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Abstract

In this paper, we address the problem of generalized cat-

egory discovery (GCD), i.e., given a set of images where

part of them are labelled and the rest are not, the task is

to automatically cluster the images in the unlabelled data,

leveraging the information from the labelled data, while the

unlabelled data contain images from the labelled classes and

also new ones. GCD is similar to semi-supervised learning

(SSL) but is more realistic and challenging, as SSL assumes

all the unlabelled images are from the same classes as the

labelled ones. We also do not assume the class number in the

unlabelled data is known a-priori, making the GCD problem

even harder. To tackle the problem of GCD without know-

ing the class number, we propose an EM-like framework

that alternates between representation learning and class

number estimation. We propose a semi-supervised variant

of the Gaussian Mixture Model (GMM) with a stochastic

splitting and merging mechanism to dynamically determine

the prototypes by examining the cluster compactness and

separability. With these prototypes, we leverage prototypi-

cal contrastive learning for representation learning on the

partially labelled data subject to the constraints imposed

by the labelled data. Our framework alternates between

these two steps until convergence. The cluster assignment

for an unlabelled instance can then be retrieved by identify-

ing its nearest prototype. We comprehensively evaluate our

framework on both generic image classification datasets and

challenging fine-grained object recognition datasets, achiev-

ing state-of-the-art performance. Our code is available at

https://github.com/DTennant/GPC.

1. Introduction
The success of deep learning is driven by the availability

of large-scale data with human annotations. Given enough
annotated data, deep learning models are able to surpass
human-level performance on many important computer vi-
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Figure 1: Overview of our proposed EM-like framework.
The input images are fed into a ViT-B model to obtain a 768-
dimensional feature vector, then the feature vector will be
projected to a lower dimensional space using the projection
calculated from PCA. We perform class number estimation
and representation learning in this projected space. In the
E-step, we use a semi-supervised GMM that can split sep-
arable clusters and merge cluttered clusters to estimate the
class number and prototypes, which will be used in the M-
step of representation learning with prototypical contrastive
learning.

sion tasks such as image classification [21]. But the cost
of collecting a large annotated dataset is not always afford-
able, and it is also not possible to annotate all new classes
emerging from the real world. Thus, designing models that
can learn to deal with large-scale unlabelled data in the open
world is of great value and importance. Semi-supervised
learning (SSL) [38] is proposed as a solution to learn a
model on both labelled data and unlabelled data, with many
works achieving promising performance [1, 46, 44]. How-
ever, SSL assumes that labelled instances are provided for
all object classes in the unlabelled data. The novel category
discovery (NCD) task is introduced [17, 16] to automati-
cally discover novel classes by transferring the knowledge
learned from the labelled instances of known classes, as-
suming the unlabelled data only contain instances from new
classes. Generalized category discovery (GCD) [48] fur-
ther relaxes the assumption in NCD, and tackles a more
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generalized setting where the unlabelled data contains in-
stances from both known and novel categories. Exist-
ing methods for NCD [17, 16, 58, 60, 61, 12, 26] and
GCD [48, 11, 51, 45, 56, 59, 34] learn the representation
and cluster assignment assuming the class number is known
a priori [58, 26, 60, 12, 61] or precomputed [17, 48]. In
practice, the number of categories in the unlabelled data is
often unknown, while precomputing the class number with-
out taking the representation learning into consideration is
likely to lead to a sub-optimal solution.

In this paper, we argue that representation learning and the
estimation of class numbers should be considered together
and could reinforce each other, i.e., a strong representation
could help a more accurate estimation of the class numbers,
and an accurate class number could help learn a better feature
representation. To this end, we propose a unified EM-like
framework that alternates between feature representation
learning and class number estimation where the E-step is
aimed at automatically estimating a proper class number and
a set of class prototypes in the unlabelled data and the M-
step is aimed at learning better representation with the class
number and class prototypes estimated. In particular, we
propose using a prototype contrastive representation learn-
ing [33] method for GCD, which requires a set of prototypes
to serve as anchors for representation learning. Prototypical
contrastive learning [33] is developed for unsupervised rep-
resentation learning to generalize to different tasks, where
the prototypes are obtained by over-clustering the dataset
with one or multiple given prototype numbers, using non-
parametric clustering algorithms like k-means. Instead, to
handle the problem of GCD, we propose to estimate the
prototype number and prototypes automatically and simulta-
neously. To do so, we introduce a semi-supervised variant
of the Gaussian Mixture Model (GMM) with a stochastic
splitting and merging mechanism to determine the most suit-
able clusters based on current representation. These clusters
can then be used to form prototypes to facilitate contrastive
representation learning. Our framework alternates between
the E- and M-step until converging to achieve robust rep-
resentation and reliable category estimation. After learn-
ing, the cluster assignment for an unlabelled instance, either
from known or novel classes, can be retrieved by finding the
nearest prototypes. Thus we name our framework as GPC:
Gaussian mixture model for generalized category discovery
with Protypical Contrastive learning.

