61.9
Daformer (CVPR 2022) [14] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

Daformer + RTea (Ours) 96.1 71.7 89.1 57.8 50.4 55.9 59.3 66.7 90.4 48.2 94.5 74.8 46.5 93.8 78.7 81.6 65.8 57.1 62.8 70.6
HRDA (ECCV 2022) [15] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

HRDA + RTea (Ours) 97.1 75.2 92.6 63.5 51.8 58.2 66.5 71.2 91.1 49.0 96.8 81.5 54.2 94.2 84.8 86.6 75.7 62.2 66.7 74.7

Table 1: Experimental results for GTA5→ Cityscapes adaptation task. The best results in every column are highlighted.
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MetaCorr (CVPR 2021) [10] 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
RPT (CVPR 2021) [66] 88.9 46.5 84.5 15.1 0.5 38.5 39.5 30.1 85.9 85.8 59.8 26.1 88.1 46.8 27.7 56.1 51.2 58.9
SAC (CVPR 2021) [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3

CFDAN (CVPR 2021) [36] 75.7 30.0 81.9 11.5 2.5 35.3 18.0 32.7 86.2 90.1 65.1 33.2 83.3 36.5 35.3 54.3 48.2 55.5
SFDA (ICCV 2021) [26] 90.5 50.0 81.6 13.3 2.8 34.7 25.7 33.1 83.8 89.2 66.0 34.9 85.3 53.4 46.1 46.6 52.0 60.1
ProDA (CVPR 2021) [64] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
CPST (CVPR 2022) [28] 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 88.5 79.0 32.0 90.6 49.4 50.8 59.8 57.9 65.3

Undoing (CVPR 2022) [31] 82.5 37.2 81.1 23.8 0 45.7 57.2 47.6 87.7 85.8 74.1 28.6 88.4 66.0 47.0 55.3 56.7 64.5
CaCo (CVPR 2022) [18] 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 81.2 56.3 24.2 78.6 39.2 28.1 48.3 46.0 53.6
ADPL (TPAMI 2023) [3] 86.1 38.6 85.9 29.7 1.3 36.6 41.3 47.2 85 90.4 67.5 44.3 87.4 57.1 43.9 51.4 55.9 63.6

RTea (ours) 93.2 59.6 86.3 31.3 4.8 43.1 41.8 44.0 88.6 90.5 70.4 42.6 89.5 56.7 40.2 59.9 58.9 66.4
Daformer (CVPR 2022) [14] 84.5 40.7 88.4 41.5 6.5 50.0 55 54.6 86 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9

Daformer + RTea (Ours) 85.9 43.2 90.1 45.1 6.3 52.4 60.5 57.1 87.8 92.2 75.3 51.8 87.4 55.9 54.1 62.6 69.5 63.0
HRDA (ECCV 2022) [15] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89 64.7 63.9 64.9 72.4 65.8

HRDA + RTea (Ours) 87.8 49.0 90.3 50.3 5.5 58.6 66.0 61.4 86.8 93.1 79.5 53.1 89.5 65.1 63.7 64.6 73.0 66.5

Table 2: Experimental results for SYNTHIA→ Cityscapes adaptation task. The best results in every column are highlighted.
The mIoU and mIoU* are averaged over 16 and 13 categories, respectively.

4. Experiment

4.1. Datasets and Experimental Setup

Datasets. We use one real dataset (Cityscapes [5]) and two
synthetic datasets (GTA5 [40] and SYNTHIA [42]). The
Cityscapes dataset contains 2,975 training images and 500
validation images of resolution 2048×1024. The GTA5
dataset contains 24,966 images with resolution 1914×1052
and has 19 common categories with Cityscapes. The
SYNTHIA dataset contains 9,400 images with resolution
1280×760 and has 16 common categories with Cityscapes.
Implementation Details. We adopt Deeplab-v2 [2] as the
base network, ResNet-101 [11] as the feature extractor and
the aspp [2] module as the classifier. The network is pre-

