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Abstract

Recently, multi-expert methods have led to significant
improvements in long-tail recognition (LTR). We summarize
two aspects that need further enhancement to contribute to
LTR boosting: (1) More diverse experts; (2) Lower model
variance. However, the previous methods didn’t handle
them well. To this end, we propose More Diverse experts
with Consistency Self-distillation (MDCS) to bridge the gap
left by earlier methods. Our MDCS approach consists of
two core components: Diversity Loss (DL) and Consis-
tency Self-distillation (CS). In detail, DL promotes diversity
among experts by controlling their focus on different cate-
gories. To reduce the model variance, we employ KL diver-
gence to distill the richer knowledge of weakly augmented
instances for the experts’ self-distillation. In particular,
we design Confident Instance Sampling (CIS) to select the
correctly classified instances for CS to avoid biased/noisy
knowledge. In the analysis and ablation study, we demon-
strate that our method compared with previous work can
effectively increase the diversity of experts, significantly re-
duce the variance of the model, and improve recognition
accuracy. Moreover, the roles of our DL and CS are mutu-
ally reinforcing and coupled: the diversity of experts bene-
fits from the CS, and the CS cannot achieve remarkable re-
sults without the DL. Experiments show our MDCS outper-
forms the state-of-the-art by 1% ∼ 2% on five popular long-
tailed benchmarks, including CIFAR10-LT, CIFAR100-LT,
ImageNet-LT, Places-LT, and iNaturalist 2018. The code is
available at https://github.com/fistyee/MDCS

1. Introduction

Deep learning has achieved remarkable progress in a
range of computer vision (CV) tasks, such as image recog-
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Figure 1. We evaluate a ResNet-32 model based on Balanced
Softmax [41, 35] with weakly/strongly augmentation. All exper-
iments were performed with an Imbalanced Factor (IF) of 100
on the CIFAR100-LT dataset. Top: model variance [51]. The
model trained with weakly augmented instances has a higher vari-
ance, whereas the model trained with strongly augmented in-
stances is better than weak augmentation. Bottom: Test accuracy.
In the case of training on weakly/strongly augmented instances,
the model supervised with one-hot labels presents lower accuracy.
In contrast, our CS transfers richer knowledge from weakly aug-
mented instances, preventing the model from overfitting instances
as well as reducing the model variance and improving recognition
accuracy. It indicates that the prediction of the weakly augmented
model could provide richer supervision knowledge to the strongly
augmented instances better than its one-hot label.

nition [17, 14, 64, 30, 63], object detection [45, 12], and
action recognition [46]. Despite advances in deep tech-
nologies and computational capability, great success is also
highly dependent on well-designed large datasets such as
ImageNet [13] and Places [67], where each category has
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sufficient and roughly balanced training samples. However,
real-world data tends to be long-tailed over semantic cate-
gories [60]: a few categories contain many instances (called
head categories), while most categories contain only a few
instances (called tail categories). Long-tailed recognition
(LTR) is challenging because it needs to deal not only with
the numerous small data learning problems of the tail cate-
gories but also with the extremely unbalanced classification
of all categories. Deep models trained with such long-tailed
data are usually biased toward head categories on balanced
testing data and perform poorly on tail categories.

To address this challenge, many approaches have
explored long-tail recognition in order to learn well-
performing models from long-tailed data, such as class re-
balancing/re-weighting [3, 4, 24, 29, 11, 6, 54, 35], de-
coupling learning [23] and contrastive learning [56, 22, 49,
68, 10]. Recently, long-tailed recognition methods employ-
ing multi-expert ensemble learning [53, 51, 5, 59, 27] have
achieved state-of-the-art (SOTA) performance. We summa-
rize two key aspects of these approaches that need further
improvement for boosting LTR. (1) Diverse experts experts
focus on different aspects, maximizing the expertise of each
[5, 51]. More diversity can support experts in improving
LTR. (2) There is a heavy model variance in the prediction
of the model, especially for the tail category. So, reducing
model variance is essential for LTR. Previous multi-expert
methods [53, 51, 5, 59, 27] focused on the above two as-
pects but did not handle them well. RIDE [51] utilizes a
loss to moderate diversity, yet individual experts focus pri-
marily on head categories. ACE and SADE [5, 51, 59] fo-
cus on the diverse experts, which learn classification knowl-
edge from sub-categories or dominant categories. However,
The ”tail category experts” of these methods can greatly
suppress head category performance while focusing on the
tail categories. Furthermore, these multi-expert methods all
employ an ensemble method to reduce the final variance
while ignoring the variance of each expert. Among them,
NCL [27] introduces strong data augmentation [8] that pro-
vides a better generalization of the model. However, there
is still a high risk of model variance in its one-hot label su-
pervision for strongly augmented instances. To this end,
we design a novel method, namely More Diverse experts
with Consistency Self-distillation (MDCS), for long-tailed
recognition.