Our contributions in this paper are as follows: (1) We
demonstrate that in generalized category discovery, the class
number estimation and representation learning can reinforce
each other in the learning process. Strong representations
can give a better estimation of the class number, and vice
versa. (2) We propose an EM-like framework that alter-
nates between prototype estimation with a variant of GMM
(E-step) and representation learning based on prototypical

contrastive learning (M-step). (3) We introduce a semi-
supervised variant of GMM with a stochastic splitting and
merging mechanism to allow dynamic change of the proto-
types by examining the cluster compactness and separability
based on the Metropolis-Hastings ratio [19]. (4) We com-
prehensively evaluated our framework on both the generic
image classification benchmark, including CIFAR10, CI-
FAR100, ImageNet-100, and the challenging fine-grained
Semantic Shifts Benchmark suite, which includes CUB-200,
Stanford-Cars, and FGVC-aircrafts, achieving the state-of-
the-art results.

2. Related work
Novel category discovery (NCD) is first formalized in

DTC [17], where the task is to discover new categories lever-
aging the knowledge of a set of labelled categories. Many
methods have been proposed to tackle this challenge. To
name a few, RankStat [15, 16] and DualRank [58] transfer
knowledge from labelled to unlabelled classes using feature
ranking statistics. OpenMix [61] shows that mixing labelled
and unlabelled data can prevent overfitting. NCL [60] and
WTA [26] use contrastive learning for NCD. UNO [12] in-
troduces a unified cross-entropy loss for joint training on
labelled and unlabelled data. [29] introduces a spacing loss
for representation learning in NCD. NCDwF [28] studies the
NCD problem under an incremental learning setting. Ear-
lier methods like [22, 23] for generalized transfer learning
can also be applied to NCD. Generalized category discov-
ery (GCD) [48] extends NCD to a more open-world setting
where unlabelled instances can come from both labelled and
unlabelled categories. ORCA [2] also tackles GCD from
a semi-supervised learning perspective. Several improved
methods have been proposed for generalized category dis-
covery (GCD), such as [11, 51, 39, 56, 45], which have
shown promising results. Incremental GCD is considered
in [57, 59]. Concurrently, CiPR [18] presents a hierarchi-
cal GCD approach employing selective neighbor clustering,
leading to improved efficiency and performance without
necessitating knowledge of the class number. [14] studies
semantic category discovery by leveraging vision-language
representations, thereby enabling GCD with class name pre-
diction. However, most existing GCD methods assume that
the novel class number is known a priori, which is often
not the case in the real world. To address this limitation,
[17, 48] precompute the number of novel classes with a
semi-supervised k-means algorithm from pretrained repre-
sentations. In this paper, we demonstrate that class number
estimation and representation learning can be jointly consid-
ered to mutually benefit each other.

Contrastive learning [4, 5, 20, 7, 62] (CL) has been shown
very effective for representation learning in a self-supervised
manner, using the instance discrimination pretext [52] as the
learning objective. The instance discrimination task learns
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a representation by pulling positive samples from the aug-
mentations of the same images closer and pushing negative
samples from different images apart in the embedding space.
Instead of contrasting over all instances in a mini-bath, proto-
typical contrastive learning (PCL) [33] proposes to contrast
the features with a set of prototypes which can provide a
higher level abstraction of dataset than instances and has
been shown to be more data efficient without the need of
large batch size. Though PCL is developed for unsupervised
representation learning, if the prototypes are viewed as clus-
ter centers, it can be leveraged in the partially supervised
setting of GCD for representation learning to better fit the
GCD task of partitioning data into different clusters. Thus,
in this paper, we adopt PCL to fit the GCD setting for repre-
sentation learning in which the downstream clustering task
is directly considered.

Semi-supervised learning (SSL) has been a long standing
research topic which many effective method proposed [40,
44, 1, 32, 46]. In SSL, the labelled and the unlabelled data
are assumed to come from the same set of classes, and the
task is to learn a classification model that can take advan-
tage of both labelled and unlabelled data. Consistency-based
methods are among the most effective methods for SSL, such
as Mean-teacher [46], MixMatch [1], and FixMatch [44].
Self-supervised representation learning also shows to be
helpful for SSL because it can provide a strong representa-
tion [55, 40]. Recent works extend semi-supervised learning
by relaxing the assumption of exactly the same classes in the
labeled and unlabelled data [43, 25, 54], but their focus is
improving the performance of the labeled categories without
discovering novel categories in the unlabeled set.

