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Abstract

We propose a fast and generalizable solution to Multi-
view Photometric Stereo (MVPS), called MVPSNet. The key
to our approach is a feature extraction network that effec-
tively combines images from the same view captured under
multiple lighting conditions to extract geometric features
from shading cues for stereo matching. We demonstrate
these features, termed ‘Light Aggregated Feature Maps’
(LAFM), are effective for feature matching even in texture-
less regions, where traditional multi-view stereo methods
often fail. Our method produces similar reconstruction re-
sults to PS-NeRF, a state-of-the-art MVPS method that opti-
mizes a neural network per-scene, while being 411× faster
(105 seconds vs. 12 hours) in inference. Additionally, we
introduce a new synthetic dataset for MVPS, sMVPS, which
is shown to be effective for training a generalizable MVPS
method.

1. Introduction
3D reconstruction of an object can be achieved either

through camera viewpoint variations, Multi-view Stereo
(MVS), or by lighting direction variations, Photometric
Stereo (PS). Both MVS and PS have relative strengths and
weaknesses. While MVS succeeds in obtaining accurate
global shapes, it suffers in textureless regions due to poor
feature matching, often resulting in reconstructions that lack
local details. On the other hand, PS produces accurate local
details, even in textureless regions, by using shading infor-
mation but fails to reconstruct accurate global shapes. In
this paper, we focus on the problem of Multi-view Photo-
metric Stereo (MVPS) where both camera viewpoint and
lighting direction variations are used to accurately recon-
struct global and local details of a 3D shape, even in tex-
tureless regions.

3D reconstruction techniques that produce high-quality
results using only viewpoint variations (MVS) rely on test-
time optimization, often by training neural networks per

scene [53, 64, 66]. These methods are computationally in-
efficient, typically taking hours of computing time on a
high-end GPU for each object. Existing MVS methods
[20, 56, 62] that focus on computational efficiency employ
feed-forward neural networks that are efficient but fail to
produce high-quality details, especially in textureless re-
gions. Existing MVPS approaches can produce high-quality
reconstructions but require computationally inefficient per-
scene training or optimization [27, 28, 29, 61]. Sometimes
additional manual efforts and carefully crafted refinement
steps are also needed [34, 47]. In contrast, we propose an
efficient feed-forward neural architecture, MVPSNet, that
can generalize to unseen objects and achieve similar re-
construction quality to that of per-scene optimization tech-
niques while being computationally efficient during infer-
ence.

We design MVPSNet by taking inspiration from various
deep MVS architectures [7, 14, 18, 20, 62] that are general-
izable, computationally efficient, and can operate on high-
resolution images. However, these approaches often fail
in textureless regions, and their reconstructed meshes often
lack details. We choose the CasMVSNet [20] architecture
as our feature matching module, which has been repeatedly
used by various MVS pipelines [7, 14, 18] for its simplic-
ity and efficiency, and augment it to effectively incorporate
lighting variation cues for better prediction of 3D shapes. In
this way, we propose a feed-forward generalizable approach
to Multi-view Photometric Stereo.

We introduce a multi-scale feature representation, called
Light Aggregated Feature Maps (LAFM), whose role is
to extract detailed geometric features from images by uti-
lizing lighting variations. For brevity, we define Multi-
light Images as a collection of images taken from the same
viewpoint under different directional lighting conditions.
Our intuition is that LAFM can efficiently aggregate shad-
ing patterns from multi-light images, by creating an ‘artifi-
cial shading texture’ in the textureless region. Multi-scale
LAFM will then be used to construct a sequence of cost
volumes to match features across sparse views in order to
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predict a depth map for a reference view. We also predict
surface normals from LAFM for each viewpoint, enabling
LAFM to capture features related to high-frequency local
details. The predicted surface normal can be used in addi-
tion to the depth maps to produce a more detailed mesh than
using the depth maps alone.

To train the proposed MVPSNet architecture, we intro-
duce a new synthetic MVPS dataset, sMVPS dataset. It
consists of shapes from sculpture dataset [57] and random
compositions of primitive shapes generated by [60]. We
render these shapes with spatially varying Cook-Torrance
BRDF under different camera viewpoints and lighting di-
rections. We train MVPSNet on these rendered images
with ground-truth supervision over predicted depth and sur-
face normal maps. The trained model generalizes to real-
world test scenes from DiLiGenT-MV [34] dataset. We
show that simply re-training CasMVSNet on our dataset
improves reconstruction quality over the pre-trained model
on DiLiGenT-MV by 32%, proving the effectiveness of our
synthetic MVPS dataset for generalization.