Our proposed MDCS contains two key components, Di-
versity Loss (DL) and Consistency Self-distillation (CS).
Our DL contains an adjustable distribution weight, to cater
to the diversity of each expert. By adjusting the distribution
weight, each expert tends to recognize different categories,
such as Many-shot categories, Medium-shot categories, and
Few-shot categories. It is a simple yet effective method
for increasing diversity and significantly improving recog-
nition accuracy over previous methods (discussed in Sec.

4). To reduce the model variance and avoid model over-
fitting instances, we look forward to providing each expert
with a richer form of supervision when learning strongly
augmented samples. The label-smoothing regularization
[47, 37] is a straightforward way, and further MiSLAS [65]
proposes label-aware smoothing for long-tailed recognition.
However, the proportion of label-smoothing assignments of
these methods is still instance-agnostic, and more reason-
able label assignment principles remain to be explored. To
this end, we design CS for each expert, which distills richer
instance knowledge from predictions of weakly augmented
data to regularize strongly augmented instances. Especially
for a mini-batch instance, we propose Confident Instance
Sampling (CIS) to select the correctly classified instances
for consistency self-distillation. In this way, our proposed
CIS can prevent CS from introducing biased/noisy knowl-
edge. As illustrated in Fig. 1, the model trained with strong
augmentation method [8] could reduce the model variance
[51] compared with the model trained with weakly aug-
mented instances (e.g., flipped, cropped). However, our
CS trains the model on strongly augmented instances and is
supervised by ”soft labels” from the predictions of weakly
augmented instances, leading to lower model variance and
higher recognition accuracy. These ”soft labels”, produced
by prediction on weakly augmented representation, contain
more knowledge than their one-hot labels. In addition, the
roles of our DL and CS are mutually reinforcing and cou-
pled: (1) Our CS is designed for each expert, which in-
creases the diversity and recognition accuracy of a single
expert, and ultimately benefits the ensemble model. (2)
Without the DL, the CS cannot achieve remarkable results
as the model is biased towards head categories (discussed in
Sec. 6).

In the experiments, our proposed MDCS model outper-
forms state-of-the-art (SOTA) methods by a significant mar-
gin on five commonly used benchmark datasets. For in-
stance, on CIFAR-100-LT with an imbalance factor of 100,
our approach achieves an accuracy of 56.1%. Similarly, on
ImageNet-LT with ResNeXt-50, our model achieves an ac-
curacy of 61.8%, while on iNaturalist 2018 with ResNet-50,
we achieve an accuracy of 75.6%.

2. Related Work
Long-tailed Visual Recognition. Conventional

methods to alleviate the long-tailed problem are to design
re-balancing paradigms that consist of re-sampling and re-
weighting. Re-sampling methods, which over-sample tail
classes or under-sample head classes, aim to achieve a more
balanced data distribution. Re-sampling by simply over-
sampling minority classes [3, 4, 38] and under-sampling by
abandoning data for dominant classes [21, 16, 3]. However,
over-sampling duplicated tailed samples might lead to the
over-fitting of minority classes [3]. Under-sampling poten-
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tially loses head class information and certainly impairs the
generalization ability of the DNNs. Re-weighting methods
[24, 29, 11, 6, 54, 35, 42, 55] assign weights to different
classes by loss modification or logits adjustment. However,
some researchers observed that re-balancing methods will
hurt representation learning, and decoupling representation
with classifiers will lead to better features. Therefore, two-
stage learning was proposed which first trains the model
with original data and then fine-tunes the classifier with
class-balanced data [33]. Transfer learning is another way
to tackle the long-tailed problem, aiming to transfer knowl-
edge learned from majority classes to minority classes. But
knowledge transfer methods often need carefully designed
structures such as memory bank [31, 50, 32]. More recently,
many works try to improve the performance of long-tailed
visual recognition by using contrastive learning (CL) strat-
egy [56, 22, 49, 68, 10, 28]. For example, PaCo [10] intro-
duces a set of class-wise learnable center to overcome bias
on high-frequency classes of basic supervised contrastive
learning (SCL).

Ensemble-based methods, which use multiple experts
with aggregation methods, are receiving more and more at-
tention due to their effectiveness on long-tailed recognition.
LFME [53] trains different experts with different parts of
the dataset and distills the knowledge from these experts to
a student model. RIDE [51] optimizes experts jointly with
distribution-aware diversity loss and trains a router to han-
dle hard samples. SADE [58] proposed test-time experts
aggregating method to handle unknown test class distribu-
tions. Recently proposed NCL [27] uses mutual distilla-
tion allowing every expert to learn knowledge from others.
They still have shortcomings in terms of expert diversity
and model variance.