Unsupervised clustering has been studied for decades,
and there are many existing classical approaches [35, 10, 6]
as well as deep learning based approaches [53, 41, 13]. Re-
cently, DeepDPM [42] is proposed to automatically deter-
mine the number of clusters for a given dataset by adopting
a similar split/merge framework that changes the inferred
number of clusters. However, due to the unsupervised nature
of these methods, there is no prior or supervision over how a
cluster should be formed, thus multiple equally valid clus-
tering results following different clustering criteria can be
produced. Thus, directly applying unsupervised clustering
methods to the task of generalized category discovery is not
feasible, as we would want the model to use one unique
clustering criteria implicitly given by the labelled data.

3. Method
Given a collection of partially labelled data, D = Dl[Du,

where Dl = {(xi, y
l
i)} 2 X ⇥ Yl is labelled, Du =

{xi, y
u
i } 2 X ⇥ Yu is unlabelled, and Yl ⇢ Yu, General-

ized category discovery (GCD) aims at automatically assign
labels for the unlabelled instances in Du, by transferring
knowledge acquired from Dl. Let the category number in

Dl be Kl = |Yl| and that in Du be Ku = |Yu|. The number
of new categories Du is then K

n = |Yu \ Yl| = K
u �K

l.
Though K

l can be accessed from the labelled data, we do
not assume Kn or Ku to be known. This is a realistic setting
to reflect the real open world, where we often have access to
some labelled data, but in the unlabelled data, we also have
instances from unseen new categories.

The key challenges for GCD are representation learning,
category number estimation, and label assignment. Existing
methods for NCD and GCD [17, 48] deal with these three
challenges independently. However, we believe they are
inherently linked with each other. Label assignment depends
on representation and category number estimation. A good
class number estimation can facilitate representation learn-
ing, thus better label assignment, and vice versa. Thus, in
this paper, we aim to jointly handle these challenges in the
learning process for a more reliable GCD.

To this end, we propose a unified EM-like framework that
alternates between representation learning and class number
estimation, while the label assignment turns out to be a by-
product during class number estimation. In the E-step, we
introduce a semi-supervised variant of the Gaussian Mixture
Model (GMM) to estimate the class numbers by dynamically
splitting separable clusters and merging cluttered clusters
based on current representation, forming a set of class pro-
totypes for both seen and unseen classes, and in the M-step,
we train the model to produce discriminative representation
by prototypical contrastive learning using the cluster centers
from the GMM prototypes derived from the E-step during
class number estimation. After training, the class assignment
for each instance can be retrieved by simply identifying the
nearest prototype.

3.1. Representation learning
The goal of representation learning is to learn a discrim-

inative representation that can well separate different cate-
gories, not only the old ones, but also the new ones. Con-
trastive learning (CL) has been shown to be an effective
choice for NCD [26] and GCD [48]. Self-supervised con-
trastive learning is defined as

LCL = � log
exp(zi · z0i/⌧)Pn
j=1 exp(zi · z0j/⌧)

(1)

where zi and z
0
i are the representations of two views obtained

from the same image using random augmentations and ⌧ is
the temperature. Two views of the same instance are pulled
closer, and different instances are pushed away during train-
ing. Self-supervised contrastive learning and its supervised
variant, in which different instances from the same category
are also pulled closer, are used in [48] for representation
learning. However, as a stronger training signal is used for
the labelled data, the representation is likely biased to the
labelled data to some extent. Moreover, such a method does
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not take the downstream clustering task into account dur-
ing learning, thus a clustering algorithm is required to run
independently after the representation learning.

In this paper, we adopt prototypical contrastive learn-
ing (PCL) [33] to the GCD setting to learn the represen-
tation zi = f(xi) 2 Rd. PCL uses a set of prototypes
C = {µ1, . . . , µK} to represent the dataset for contrastive
learning instead of the random augmentation generated
views z0i. PCL loss can be written as

LPCL = � log
exp(zi · µs/⌧)PK
j=1 exp(zi · µj/⌧)

(2)

where µs is the corresponding prototype for zi. It was orig-
inally designed as an alternative for self-supervised con-
trastive learning by over-clustering the training data to obtain
the prototypes during training. We employ PCL here to learn
reliable representation while taking the downstream cluster-
ing into account for GCD, where we have a set of partially
labelled data. In our case, the prototypes can be interpreted
as the class centers for each of the categories. To obtain
the prototypes for the seen categories, we directly calculate
the class mean by averaging all the feature vectors of the
labelled instances. For the unseen categories, we obtain the
prototypes with a semi-supervised variant of the Gaussian
Mixture Model (GMM), as will be introduced in Sec. 3.2.
This way, the cluster assignment for an unlabelled image can
be readily achieved by finding the nearest prototype.