trained on ImageNet. The optimizer is SGD with the mo-
mentum of 0.9 and weight decay of 10−4. The initial learn-
ing rate is set to 2.5 × 10−4, and then is reduced follow-
ing a poly policy with a power of 0.9. The batch size
is set as 4. The final λf and λo values are set to 0.025
and 0.005, respectively. We apply the Lpr to the model’s
output class probability, which is 8 times smaller than the
original resolution. And the grid size N is set to 8. The
weighting factor α is set to 0.5. The σ for XY and RGB
space in Gaussian function is set to 6 and 0.1, following
[43]. Data augmentation strategies performed on the data
input to the student model include random flipping, Gaus-
sian noise, color transformation, cutout[6], and contrast en-
hancement, a similar and common operation in online self-

19196



training methods [58, 4, 51, 1]. Besides, we also preform
the class-mixing resampling strategy [47] on the source do-
main to focus on the minority class. When performing Lst
for pseudo-label learning, we adopt the thresholding selec-
tion method in SAC [1] to pick high-quality samples. After
training with Rtea, we retrained the model using the distilla-
tion strategy [64] for better adaptation, which is commonly
used in recently published UDA work [31, 21, 28, 3]. The
detailed scores for each stage are in the Tab. 3. Our network
is trained with four RTX3090 GPUs on PyTorch.

4.2. Comparisons with State-of-the-Arts

GTA5 → Cityscapes. We report the comparison results
with existing methods on GTA5→ Cityscapes task in Tab.
1. We compared two structures based on resnet-101 and
transformer structures. Overall, our RTea achieves new
state-of-the-art performance than related works, and the
category performance scores are also highly competitive,
demonstrating the effectiveness of RTea. Compared with
the domain alignment method, the performance of RTea
show an advantage over the state-of-the-art method FDA
[60] by 11.5%. Compared with the offline self-training
method, the mIoU score of RTea is 10.4% and 9.8% higher
than IAST [37] and RPT[66]. Compared with the online
self-training method, RTea exceeds SAC [1] and ProDA
[64] by 8.1% and 4.4%. Compared with the newly re-
leased method Undoing[31], DAP[21] and ADPL[3], our
RTea still outperforms these methods by more than 2.0%
mIoU scores, showing the potential of our method even
more. Compared with the method of transformer structure,
our method improves the mIoU score by 0.7% and 0.9% on
Daformer [14] and HRDA [15] respectively, which shows
that RTea has good scalability and transferability. Qualita-
tive results on both tasks can be found in Appendix B.
SYNTHIA → Cityscapes. The results of using SYN-
THIA as the source domain are reported in Tab. 2, includ-
ing mIoU/mIoU∗ covering 16/13 classes. On the whole,
our method still achieves significant improvements, show-
ing gains over advanced methods. In particular, SYNTHIA
and Cityscapes suffer from significant visual domain dif-
ferences in ‘road’, and ‘sidewalk‘, which leads to the poor
performance of the most UDA methods in these categories.
Our method uses the pseudo-relations of these categories
and achieves higher performance improvements, and we ar-
gue this is due to the local pseudo-relation learning to better
capture the structure of these categories. Compared with the
domain alignment and offline self-training methods, RTea
maintains similar performance gains to the GTA5 trans-
fer task. Compared with online self-training method, we
achieve better performance than CPST [28] over 16 and 13
classes, exceeding its by 1.0% and 1.1% mIoU score. Com-
pared with the adaptation method using transformer struc-
ture, our method improves the mIoU score by 2.1% and

Ls Lst copy-paste L̂pr Lpr Lspr Dist GTA5 SYNTHIA

X X 53.5 51.2
X X X 55.8 53.9
X X X X 58.9 56.3
X X X X 59.6 56.8
X X X X X 59.6 56.9
X X X X X X 61.9 58.9

Table 3: Ablation experiments of each module in GTA5 and
SYNTHIA → Cityscapes adaptation task. The basic self-
training (Ls + Lst) is following SAC[1]. The copy-paste
means that we adopt the resampling strategy in [47] for mi-
nority learning. Here, we report a result of L̂pr with the
fine-tuned thresholds by grid search. Lspr denotes that re-
lation learning is performed on the source domain. Dist
denote the distillation strategy in [50, 64]. All numbers are
mIoU(%) score.