Knowledge Distillation. Knowledge distillation(KD)
[2, 18, 39] was proposed for the purpose of model com-
pression by transferring knowledge learned from a power-
ful teacher model to a student model. KD is performed by
supervising the student model with soft labels generated by
the teacher model, which also provides better generaliza-
tion to the student model. KD has gradually evolved from
an offline process [40, 18, 39], where the teacher model
has trained ahead of time, to an online process [7, 15, 62],
where teacher model and student model are trained simul-
taneously. Unlike offline or online KD, self-distillation [57]
assumes that one model can be its own teacher, where the
teacher model and student model are identical.

Consistency regularization. Consistency regularization
has played a very important role in semi-supervised learn-
ing, which was first proposed by Bachman [1] and popu-
larized by Sajjadi [43] and Laine [26]. Consistency reg-
ularization utilizes unlabeled data by assuming the model
should output the same result when the inputs are similar.
Specifically, given two different formations of perturbation

of a training sample, the gap in the output is treated as a
loss to train the model. There are various ways to generate
perturbed input [36, 48]. A common method is employ-
ing two different formations of data augmentation on the
same image [44]. FixMatch [44] computes an artificial label
for each unlabeled sample by computing the model’s pre-
dicted class distribution given a weakly-augmented version.
Unlike the above methods, our proposed consistency self-
distillation first designs without extra hyper-parameters,
combines consistency mechanisms that transfer the richer
knowledge of weakly augmented instances to provide more
supervision, and employs confidence instance sampling to
remove biased/noisy knowledge. Benefiting from these
well-designed components, our method effectively reduces
the model variance and improves generalization ability.

3. Method
The proposed MDCS consists of two parts, Diversity

Loss(DL) and Consistency Self-distillation(CS), aiming to
improve the diversity of experts and reduce model variance,
respectively. In the following part, we first introduce the
preliminaries of long-tailed recognition. Then, we elaborate
on our proposed DL and CS. Finally, we show the overall
loss of the training process.

3.1. Preliminaries

Long-tail identification attempts to learn a well-
represented classification model from a training dataset
with a long-tailed class distribution. Formally, let Ds =
{(xi, yi)|1 ≤ i ≤ ns} be a training set, which xi is the i-th
training sample and yi ∈ {0, 1}C is its corresponding one-
hot label over C classes. The test set Dt = {(xi, yi)|1 ≤ i ≤
nt} is defined in the similar way. Let nj denote the number
of training samples for class j, and let N =

∑C
j=1 nj be

the total number of training samples. Without loss of gen-
erality, we assume that the classes are decreasingly ordered,
i.e., if i<j, then ni ≥ nj . Additionally, an imbalanced
dataset has significant differences in the class instance num-
bers, ni ≫ nj .

3.2. Diversity Loss

For training diversity experts, one intuitive approach is to
train different experts to focus on different sub-categories.
We propose our Diversity Softmax defined as:

p(x; θ) =
nλ
kexp(v

k)∑C
c=1 n

λ
c exp(v

c)
, λ ∈ (−∞,∞), (1)

where vk is the class-k output of the model f(xi; θ) with
parameter θ, and nk is the number of training samples for
category k. The diversity softmax function maps a model’s
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Figure 2. Our method consists of two core components: (i) Diversity Loss (DL), which trains diversity experts; and (ii) Consistency
Self-distillation (CS), which reduces the variance of each expert. Firstly, original images with weak and strong augmentation as inputs
for shared backbone experts. Secondly, our DL controls experts’ focus on different categories with an adjustable distribution weight (W)
to learn different feature weight distributions. Finally, our proposed Consistency Self-distillation distills the richer knowledge from the
prediction of weakly augmented instances to address overfitting and reduce model variance. Meanwhile, our proposed Confident Instances
Sampling prevents CS from introducing biased knowledge.

class-k output vk to the probability p(x; θ). More impor-
tantly, the introduced λ acts as a weight distribution param-
eter for logit adjustment. Fortunately, in our experiments,
we discover that it has the effect of generating a reversed
weight of long-tailed distribution when λ > 1. Then, we
can employ it to train an expert to improve the accuracy of
minority categories with original long-tailed data distribu-
tion. Similarly, when λ < 0, it has the effect of aggravat-
ing the imbalance of original long-tailed data, which makes
the expert pay more attention to the head categories. When
the λ is set to (0, 1), it can weaken the influence of long-
tailed distribution [41, 35]. Notably, the aggravation is sen-
sible because our intention is to improve the diversity of all
experts in all categories. The experiments in Sec. 6 also
demonstrate the effect of λ for simulating weight distribu-
tion.