Additionally, we observe that only a few principal di-
mensions can already recover most of the variances in the
representation space of zi, which is known as dimensional

collapse (DC) in [27, 24], and it is shown that DC can be
caused by strong augmentations or implicit regularizations
in the model, and preventing DC during training can lead
to a better feature representation. To alleviate DC for rep-
resentation learning in our case, we propose to first project
the feature to a subspace obtained by principal component
analysis (PCA) before the contrastive learning. Specifically,
we apply PCA on a matrix Z formed by a mini-batch of
features zi, with a batch size of n, the feature dimension
d, and the number of effective principal directions q. We
have Z ⇡ Udiag(S)V >, where U 2 Rn⇥q, S 2 Rq and
V 2 Rd⇥q. We can then project features zi to principal
directions to obtain a more compact feature vi = V · zi, and
replace feature zi with vi in Eq. (2) for PCL. The prototypes
are also computed in the projected space.

We jointly use self-supervised contrastive learning and
PCL to train our model. The overall learning objective can
be written as

L = LCL + �(t)LPCL (3)

where �(t) is a linear warmup function defined as �(t) =
min(1, t

T ) where t is the current epoch and T warmup length

Split Merge

Figure 2: Examples for splitting a separable cluster and
merging two cluttered clusters. Left: the cluster is split
because the two sub-component in this cluster are easily sep-
arable. Right: two clusters are merged as they are cluttered
and likely from the same class.

(T = 20 in our experiments). The reason we use both CL
and PCL is that, in the beginning, the representation is not
well suited for clustering, and thus the obtained prototypes
are not informative to facilitate the representation learning.
Hence, we gradually increase the weight of PCL during
training from 0 to 1 in the first T epochs.

3.2. Class number and prototypes estimation with
semi-supervised Gaussian mixture model

In this section, we present a semi-supervised variant of
the Gaussian mixture model (GMM) with each Gaussian
component consisting of two sub-components to estimate
the prototypes for representation learning in Sec. 3.1 and
the unknown class number. GMM estimates the prototypes
and assigns a label for each data point by finding its nearest
prototype. The cluster label assignment and the prototypes
are then used for prototypical contrastive learning. The
GMM is defined as

p(z) =
KX

i=1

⇡iN (z|µi,⌃i), (4)

where N (z|µi,⌃i) is the Gaussian probability density func-
tion with mean µi 2 Rd and covariance ⌃i 2 Rd⇥d, and
⇡i is the weight for i-th Gaussian component and we havePN

i=1 ⇡i = 1. Ideally, we would expect the component num-
ber K in the GMM to be equal to the class number Ku in D.
To estimate the unknown class number Ku, we leverage an
automatic splitting-and-merging strategy into the modeling
process to obtain an optimal K, which is expected to be as
close to K

u as possible. We alternate between representation
learning and K

u estimation until convergence to get discrim-
inative representation learning and a reliable class number
estimation. For initialization, K can be set to any number
greater than K

l. In our experiments, we simply set the initial
number of components to a default Kinit = K

l + Kl

2 . We
run a semi-supervised k-means algorithm [48] with k = K

to obtain the µ and ⌃ for each component in the mixture
model. Note that the semi-supervised k-means algorithm
is constrained to the labelled data in a way that labelled
instances from the same class are assigned to the same clus-
ter, and labelled instances from different classes will not be
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Algorithm 1: The overall algorithm of our method.
Input:
D, Dl, and Du The datasets.
Kinit Initial guess of K.

1 K  Kinit

2 for e = 1 to E do
3 z  f(x), x 2 D // extract features

4 µ,⌃ argmax
PK

i=1 ⇡iN (z|µi,⌃i)
// estimate prototypes using
GMM

5 for i = 1 to len(D) do
6 Bl  {xl

i ⇠ Dl}N l

i=1 // sample a
batch of N

l labelled images
7 Bu  {xu

i ⇠ Du}Nu

i=1 // sample a
batch of N

u unlabelled
images

8 f  argminL(f, µ,Bl
,Bu)

// prototypical contrastive
learning

9 end
10 Hs, Hm  calc prob(µ,⌃)

// probability for split and
merge

11 µ,⌃ perform op(Hs, Hm) // perform
operations

12 K  len(µ) // update K

13 end
Output: feature extractor f(·), cluster centers µi

assigned to the same cluster. To facilitate the splitting and
merging process, for each Gaussian component defined by
µi and ⌃i, we further depict it with a GMM with two sub-
components µi,1, µi,2 and ⌃i,1,⌃i,2 with ⇡i,1 + ⇡i,2 = 1.
We run a k-means with k = 2 on the i-th component to
obtain µi,1, µi,2 and ⌃i,1,⌃i,2.