0.7% on Daformer [14] and HRDA [15], which further ver-
ifies the effectiveness of the method.

4.3. Ablation Studies

Ablation for Each Module. Tab.3 reports the ablation
results for different modules. We adopt SAC [1] with
the copy-paste [47] argumentation as the baseline, achiev-
ing the 55.8% and 53.9% mIoU score on two adaptation
tasks. Overall, Rtea achieves 3.8% and 3.0% performance
improvements on the two tasks on this competitive base-
line, respectively, showing the effectiveness of the pseudo-
relation learning. Specifically, the naive L̂pr loss, although,
can improve performance, the screening of the threshold
makes it difficult to be directly applied to practice, because
the threshold may be very sensitive in different adaptation
scenarios. The proposed Lpr loss does not require explicit
threshold while improving the performance, showing its
flexibility and effectiveness. In addition, we also tried to
perform pseudo-relation learning on the source domainLspr,
and we did not find a significant performance improvement,
which may be because it cannot directly benefit the tar-
get domain. After training with RTea, the self-distillation
method can still be used to further improve the adaptability
of the model in the target domain.
Ablation for Pseudo-Relation Building. Tab.4 shows the
ablation results for building pseudo-relation. When the
relations are built on RGBXY space (Slow), the perfor-
mance achieves a good improvement, 2.0% and 2.1% on
two tasks, respectively, which suggests that low-level rela-
tions on local grids can propagate effective category knowl-
edge. When the relations are built on pseudo labels (Shigh),
the performance is only improved by 1.0% and 0.7% on two
tasks, respectively. This is because it is not easy to find valu-
able relation pairs in this way, and their effects may overlap
with label learning. Specifically, unreliable pixels discarded
by pseudo-label learning are still difficult to use, and high
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Slow Shigh Spr GTA5 SYNTHIA

55.8 53.9
X 57.8 55.8

X 56.8 54.6
X 59.6 56.8

Table 4: Ablation experiments on the pseudo-relation build-
ing. Slow, Shigh and Spr are low-level, high-level and final
pseudo relation matrix.

R−R R− U U − U GTA5 SYNTHIA

55.8 53.9
X X 58.2 55.2

X X 57.2 54.9
X X 59.3 56.6
X X X 59.6 56.8

Table 5: Ablation experiments on the pseudo-relation learn-
ing. R−R denotes pairs with two reliable pixels. R−U de-
notes pairs with one reliable and one unreliable pixel. U−U
denotes pairs with two unreliable pixels.

confidence relationships still contain massive noise, When
Slow and Shigh are combined, the best effect is achieved.
We argue that the advantage is that, the noisy relations in
the high level are corrected and the lack of semantics of
the low-level relations is also made up, and more unreliable
pixels are better exploited.
Ablation for Pseudo-Relation Learning. To verify the ef-
fect of different pixel pairs on pseudo-relation learning, we
devise the ablation study in Tab. 5. We follow 1), 2) and
3) explained in the Eq. 8, and divide them into R-R (two
reliable pixels), R-U (one reliable and one unreliable pixel)
and U-U (two unreliable pixels). During training, we clear
all gradients for one of the pairs to verify its effect on adap-
tation. We find that R-U pairs play the most important role
in adaptation, R-R pairs come second, and U-U pairs come
last. We analyze learning R-U pairs can make full use of
valuable pixels from unexploited target domains, which is
the most direct to enhance the target domain adaptability.

4.4. Discussion

Sensitivity for reliable sample selection. In this section,
we perform two experiments to explore how sensitive RTea
is to reliable sample selection. First, we report the results
when the parameters of the heuristic threshold (Eq. 3) are
varied. The thresholding strategy consists of two hyper-
parameters, namely the upper threshold θ and the decay rate
β. Table 6 shows that our method maintain a stable per-
formance improvement when thresholding parameters vary
within a certain range. Second, we report Rtea’s perfor-
mance on different reliable sample selection methods in Ta-
ble 7. It verifies the effectiveness of RTea, which improves
the performance of different self-training methods.