With diversity softmax, we propose our Diversity Loss
(DL) for diversity experts learning. The DL is defined as:

LDL =
1

∥D∥
∑
xi∈D

−yi log σ(f(xi; θ) + w), (2)

where the σ(·) is the standard softmax function and w is:

w = λ logNC , (3)

where NC is a list consisting of the number of training sam-
ples for each category. In the default setting, we employ DL
for training three experts, namely E1, E2, and E3, focusing
on Many-shot classes, Medium-shot classes, and Few-shot
classes respectively. Visually, Fig. 2 illustrates a multi-
expert model with a shared backbone fθ and three experts

trained with DL. The only difference between the Diverse
Loss for different experts is the distribution weight w, such
as whead for E1, wbalance for E2, and wtail for E3. In gen-
eral, the structure of our diversity experts learning can have
any number of experts Eµ(µ = 1, 2, 3, ...). The effect of
the number of experts is shown in the later section 6.

3.3. Consistency Self-distillation

Overall view. In this section, we propose an elegant
Consistency Self-distillation (CS) approach to tackle the
model variance problem. Our CS method distills richer
knowledge from a normal image to a distorted version of the
same image. As demonstrated in the left part of Fig. 2, we
first construct an original image xi to two different views
denoted as xi and x̃i by a weak augmentation (e.g. crop,
flip) and a strong argumentation (e.g. RandAug [8]). For
different Expert Eµ, we employ diversity softmax to con-
duct probabilities p(xi; θ) and p̃(xi; θ) for given (xi, x̃i):

p(xi; θ) =
nλ
kexp(v

k
i /T )∑C

c=1 n
λ
c exp(v

c
i/T )

, (4)

p̃(x; θ) =
nλ
kexp(ṽ

k
i /T )∑C

c=1 n
λ
c exp(ṽ

c
i /T )

, (5)

where T is a temperature (a higher T produces a softer
probability distribution over categories[18]). Then, our pro-
posed CS employs the Kullback-Leibler(KL) divergence to
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perform self-distillation for an instance, which can be for-
mulated as:

LCS = KL(p(xi; θ)||p(x̃i; θ)). (6)

Confident Instance Sampling As our diversity experts
specialize in certain categories and may perform poorly in
other categories. To prevent CS distills from all instances
introducing biased knowledge, we only distill the instances
which are correctly classified. Thus, we define Confident
Instance set contain all correctly classified instances as:

DCI = {xi ∈ D|argmax(p(xi; θ)) == yi}, (7)

where yi is the ground-truth label of instance xi. Further-
more, we re-formulate the loss of CS with CIS as:

LCS =
1

∥DCI∥
∑

xi∈DCI

KL(p(xi; θ)||p(x̃i; θ)) (8)

3.4. Model Training

The overall loss in our proposed MDCS consists of two
parts, the Loss LDL of diversity loss and the Loss LCS of
consistency self-distillation with CIS. Finally, we denote the
set of Expert as E and formulate the overall loss as:

Lall =
∑

Eµ∈E

(LDL
µ + αLCS

µ ) (9)

where α is a hyperparameter to adjust the weight of Consis-
tency Self-distillation. In addition, we conduct the effect of
parameter α in Sec. 6.

4. Method Analysis
4.1. More Diverse Experts

Definition of diversity. According to our empirical anal-
ysis, more diverse experts could contribute to the improve-
ment of long-tailed recognition. However, the previous
works [59, 51] don’t present a measure of diversity. Here,
we propose a measure called the diversity factor (σ), defined
for a model containing M experts as:

σ =

M⋃
µ=1

Sµ (10)

where Sµ is all the correctly classified samples in the test
set by Expert Eu. The Sµ can define as:

Sµ = {argmax(p(xi; θµ)) == yi, (xi, yi) ∈ Dt} (11)

The bigger σ represents greater diversity for the ensemble
model.

RIDE [51]

ImageNet-LT CIFAR100-LTModel

Many Med. Few All Many Med. Few All

E1 Acc 64.3 49.0 31.9 52.6 63.5 44.8 20.3 44.0

E2 Acc 64.7 49.4 31.2 52.8 63.1 44.7 20.2 43.8

E3 Acc 64.3 48.9 31.8 52.5 63.9 45.1 20.5 44.3

Ensemble Acc 68.0 52.9 35.1 56.3 67.4 49.5 23.7 48.0

Ensemble (σ) 76.6 62.9 51.8 60.2 75.8 61.5 37.5 53.1

SADE [59]

ImageNet-LT CIFAR100-LTModel

Many Med. Few All Many Med. Few All

E1 Acc 68.8 43.7 17.2 49.8 67.6 36.3 6.8 38.4

E2 Acc 65.5 50.5 33.3 53.9 61.2 44.7 23.5 44.2

E3 Acc 43.4 48.6 53.9 47.3 14.0 27.6 41.2 25.8

Ensemble Acc 67.0 56.7 42.6 58.8 61.6 50.5 33.9 49.4

Ensemble (σ) 78.3 62.4 49.3 61.4 75.5 57.1 46.5 59.8

MDCS (ours)