For a cluster whose two sub-components are roughly inde-
pendent and equally sized (e.g., left part of Fig. 2), i.e., they
are easily separable, we would like the model to split it into
two such that the model can better fit the data distribution
and the class assignment will be more accurate because it is
less likely that such distinct clusters will belong to the same
class. For two clusters that are cluttered with each other (e.g.,
right part of Fig. 2), i.e., difficult to distinguish, we would
like to merge them into one, so that they will be considered
as from the same class. Following this intuition, we use the
Metropolis-Hastings framework [19] to compute a probabil-
ity ps = min(1, Hs) to stochastically split a cluster into two.
The Hastings ratio is defined as

Hs =
�(Ni,1)h(Zi,1; ✓)�(Ni,2)h(Zi,2; ✓)

�(Ni)h(Zi; ✓)
, (5)

where � is the factorial function, i.e., �(n) = n! = n⇥ (n�
1)⇥ · · ·⇥ 1, Zi is the set of data points in cluster i, Zi,j is
the set of data points in the j-th sub-cluster of cluster i, Ni =
|Zi|, Ni,j = |Zi,j |, h(Z; ✓) is the marginal likelihood of the
observed data Z by integrating out the µ and ⌃ parameters in
the Gaussian, and ✓ is the prior distribution of µ and ⌃. More
details can be found in the supplementary. The intuition
behind this Hs is that, if the number of data points in two sub-
components is roughly balanced, which is measured by the
�(·) terms, and the data points in the two sub-components
are independent of each other, which is measure by the
h(·; ✓) terms, there should be a greater chance of splitting
the cluster. After performing a split operation, the µi and
⌃i of previous components i will be replaced with µi,1, µi,2

and ⌃i,1,⌃i,2 of two sub-components. We will then run two
k-means within the two newly formed components to obtain
their corresponding sub-components. On the contrary, if two
clusters are cluttered with each other, they should be merged.
Similar to splitting, we determine the merging probability
by pm = min(1, Hm), where Hm is calculated similarly for
two clusters i and j:

Hm =
�(Ni +Nj)h(Zi [ Zj ; ✓)

�(Ni)h(Zi; ✓)�(Nj)h(Zj ; ✓)
. (6)

Note that both Hs and Hm are within the range of (0,+1),
so we use ps = min(1, Hs) and pm = min(1, Hm) to
convert it into a valid probability.

To take the labelled instances into consideration during
the splitting-and-merging process, if a cluster consists of
labelled instances, we set its ps = 0; if for any two clusters
containing instances from two labelled classes, we set their
pm = 0.

During the splitting-and-merging process, we first apply
splitting according to the ps and then apply merging accord-
ing to pm. The newly formed clusters by splitting will not be
reused during the merging step. After finishing the splitting
and merging, we can obtain the prototypes, and thus can
estimate K, for our PCL-based representation learning. We
alternate between representation learning and class number
estimation for each training epoch until converge. The fi-
nal K will be considered the estimated class number in D.
The cluster assignment for each unlabelled instance can be
easily retrieved by identifying its nearest prototype, without
the need of running a non-parametric clustering algorithm
as [48]. The overall training process is summarized in Algo-
rithm 1.

4. Experiments
4.1. Experimental setup

Benchmark and evaluation metric. We validate the ef-
fectiveness of our method on the generic image classification
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Table 1: Results on generic image classification datasets.

CIFAR10 CIFAR100 ImageNet-100

No. Methods Known K PCA All Old New All Old New All Old New

(1) k-means [35] 3 7 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
(2) RankStats+ [16] 3 7 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
(3) UNO+ [12] 3 7 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
(4) ORCA [2] 3 7 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9
(5) Vaze et al. [48] 3 7 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3

(6) Ours (GPC) 3 7 92.0 98.3 88.7 77.4 84.8 62.4 76.5 94.0 68.5
(7) Ours (GPC) 3 3 92.2 98.2 89.1 77.9 85.0 63.0 76.9 94.3 71.0

(8) Vaze et al. [48] 7 7 88.6 96.2 84.9 73.2 83.5 57.9 72.7 91.8 63.8
(9) Vaze et al. [48] 7 3 89.7 97.3 86.3 74.8 83.8 58.7 73.8 92.1 64.6