We evaluate our approach on the only publicly available
MVPS benchmark, the DiLiGenT-MV [34] dataset. Com-
pared to the state-of-the-art MVPS technique, PS-NeRF
[61], which optimizes a neural network per-scene, our pro-
posed MVPSNet is ∼411× faster (105 seconds vs 12 hours)
while producing similar reconstruction quality (L1 Chamfer
distance of 0.82 vs 0.81, F-score on L2 distance of 0.985 vs
0.983). We further show that adding LAFM significantly
improves reconstruction quality over CasMVSNet by 34%
in L1 Chamfer distance. We also observe that refining the
reconstructed mesh derived from depth maps with predicted
surface normals from LAFM improves reconstruction qual-
ity as shown in Fig 3.

In summary, the key contributions of this paper include:
• Light Aggregated Feature Maps (LAFM) that can effi-
ciently utilize multi-light images to extract detailed geomet-
ric features, especially in textureless regions. The surface
normal predicted from LAFM also improves mesh recon-
struction quality. • A synthetic MVPS dataset for training
generalizable MVPS methods, which also improves Cas-
MVSNet by 32%. • A fast and generalizable Multi-view
Photometric Stereo pipeline that is 411× faster while pro-
ducing similar reconstruction accuracy compared to state-
of-the-art per-scene optimization approach [61].

2. Related work
Multi-view Stereo (MVS). MVS is a 3D reconstruction

technique that utilizes multiple images captured from dif-
ferent viewpoints. While various techniques for MVS have
been proposed, one commonly used approach that is rele-
vant to our work involves constructing cost volumes sim-
ilar to Plane Sweeping Algorithm [13] and then predict-
ing per-view depth maps [21, 25, 41, 59, 62, 63] or disparity

Method Generalizable Mesh Reconstruction
PJ16 [47] ✗ Base mesh+displacement map
LZ20 [34] ✗ 3D points+PSR [30]+Optimization [44]
BKW22 [29] ✗ MLP+Marching Cube [40]
BKC22 [27] ✗ MLP+Marching Cube [40]
PS-NeRF [61] ✗ MLP+MISE [42]
BKW23 [28] ✗ MLP+Marching Cube [40]
Ours ✓ 3D Points+Screened Poisson [31]

Table 1. Comparison of our method with prior MVPS methods.

maps [23]. To create a cost volume, features are matched
across neighboring viewpoints, and the quality of the fea-
tures plays a critical role in the final reconstruction qual-
ity. Traditional methods [5, 16, 17, 19, 26, 50, 54, 55] use
human-defined or hand-crafted image processing operators
to extract feature maps. With recent advances in deep learn-
ing, features learned from deep neural networks have been
proven to be effective.

The most relevant previous works are MVSNet [62] and
its variations. MVSNet [62] uses homography to warp fea-
ture maps and a 3D CNN to regularize cost volumes. Cas-
MVSNet [21] outperforms MVSNet in terms of accuracy
and efficiency by building the 3D cost volume in a cas-
caded manner. TransMVSNet [15] builds upon CasMVS-
Net and adopts a transformer to consider intra-image and
inter-image feature interactions, which further improves the
results of CasMVSNet.

Photometric Stereo (PS). PS (introduced in [58]) uses
lighting variation to reconstruct 3D shapes from a single
viewpoint (see [52] for surveys). Calibrated PS approaches,
like Chen et al. [10], train a neural network to predict sur-
face normals using data with known lightings. Uncalibrated
PS approaches [8, 9, 11] first predict the lighting param-
eters before solving for surface normals. While most PS
works use a large number of images for inference, some use
fewer [24,38], or even one image [6,35,36,51] (often called
Shape from Shading). PS approaches are mostly based on
feed-forward networks that generalize and can produce near
real-time inference with low computational cost [37].