ImageNet-LT CIFAR100-LTModel

Many Med. Few All Many Med. Few All

E1 Acc 71.9 40.8 12.1 48.9 75.2 37.3 4.1 40.6

E2 Acc 68.2 54.1 36.8 57.1 66.4 51.7 31.4 50.8

E3 Acc 51.8 56.5 58.8 55.7 23.9 37.8 48.2 36.0

Ensemble Acc 72.6 58.1 44.3 61.8 72.4 57.8 35.0 56.1

Ensemble (σ) 81.2 64.6 53.4 65.3 81.8 63.2 55.2 66.9

Table 1. Recognition accuracy (%) and diversity factor (%) of each
expert and ensemble model in Many-shot, Medium-shot, and Few-
shot categories. The experiment is conducted on CIFAR100-LT
with IF = 100. The results show our method outperforms SOTA
in terms of both expert diversity and a single expert’s accuracy,
which are critical to the performance of the ensemble model.

Comparison with SOTA methods. The recognition ac-
curacy and diversity factor results are shown in Table 1,
where we compare our result with the prior art, such as
RIDE and SADE. The RIDE [51] aims to improve diversity
through KL-divergence between experts. However, sim-
ply maximizing the KL divergence between experts can-
not lead to good diversity and accuracy. SADE is limited
to only generating different inversely long-tailed data dis-
tributions by adjusting the hyper-parameter in the inverse
softmax loss [59] and the accuracy and diversity of Many-
or Medium-shot is severely inhibited for the ”tail category
expert,” E3. The results show a significant advantage of
our method in terms of both diversity and accuracy. The

11601



E1 trained with our DL shows significant improvement in
diversity and accuracy in Many-shot categories and similar
results in medium-shot categories and Few-shot categories.
The E2 and E3 in MDCS also show great strengths in all
three shots, which demonstrates the effectiveness of our DL.

The effect of λ for diversity. Table 2 shows different λ
used in diversity loss to increase the model diversity. With
λ all set to 0, the experts focus on head or tail categories,
which gives the model poor diversity. With λ set to {1, 1,
1}, experts focus on average different categories, the model
could get better diversity. With λ set to {0, 1, 2} and {-0.5,
1, 2.5}, experts focus on different categories, the model gets
best diversity.

λ Many Med. Few All

{0, 0, 0} 85.3 59.2 22.4 55.4
{1, 1, 1} 80.6 66.8 47.4 64.7
{2, 2, 2} 54.2 58.4 62.3 58.2
{0, 0, 1} 84.4 63.9 37.6 61.8
{1, 2, 2} 70.5 63.3 60.8 64.9
{0, 1, 2} 80.7 64.4 51.2 65.4

{-0.5, 1,2. 5} 81.8 63.2 55.2 66.9
Table 2. The effect λ for the three-expert model on the CIFAR100-
LT (IF = 100). Different combinations of λ affect the diversity of
the model.

4.2. Lower Model Variance

Model variance is the degree of variation in the pre-
dictions produced by the same model on different training
datasets. With high model variance, the model may per-
form very differently on different training data, which may
indicate that the model overfitted the training data and thus
performs poorly in generalizing to unseen data. For n ran-
dom data sets B(1),..., B(m), the k-th models trained on B(k)

will predict y(k) for instance x. The mean predicted value
of these models is y, which is denote:

y =
1

m

m∑
k=1

y(k), (12)

and the model variance denotes:

Var(x, f) =
1

m

m∑
k=1

(y(k) − y)2. (13)

To establish a benchmark for model variance, we com-
pare our approach against three baseline methods: cRT [23],
RIDE [51] and RIDE with label smoothing (LS) [47]. These
metrics are evaluated using twenty independently trained
models, trained on CIFAR100-LT with 300 samples for
class 0 (IF = 100) [51]. In Table 3, compare with cRT,

RIDE and RIDE with LS, our model has better accuracy
performance as well as lower model variance. It also sug-
gests that our approach has better generalization than using
ensemble model and label smoothing regularization to re-
duce model variance.

Method cRT RIDE RIDE + LS MDCS (Ours)

Var 0.50 0.42 0.41 0.36
Acc 36.4 40.5 41.3 46.1

Table 3. Comparison of mean accuracy and variance of baselines
and our MDCS based on CIFAR100-LT. The experiment settings
follow RIDE [51].

We also conduct experiments to show the effect of our
proposed method on the model variance. Table 4 shows that
the model with our consistency self-distillation (CS) effect
reduces the model variance of each expert for the Many-,
Medium-, and Few-shot subsets.

method Many-shot Medium-shot Few-shot All

w/o CS 0.28 0.42 0.49 0.40
w/ CS 0.24 0.38 0.46 0.36

Table 4. The effect of CS on the model variance for the three-
expert model on the CIFAR100-LT (IF = 100).

5. Experiments
In this section, we perform experiments on five

widely used datasets in long-tailed recognition, including
CIFAR100/10-LT [25], ImageNet-LT [31], Places-LT [31],
and iNaturalist 2018 [20]. After that, we conduct abla-
tion experiments on the CIFAR100-LT and ImageNet-LT
datasets to gain further insights.