(10) Ours (GPC) 7 7 88.2 97.0 85.8 74.9 84.3 59.6 74.7 92.9 65.1
(11) Ours (GPC) 7 3 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7

benchmark (including CIFAR-10/100 [31] and ImageNet-
100 [47]) and also the recently proposed Semantic Shift
Benchmark [49] (SSB) (including CUB-200 [50], Stanford
Cars [30], and FGVC-Aircraft [36]). For each of the datasets,
we follow [48] and sample a subset of all classes for which
we have annotated labels during training. For experiments
on SSB datasets, we directly use the class split from [49].
50% of the images from these labelled classes will be used
as the labelled instances in Dl, and the remaining images
are regarded as the unlabelled data Du containing instances
from labelled and unlabelled classes. See Tab. 2 for statistics
of the datasets we evaluated. We evaluate model perfor-
mance with clustering accuracy (ACC) following standard
practice in the literature. At test-time, given ground truth la-
bels y⇤ and model predicted cluster assignments ŷ, the ACC
is calculated as ACC = 1

M

PM
i=1 1(y

⇤
i = g(ŷi)) where g

is the optimal permutation for matching predicted cluster
assignment ŷ to actual class label y⇤i and M = |Du|.

Table 2: Data splits in the experiments.

labelled unlabelled

CIFAR-10 5 5
CIFAR-100 80 20
ImageNet-100 50 50

CUB-200 100 100
Stanford-Cars 98 98
FGVC-aircraft 50 50

Implementation details. We train and test all the methods
with a ViT-B/16 backbone [9] with pretrained weights from
DINO [3]. We use the output of [CLS] token with a dimen-
sion of 768 as the feature representation for an input image.
We only finetune the last block of the ViT-B backbone to

prevent the model from overfitting to the labelled classes
during training. We set the batch size for training the model
to 128 with 64 labelled images and 64 unlabelled images and
use a cosine annealing schedule for the learning rate starting
from 0.1. The number of principal directions in the PCA is
set to 128, which we found performs the best across all the
datasets evaluated. We train all the methods for 200 epochs
on each dataset for a fair comparison with previous works,
and the best-performing model is selected using the accuracy
on the validation set of the labelled classes. All experiments
are done with an NVIDIA V100 GPU with 32GB memory.

4.2. Comparison with the state-of-the-art

In Tab. 1, we report the comparison with the state-of-the-
art method of [48], strong baselines derived from NCD meth-
ods, and the k-means on the generic classification datasets.
Notably, our method consistently achieves the best overall
performance on all datasets, under the challenging setting
where the class number is unknown. When the class number
is known, our method also achieves the best performance
on all datasets, except ImageNet-100, on which the best
performance is achieved by ORCA [2]. In rows 1-7, we
compare with other methods with the known class number
in the unlabelled data, while in rows 8-11 we compare with
[48] for the case of the unknown class number. We can see
that our proposed framework outperforms other methods
in most cases and especially when the number of classes
is unknown. Comparing rows 10 and 11 to row 5, we can
see that our proposed method without knowing the num-
ber of classes can even match the performance of previous
strong baseline with the number of classes known to the
model. Furthermore, from row 6 vs row 7 and row 10 vs
row 11, we can see that the additional PCA layer can ef-
fectively improve the performance, also the performance
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Table 3: Results on Semantic Shift Benchmark datasets.

CUB Stanford Cars FGVC-aircraft

No. Methods Known K PCA All Old New All Old New All Old New

(1) k-means [35] 3 7 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8
(2) RankStats+ [16] 3 7 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2
(3) UNO+ [12] 3 7 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2
(4) ORCA [2] 3 7 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1
(5) Vaze et al. [48] 3 7 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9

(6) Ours (GPC) 3 7 54.2 54.9 50.3 41.2 58.8 31.6 46.1 42.4 47.2
(7) Ours (GPC) 3 3 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9

(8) Vaze et al. [48] 7 7 47.1 55.1 44.8 35.0 56.0 24.8 40.1 40.8 42.8
(9) Vaze et al. [48] 7 3 49.2 56.2 46.3 36.3 56.6 25.9 43.2 40.9 44.6

(10) Ours (GPC) 7 7 50.2 52.8 45.6 36.7 56.3 26.3 39.7 39.6 42.7
(11) Ours (GPC) 7 3 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8

improvement from PCA is larger on the ‘New’ classes than
on the ‘Old’ classes, which validates that the PCA can keep
the representation space from collapsing and improve the
performance on classes without using any labels. Due to
the fact that labelled instances provide a stronger training
signal, we can see from rows 6 - 11 that performance on
‘Old’ classes is generally steady. Comparing row 7 to row
5 and row 11 to row 8, we can see our full method outper-
forms the previous state-of-the-art method Vaze et al. [48]
by large margins on both known and unknown class number
cases. Tab. 3 shows performance comparison on the more
challenging fine-grained Semantic Shift Benchmark [49]. A
similar trend of Tab. 1 holds true for the results on SSB.
Our approach achieves competitive performance in all cases
and again reaches a better performance when the number of
classes is unknown. In Tab. 4, we present the results on the
Herbarium-19 dataset which is a long-tailed dataset, adding
additional challenges for the GCD task. Again, our method
performs the best on ‘All’ and ‘New’ classes. These results
demonstrate the effectiveness of our method.