β=0.0001 β=0.001 β=0.01
θ = 0.75 59.0 59.2 58.8
θ = 0.80 59.2 59.6 59.1

Table 6: The mIoU scores (%) on GTA5→ Cityscapes task
with varying thresholding parameters in Eq. 3.

PD CD AD HT
without Rtea 55.0 54.4 53.2 55.8

with Rtea 58.8 56.8 54.8 59.6

Table 7: The mIoU scores (%) on GTA5→ Cityscapes task
with different reliable sample selection strategies. PD de-
notes feature-prototype distance [64], CD denotes classifier
discrepancy [69], AD denotes adversarial difficulty [34] and
HT is our used heuristic threshold [1].

How local grids affect each relation pair. We perform
experiments on GTA5 → Cityscapes to verify which rela-
tion pairs are most affected by local grids. Pixels are still
classified as reliable (R) and unreliable (U) according to
whether they are used for category learning in traditional
self-training, see Tabel 8. In the first line, we find that (1)
the global grid is good for R − R because it extends the
spatial scope of relational learning, while it does harm to
R − U and U − U due to the long-range relation noise.
As a result, performing pseudo-relation learning on global
region lead model degradation. In the second line, we ar-
gue that (2) performing pseudo-relation on the local grids
slightly reduces the gain of R − R, but greatly reduces the
interference of noise on R − U and U − U . Finally, the
model can obtain better performance improvement.

Baseline R−R R− U U − U
Global 55.8 57.2 (+1.4) 51.4 (-4.4) 52.5 (-3.3)

Local grid 55.8 56.6 (+0.8) 57.9 (+2.1) 55.9(+0.1)

Table 8: The mIoU (%) of local grids effect on GTA5 →
Cityscapes adaptation task.

Computational overhead. Performing relation learning
on dense prediction tasks such as semantic segmentation
is time-consuming. Therefore, it is necessary to discuss
the computational overhead introduced in Rtea. Overall,
we think the pseudo-relation computational overhead is ac-
ceptable. First, for complexity, our computational cost is
O(N2WH) (H,W : width and height of feature map, N :
grid size, N � W,H), which is greatly reduced compared
to the global similarity O(W 2H2). Second, the pseudo-
relation can be computed in parallel using matrix operations
in PyTorch. On a Nivida RTX-3090, it only takes almost 40
ms for each batch and only increases about 3% computa-
tional overhead in each iteration. Third, the cost is only for
training and not for inference.
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Align low- and high-level relation matrix with the same
Gaussian function. In the method section, we use the co-
sine distance (Eq. 5) and Gaussian distance (Eq. 6) to
model the similarity of high- and low-level, respectively.
It is interesting to explore unifying the modeling of high-
and low-level pseudo-relations into the same metric func-
tion, e.g. Gaussian distance. With the same metric func-
tion, for any local grid Gl, the local relation can be built as,
s(m,n) =

∑
m,n∈Gl

Ψσrgbxy
(m,n) ·Ψσprob

(m,n), where
σrgbxy and σprob are the bandwidth of the low- and high-
level Gaussian function. This formula is similar to the ker-
nels of bilateral filtering[46], inspiring us to understand the
pseudo-relation learning from the filtering perspective, i.e.
smoothing and correcting the noise on output probability.
Table 9 presents the comparison results, showing unifying
the same metric function can maintain performance with
less computational overhead.

Metric GTA5 SYN. Time Metric GTA5 SYN. Time
Current 59.6 56.9 40ms Same Gaussian 59.6 57.1 29ms

Table 9: The mIoU (%) and computational cost (time/batch)
using different similarity metric functions on GTA5 →
Cityscapes adaptation task.

Hyper-parameters Impacts. We analyze the sensitivity of
the hyper-parameters α (trade-off coefficient), grid size N ,
the results are presented in the Appendix C.