5.1. Dataset

CIFAR100/10-LT. CIFAR100/10-LT is the long-tailed
version of CIFAR100/10 [25]. CIFAR-100/10 contains
50,000 images for training and 10,000 images for the val-
idation of size 32 × 32 with 100/10 classes. Following
[51, 58], we use the same long-tailed version for a fair com-
parison. The imbalanced factor (IF) β is defined by β =
Nmax/Nmin, and this reflects the degree of imbalance in
the data. The imbalance factors used in the experiment are
set to 100 and 50.

ImageNet-LT and Places-LT. ImageNet-LT and Places-
LT are the long-tailed versions of the dataset ImageNet-
2012 [13] and the large-scale scene classification dataset
Places [67] proposed by Liu [31]. We follow their work by
conducting the same dataset by sampling subsets following
the Pareto distribution with the power value γ = 6. Overall,
ImageNet-LT has 115.8K images from one thousand cate-
gories with an imbalanced factor β = 1280/5. Places-LT
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contains 184.5K images from 365 categories with imbal-
anced factor β = 4980/5.

iNaturalist 2018. iNaturalist [20] is a large-scale real-
world dataset for long-tailed recognition, which suffers
from extremely imbalanced distribution. It contains 437.5K
training images and 24.4K validation images from 8142 cat-
egories. In addition, the fine-grained problem makes it more
challenging [52]. Moreover, we follow the works [27, 59]
to divide classes into Many-shot(with more than 100 im-
ages), Medium-shot (with 20 - 100 images), and Few-shot
(with less than 20 images) parts and report the results on
each part.

5.2. Implementation Details

Ensemble method. The final ensemble is average across
the experts.

Architecture and settings. We use the same setup for
all the baselines and our method. Specifically, follow-
ing previous work [51, 27, 58], we employ ResNet-32 for
CIFAR100/10-LT, ResNeXt-50/ResNet-50 for ImageNet-
LT, ResNet-152 for Places-LT and ResNet-50 for iNatural-
ist 2018 as backbones, respectively. Moreover, we adopt
the cosine classifier for prediction on all datasets. If not
specified, we use the SGD optimizer with a momentum of
0.9 and set the initial learning rate as 0.1 with linear de-
cay. We set λ = {-0.5, 1, 2.5} and α = 0.6 in our method
for all benchmarks. The results of our comparison method
are taken from their original paper and our results are aver-
aged over three experiments. More implementation details
about epochs we have marked in the comparison table and
the hyper-parameter statistics are reported in Appendix.

Augmentation. Our purposed CS utilizes weakly-
augmented view and strongly-augmented view to conduct
self-distillation. On the CIFAR10/100-LT dataset, the
weak augmentation includes crop, horizontal flip, and ro-
tation. The strong augmentation uses CIFAR10Policy be-
sides the basic augmentation. For ImageNet-LT, Places-LT,
and iNaturalist, we use cropping, horizontal flipping, ro-
tation, and ColorJitter as weak augmentation. For a fair
comparison, we utilize RandAug [8] as strong augmenta-
tion for ImageNet-LT and iNaturalist 2018. We add Ran-
domGrayscale and Gaussian Blur to the basic data augmen-
tation composing strong augmentation for Places-LT fol-
lowing previous work [27].

5.3. Comparisons with SOTA on Benchmarks

Long-Tailed CIFAR-100 and CIFAR-10. The compar-
ison results between MDCS and other methods on long-
tailed CIFAR datasets are shown in Table 5. We conduct
experiments on CIFAR100-LT and CIFAR10-LT with im-
balance factors of 100 and 50. Additionally, for fairness,
we compare results for 200 epochs and 400 epochs respec-
tively. Our MDCS significantly outperforms the previous

Method CIFAR100-LT CIFAR10-LT

Imbalance Factor 100 50 100 50

200 epochs
CB Focal loss [6] 39.6 45.1 74.5 79.2
LDAM+DRW [6] 42.0 46.6 77.1 81.0

BBN[66] 42.5 47.0 79.8 81.1
LFME[53] 42.3 - - -
CAM[61] 47.8 51.7 80.0 83.6

Logit Adj.[35] 43.9 - 77.7 -
Hybrid-SC[49] 46.7 51.8 81.4 85.3

RIDE[51] 49.1 - - -
ResLT[9] 48.2 52.7 82.4 85.3
SADE[58] 49.8 53.9 - -
BCL†[68] 51.9 56.5 84.3 87.2

MDCS†(Ours) 53.2 57.2 85.8 89.4

400 epochs
ACE[5] 49.6 51.9 81.4 84.9

BSCE†[41] 50.6 55.0 84.0 85.8
PaCo†[10] 52.0 56.0 - -
SADE†[58] 52.2 57.3 - -
NCL†[27] 54.2 58.2 85.5 87.3

MDCS†(Ours) 56.1 60.1 87.2 88.3
Table 5. Comparisons on CIFAR100-LT and CIFAR10-LT datasets
with the IF of 100 and 50. †denotes models trained with
RandAugment[8].

method on all groups, including 56.1% on the CIFAR100-
LT dataset with an IF of 100 when trained for 400 epochs.