Table 4: Results on the Herbarium-19 Dataset.

Methods All Old New

k-means [35] 13.0 12.2 13.4
RS+ [16] 27.9 55.8 12.8
UNO+ [12] 28.3 53.7 14.7
ORCA [2] 20.9 30.9 15.5
GCD [48] 35.4 51.0 27.0

Ours (GPC) 36.5 51.7 27.9

(a) Explained variance of the original feature w.r.t. the
number of principal directions.

(b) The clustering ACC on validation set w.r.t. the num-
ber of principal directions

Figure 3: The effects of the number of principal directions
in PCA on the feature representations.

4.3. Novel class number estimation

One of the important yet overlooked components in the
NCD and GCD literature is the estimation of unknown class
numbers. Our proposed framework leverages a modified
GMM to estimate the class number, in which we need to
define an initial guess of the class number. We validate the
effects of different choices of the initial guess Kinit w.r.t.
the estimated class number in Tab. 5. Note that the number
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Table 5: Results of varying the initial guessed K
n
init. ‘GT K

n’ is the ground truth number of novel classes. K
n is the

estimated number of novel classes. Our proposed framework is generally robust in estimating the number of novel classes, and
we found that using the initial guess of Kinit = K

l + Kl

2 can be a simple and reliable choice.

Dataset K
l GT K

n Vaze et al. [48] K
n
init = 3 5 10 20 30 50 100

CIFAR-10 5 5 4 K
n = 5 5 5 6 6 8 14

CIFAR-100 80 20 20 K
n = 16 20 20 21 22 27 36

ImageNet-100 50 50 59 K
n = 58 48 57 55 54 50 60

CUB 100 100 131 K
n = 79 87 86 88 92 112 101

SCars 98 98 132 K
n = 84 90 86 87 89 115 104

in Tab. 5 is K
n
init = Kinit � K

l. We can see that our
proposed framework is generally robust to a wide range of
initial guesses. We found that Kinit = K

l + Kl

2 is a simple
and reliable choice. Hence we use this for all datasets.

4.4. Training complexity
Given that our framework necessitates the fitting of

GMMs, an extended training duration is required. We com-
pare the performance of our method to the extended method
of Vaze et al. [48], which is pushed to 1.5⇥ its original num-
ber of training epochs. The results in Tab. 6 demonstrate
that our method outperforms [48] across both CUB and
ImageNet-100 datasets while maintaining a similar training
duration. Furthermore, in contrast to the baseline method,
our approach eliminates the need for additional post-training
procedures such as running SS-k-means on the entire dataset
for label assignment.

Table 6: Comparison between GPC and Vaze et al. [48]
(1.5⇥) on CUB and ImageNet-100 Datasets.

Method CUB ImageNet-100

All Old New All Old New

Vaze et al. [48] 51.3 56.6 48.7 74.1 89.8 66.3
Vaze et al.(1.5⇥) 52.0 56.8 49.0 74.7 90.3 66.7
Ours (GPC) 55.4 58.2 53.1 76.9 94.3 71.0

4.5. Ablation study
Number of dimensions in PCA The PCA in our frame-
work requires setting a number for the number of principal
directions to extract from data. In Fig. 3, we show the re-
sults of using a different number of principal directions in
PCA on CUB-200 and ImageNet-100 datasets. We can see
from Fig. 3a that for both datasets, 128 principal directions
can already explain most of the variances in the data, thus we
choose the PCA dimension to be 128 for all our experiments.
We further experiment with other different choices of the
PCA dimension and shows the result in Fig. 3b, which again
confirms that 128 principal directions are already expensive

enough, and obtain the best performance over other choices,
that are either too few or too many, effectively avoiding DC.

Different methods for prototype estimation Our semi-
supervised GMM plays an important role in prototype es-
timation for representation learning based on prototypical
contrastive learning. Here, we replace our semi-supervised
GMM with other alternatives that do not produce prototypes
automatically. Particularly, we compare our method with
DBSCAN [10], Agglomerative clustering [37], and semi-
supervised k-means [17, 48]. The prototypes are then ob-
tained by averaging the data points that are assigned to the
same cluster. For a fair comparison, the same regulations to
prevent the wrong clustering results for labelled instances
are applied to all methods, i.e., during the clustering process,
two labelled instances with the same label will fall into the
same cluster, and two instances with different labels will
be assigned to different clusters. The results are reported
in Tab. 7a. Our method achieves the best performance on all
three datasets, indicating that better prototypes are obtained
by our approach to facilitate representation learning. Note
that DBSCAN requires two important user-defined param-
eters, radius, and minimum core points, the ideal values of
which lack a principled way to obtain in practice, while our
method is parameter-free and can seamlessly be combined
with the representation learning to jointly enhance each other,
obtaining better performance.