4.5. Visualization

Visualization of pixel relations. Fig. 5 visualizes the
learned relations on GTA5→ Cityscapes task. Comparing
Fig. 5 a , b and e, it shows that the feature associations of
the baseline are chaotic while our method builds more accu-
rate feature relations. Comparing Fig. 5 c, d and e, it indicts
that our method captures category relations more accurately
than baseline, resulting in more structured outputs.
Comparison of Pixel Utilization and Model Confidence.
Fig. 6 compares the correct pixel utilization (PU) and aver-
age confidence (AC) of the model before and after adding
RTea. With RTea, the PU is significantly improved and the
AC also shows better results. It illustrates RTea can ex-
ploit more uncertain pixels around high-confidence pixels
and propagate relation information to them, thereby fully
improving the certainty of the model.
Visualization of Pseudo-Labels. Fig. 7 visualizes the
pseudo-labels of the baseline and our RTea to demonstrate
the benefits of pseudo-relation learning. It shows that the
RTea makes better use of pseudo-labels than the baseline
model. For the areas are hard to distinguish (framed by the
red box), RTea can enlarge the reliable pseudo-label area
by capturing relations between pixels. Moreover, RTea pro-
vides clear class boundaries for the classes such as roads,
sidewalks and buildings, which is more helpful for pseudo-
label learning.

a. Feature relations of 
baseline

b. Feature relations of RTea. c. Prediction relations 
of baseline e. Relations of ground truth

d. Prediction relations 
of RTea.

Figure 5: Visualization of the learned relations of RTea
model on the GTA5→ Cityscapes task.

Figure 6: Comparison of the average correct pixel utiliza-
tion and confidence of the target domain.

a. Baseline b. Ours
Figure 7: Comparison of pseudo-labels of baseline and
RTea. The white masked area is unreliable pseudo-labels.

5. Conclusion

In this paper, we propose pseudo-relation learning
framework for UDA semantic segmentation. In RTea, we
provide two prior guidelines for pseudo-relation building,
which may help more works exploiting pseudo-relations.
Moreover, we explore how to use pseudo-relations from the
constraints and do detailed analysis and experiments on the
proposed solution. Sufficient experiments on two datasets
demonstrate the effectiveness of the proposed method. In
general, RTea provides a new idea for self-training methods
and may inspire more works in this field.

19199



References
[1] Nikita Araslanov and Stefan Roth. Self-supervised aug-

mentation consistency for adapting semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15384–15394, June
2021. 1, 3, 5, 6, 7, 8

[2] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834–848, 2018. 6

[3] Yiting Cheng, Fangyun Wei, Jianmin Bao, Dong Chen, and
Wenqiang Zhang. Adpl: Adaptive dual path learning for do-
main adaptation of semantic segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2023. 6,
7

[4] Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-
ensembling with gan-based data augmentation for domain
adaptation in semantic segmentation. In Proceedings of the
IEEE/CVF Conference on International Conference on Com-
puter Vision, pages 6830–6840, 2019. 1, 3, 7

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, June 2016. 6

[6] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 6

[7] Liang Du, Jingang Tan, Hongye Yang, Jianfeng Feng, Xi-
angyang Xue, Qibao Zheng, Xiaoqing Ye, and Xiaolin
Zhang. Ssf-dan: Separated semantic feature based domain
adaptation network for semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on International Confer-
ence on Computer Vision, pages 982–991, October 2019. 2

[8] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3146–
3154, 2019. 2, 3

[9] Xiaoqing Guo, Jie Liu, Tongliang Liu, and Yixuan Yuan.
Simt: Handling open-set noise for domain adaptive semantic
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7032–
7041, 2022. 6

[10] Xiaoqing Guo, Chen Yang, Baopu Li, and Yixuan Yuan.
Metacorrection: Domain-aware meta loss correction for un-
supervised domain adaptation in semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3927–3936, June 2021.
1, 2, 6

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, June 2016. 6

[12] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-
rell. CyCADA: Cycle-consistent adversarial domain adap-
tation. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1989–1998, Stockholmsmässan, Stockholm
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