ImageNet-LT, Places-LT, and iNaturalist 2018. Table
6, 7, and 8 list the Top-1 accuracy of SOTA methods uti-
lizing different backbones on ImageNet-LT, Places-LT, and
iNaturalist 2018, respectively. We report the overall Top-
1 accuracy as well as the Top-1 accuracy on Many-shot,
Medium-shot, and Few-shot groups for Place-LT, and iNat-
uralist 2018. For fair comparisons, we report the accuracy
results at different epochs and these results are from their
origin papers. Compared with prior arts, such as PaCo,
BCL, NCL, and SADE, our proposed MDCS achieves
SOTA performance in the same setting.

6. Ablation Study and Further Analysis
Simulating weight distributions by λ. To enrich the

diversity of each expert, the Diversity Loss employs the
hyper-parameter λ to simulate different weight distributions
for each expert’s training. Fig. 3 indicates how differ-
ent λ can affect the accuracy of Many-shot, medium-shot,
and few-shot categories and overall accuracy. When λ in-
creases, the accuracy of Many-shot categories decreases
while the accuracy of few-shot categories increases, which
demonstrates the ability to simulate different weight distri-
butions. Besides, when λ gets high enough, the accuracy of
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Method multi-
experts

ResNet-50 ResNeXt-50

180 epochs
LADE[19] - 53.0
BBN[66] ! 48.3 49.3

PaCo†[10] - 56.0
BCL†[68] - 57.1
SADE[58] ! - 58.8

MDCS†(Ours) ! 59.3 60.2

400 epochs
ACE[5] ! 54.7 56.6

τ -norm[23] 54.5 56.0
BSCE†[41] 55.0 56.2
PaCo†[10] 57.0 58.2
NCL†[27] ! 59.5 60.5

MDCS†(Ours) ! 60.7 61.8
Table 6. Comparisons on ImageNet-LT. †denotes models trained
with RandAug [8].

Method Many Medium Few All
OLTR[31] 44.7 37.0 25.3 35.9
τ -norm[23] 37.8 40.7 31.8 37.9
ResLT[9] 39.8 43.6 31.4 39.8

MiSLAS[65] 39.6 43.3 36.1 40.4
BSCE†[41] - - - 40.2
PaCo†[10] 36.1 47.9 35.3 41.2
NCL†[27] - - - 41.8

MDCS†(Ours) 43.1 42.9 36.3 42.4
Table 7. Comparisons on Places-LT, starting from an ImageNet
pre-trained ResNet-152 provided by Torchvision [34]. †denotes
models trained with RandAug [8].

few-shot classes will decrease. This is due to the few-shot
group having 30 categories on CIFAR100-LT, this catego-
rization is not fine-grained enough to cater to the effect of
the extremely inversely long-tailed distribution generated.

Influence of data augmentations. The RandAug [8] is
widely employed as its strong generalization for long-tailed
recognition [27, 68, 10]. In this subsection, we conduct dif-
ferent augmentations on training samples to evaluate the
effectiveness of weak-strong consistency self-distillation.
The results are shown in Table 9, where we compare weak-
strong distillation with weak-weak distillation and strong-
strong distillation. The results of weak-strong consistency
self-distillation are better than strong-strong distillation,
which demonstrates that the excellence of our structure does
not depend entirely on RandAugment.

Impact of a different number of experts. Our pro-
posed MDCS is a multi-expert framework. The num-

Method Many Medium Few All

100 epochs
BBN[66] 49.4 70.8 65.3 66.3
τ -norm[23] 65.6 65.3 65.9 65.2
BCL†[68] - - - 71.8

MDCS†(Ours) 71.8 73.1 72.4 72.5

200 epochs
CE 68.1 41.5 14.0 48.2

RIDE[51] 70.5 73.7 73.3 73.2
SADE[58] 74.5 72.5 73.0 72.9

400 epochs
ACE[5] - - - 72.9

BSCE†[41] 72.3. 72.6. 71.7 71.8
PaCo†[10] 70.3 73.2 73.6 73.2
SADE†[58] 75.5 73.7 75.1 74.5
NCL†[27] 72.7 75.6 74.5 74.9

MDCS†(Ours) 76.5 75.5 75.2 75.6
Table 8. Comparisons on iNaturalist 2018. †denotes models
trained with RandAugment[8].