Combining our GMM with other GCD methods We
further combine our semi-supervised GMM with automatic
splitting and merging with other methods, allowing joint
representation learning and category discovery without a
predefined category number. As the state-of-the-art GCD
method [48] does not contain any parametric classifier dur-
ing representation, so it can be directly combined with our
GMM. For the RankStat and the DualRank methods that
have a parametric classifier for category discovery, we treat
the weights of the classifier as the cluster centers and run
our GMM to automatically determine the category number
during representation learning. The results are presented
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Table 7: Combining components of GPC with other meth-
ods. “IM-100” denotes ImageNet-100.

(a) Different prototype estimation methods.

Clustering Algo. CUB IM-100 SCars

Ester et al. [10] 45.6 66.1 34.8
Murtagh et al. [37] 52.1 74.6 39.8

Vaze et al. [48] 49.2 73.2 37.4

Ours (GPC) 54.1 76.6 41.9

(b) Combining our GMM with other methods.

Representation CUB IM-100 SCars

Han et al. [16] 34.6 38.4 29.3
Zhao et al. [58] 37.8 39.7 33.2
Vaze et al. [48] 50.6 73.4 37.8

Ours (GPC) 54.1 76.6 41.9

in Tab. 7b. Comparing with row 9 in Tab. 1 and Tab. 3, we
can see using our GMM can also improve [48] on CUB and
Stanford Cars, while our proposed framework consistently
achieves better performance on all datasets, again validating
that our design choices.

Class number estimation with different representations
Here, we validate our class number estimation method on
top of the representations learned by other GCD approaches
and report the results in Tab. 8. It can be seen, applying our
method on other GCD representations can achieve reason-
ably well results. Notably, by applying our class number
estimation method on top of the representation by the ex-
isting state-of-the-art method, we can obtain better class
number estimation results, though the overall best results are
obtained with the representation learned in our framework.

Table 8: Class number estimation with different learned
representations. “C-100” stands for the CIFAR-100 dataset.

Representation C-100 CUB SCars IM-100

Ground Truth K
n 20 100 98 50

Vaze et al.[48] 20 131 132 59

Ours w/ [16] feat. 19 111 94 55
Ours w/ [58] feat. 22 116 89 49
Ours w/ [48] feat. 21 121 109 57

Ours (GPC) 20 112 103 53

Partial overlap between Yl and Yu We evaluate the
performance of our method when we relax Yl ⇢ Yu to

Yl \ Yu 6= ;, i.e., the two sets may only partially overlap.
We vary the number of overlapped classes and report the
results in Tab. 9. Our approach consistently outperforms the
method proposed by Vaze et al. [48] in all configurations.
These compelling results not only showcase the robustness
of our method but also highlight its effectiveness in scenar-
ios involving partial overlap between known and unknown
classes.

Table 9: Results on CUB of only partial overlap between
Yl and Yu.

|Yl \ Yu| 25 50 75

All Old New All Old New All Old New

Vaze et al. [48] 49.5 50.1 48.2 51.2 50.7 52.2 52.7 50.9 54.5
Ours (GPC) 51.2 52.6 49.5 52.3 51.6 54.8 53.6 51.4 55.9

Varying ratio of Old/New categories We measure the esti-
mated new class numbers when varying the ratio of Old/New
categories while having Kinit = K

l+Kl

2 on CUB in Tab. 10.
As can be seen, for all cases, our method outperforms [48].
Meanwhile, we can also see that when the initial guess is
too far from the ground truth, the estimation will be less
accurate.

Table 10: Estimated class numbers on CUB with a vary-
ing ratio of Old/New classes.

Old/New 20/180 40/160 60/140 80/120

GCD [48] 87 102 114 104
Ours (GPC) 93 126 135 116

5. Conclusion
In this paper, we present an EM-like framework for the

challenging GCD problem without knowing the number of
new classes, with the E-step automatically determining the
class number and prototypes and the M-step being robust rep-
resentation learning. We introduce a semi-supervised variant
of GMM with a stochastic splitting and merging mechanism
to obtain the prototypes and leverage these evolving proto-
types for representation learning by prototypical contrastive
learning. We demonstrated that class number estimation and
representation learning can facilitate each other for more
robust category discovery. Our framework obtains state-of-
the-art performance on multiple public benchmarks.
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