Figure 3. Experiments on the effect of λ to simulate weight distri-
butions. The results demonstrate λ has the ability to simulate dif-
ferent weight distributions focusing on Many-shot, Medium-shot,
and Few-shot.

ber of experts can be easily extended by adjusting λ for
different experts. We conduct experiments to demon-
strate the power of multiple experts. As shown in Fig.
4 (a), the performance of MDCS tends to get better
when the number of experts increases. The λ for the
one-expert model is {1}, for the two-expert model is
{−0.5, 2.5}, for the three-expert model is {−0.5, 1, 2.5},
for the four-expert model is {−0.5, 0, 1, 2.5}, for the
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View1 View2 Top1-Acc

Weak augmentation Weak augmentation 50.7
Strong augmentation Strong augmentation 54.6
Weak augmentation Strong augmentation 56.1

Table 9. Comparisons of training the model with weak-weak aug-
mentation, strong-strong augmentation, and weak-strong augmen-
tation. Experiments are conducted on CIFAR100-LT with IF =
100.

five-expert model is {−0.5, 0, 1, 2, 2.5}, for the six-expert
model is {−1,−0.5, 0, 2, 2.5, 3}, and for the seven-expert
model is {−1,−0.5, 0, 1, 2, 2.5, 3}.

The rule for setting λ. The ensemble models are
not sensitive to the hyper-parameter λ within a reasonable
range, so we can easily choose λ just to spread across
this range. When the number of branches of experts
increases, we first average divide experts into the three
groups to set λ. For the head group, the λ ∈ [-1, 0.5],
for the balanced group, the λ ∈ (0.5, 1.5), for the tail
group, the λ ∈ [1.5, 3]. when the values of λ for differ-
ent experts fell within the above three ranges, the multi-
expert model exhibits effective performance improvements.
For example, we set {−0.5, 1, 2.5} for three experts and
{−1,−0.5, 0, 1, 2, 2.5, 3} for seven experts.

Influence of loss weight α. The α is an adjusted loss
weight of Consistency Self-distillation to control the contri-
bution of the CS part in total loss. To find an appropriate
for α, A series of values experimented on the CIFAR100-
LT dataset. As shown in Fig. 4 (b), the best performance is
achieved when α = 0.6. The best result means a balance of
supervised learning and self-distillation.

Number of experts Scale of 𝞪

(a) Multiple experts (b) Influence of 𝞪

Figure 4. (a) Comparison of using different number of experts with
NCL [27]. We report the performance of all categories. When the
number of experts increases, the model’s performance also tends
to improve. (b) the loss of weight of Consistency Self-distillation.
The best result is achieved when α = 0.6.

Ablation studies on all components. In this subsection,
we conduct detailed ablation studies on the CIFAR100-
LT dataset to analyze every component of our MDCS.
As shown in Table 10, we evaluate the proposed compo-
nents including Diverse Loss (DL), weak-strong augmen-

DL w/RandAug CS Accuracy(%)

% % % 47.8
% ! ! 48.5
! % % 50.7
! ! % 54.1
! ! ! 56.1

Table 10. Ablation study on the CIFAR100-LT dataset with an
IF of 100. The DL indicates Diverse Loss. w/RandAug means
weak-strong augmentation. The%in w/RandAug means conduct-
ing weak-weak augmentation.

tation(w/RandAug), Consistency Self-distillation (CS), re-
spectively. The %in DL means we use normal Softmax
to conduct experiments and the %in w/RandAug means
we employ weak-weak augmentation. As shown in Table,
our proposed Diversity Loss improves the performance by
2.9%. It is a core component because, without our DL,
the other components are less effective at improving perfor-
mance. MDCS Employing weak-strong augmentation can
improve performance from 50.7% to 54.1%, which proves
the strength of RandAug [8, 27]. Eventually, when con-
ducting our proposed CS, the performance is significantly
further improved, from 54.6% to 56.1%.

7. Conclusion

In this paper, we propose a novel method, MDCS, to
cater to the diversity and variance of multi-expert, leading
to improved long-tailed recognition accuracy. Our MDCS
contains two core components: (1) diversity loss (DL),
which can effectively enhance the diversity of experts. (2)
consistency self-distillation (CS), which is a novel self-
distillation method for reducing the model variance. Fur-
thermore, we propose confident instance sampling in CS to
ensure unbiased knowledge. In analyses and ablation stud-
ies, we analyze the effectiveness of our proposed core com-
ponents through experimental results. Moreover, the roles
of our DL and CS are mutually reinforcing and coupled.
Experimental evidence shows that our MDCS achieves sig-
nificant performance over the SOTA methods on five pop-
ular benchmarks, including 56.1% (+1.9%) accuracy on
CIFAR100-LT with an IF 100, 61.8% (+1.3%) accuracy on
ImageNet-LT with ResNeXt-50, and 75.6% (+0.7%) accu-
racy on iNaturalist 2018 with ResNet-50.
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