Multi-view Photometric Stereo (MVPS). MVPS was
initially proposed in [22] by combining PS with object sil-
houettes to reconstruct textureless shiny objects with fine
details. However, this method only works well for specific
parametric BRDF models [27]. Later, Li et al. [34, 68] pro-
pose to get iso-depth contours from PS images and sparse
3D points using structure-from-motion, which are propa-
gated to recover a complete 3D shape. Park et al. [46, 47]
use a planar mesh parameterization technique to parameter-
ize a coarse mesh from MVS and take advantage of this 2D
parameter domain to perform MVPS. Some of these tradi-
tional MVPS methods achieve high-quality results, but they
require an initial 3D reconstruction and their performance
is sensitive to it. Besides, they consist of multiple steps, so
careful execution or expert interventions are often needed to
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Figure 1. Overview of our network architecture. (a) Light Informed Feature Extractor (LIFE) produces a multi-scale feature representation;
(b) Light Aggregated Feature Maps (LAFM) Extractor aggregates these features across images of varying lighting conditions but same
view; and (c) LAFM is used to create cost volumes and predict depth maps, similar to CasMVSNet [21], in addition to normal map.

get good results [34, 47]. In contrast, our proposed method
trains a neural network end-to-end and the inference only
requires one feed-forward pass of the trained network.

Recently, inspired by NeRF [43], various algorithms
have been proposed that optimize a neural network per-
scene for MVPS. Kaya et al. [29] train a deep PS network
first and condition the color rendering in NeRF [43] on nor-
mals predicted from PS. The reconstructed mesh, however,
exhibits multiple artifacts. The authors in [27] propose to
train a deep PS network and a deep MVS network extended
with uncertainty estimation separately, and use these to fit
the SDF represented by an MLP. To further enable recon-
struction on anisotropic and glossy objects, Kaya et al. [28]
add a neural volume rendering module to the SDF MLP
in [27] to better fuse PS and MVS measurements. PS-
NeRF [61] solves the task of jointly estimating the geom-
etry, materials and lights. It first regularizes the gradient
of a UNISURF [45] with estimated normals from PS, and
then uses separate MLPs to explicitly model surface nor-
mal, BRDF, lights, and visibility which are optimized based
on a shadow-aware differentiable rendering layer. Recent
works have also used physically based differentiable ren-
dering either inside a NeRF framework [3] or separately
for optimization [65]. While per-scene optimization meth-
ods often generate precise reconstruction results, they have
to optimize an individual model for each object separately,
which is computationally inefficient. Thus, we propose
a solution to Multi-view Photometric Stereo training on a
new synthetic MVPS dataset, which is generalizable and
can achieve similar results as SOTA per-scene optimization
methods.

3. Our approach
3.1. Problem setup

We focus on the problem of calibrated multi-view pho-
tometric stereo, i.e. the locations of the light sources and
the cameras are known a priori (calibrated prior to capture).
The input data consists of a set of multi-light images of an
object captured from multiple views.

Concretely, for the i-th view we have Mi images with
varying lighting directions lij , denoted as Iij . We refer to
the collection {Ii1, ..., IiMi} as the multi-light images for
the i-th view. For each view, we are given camera intrinsic
matrix Ki and camera extrinsic parameters in the form of a
rotation matrix, Ri, and a translation vector, ti. Similar to
virtually all MVS methods, we assume that we are provided
with the depth range for each view.

3.2. Motivation

Our approach follows a long line of work in Multi-view
Stereo which uses Plane Sweep to construct a cost volume
and predicts a depth map aligned with a reference image.
Recent advances in Plane Sweep Stereo using deep neural
networks, especially CasMVSNet [21], have proven to be
generalizable across scenes and can predict high-resolution
reconstruction in a matter of seconds. In contrast to previ-
ous Multi-view Photometric Stereo approaches, which op-
timize a neural network per scene, our goal is to produce a
generalizable solution. Thus we aim to build upon the Plane
Sweep stereo architecture proposed in CasMVSNet [21].

CasMVSNet learns a deep image feature encoder for
extracting representative features that can aid in feature
matching across multiple views and create better cost vol-
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umes. However, these features are often ambiguous for
non-textured regions and fail to preserve the geometric de-
tails. We believe incorporating lighting variations along
with viewpoint variations can lead to better features, which
in turn will produce better cost volumes and depth maps.

To this end, we introduce ‘Light Aggregated Feature
Maps’ (LAFM), whose goal is to extract detailed geometric
features, even for textureless regions, by jointly learning to
aggregate feature maps over all images captured from a sin-
gle viewpoint and multiple lighting directions. To obtain ef-
fective features that capture geometric details we use LAFM
to regress surface normals. We show that LAFM provide su-
perior information for stereo-matching than single-lighting
feature maps (as used in CasMVSNet) and thus provide a
better reconstruction. We also show that surface normals
predicted using LAFM can be used during mesh reconstruc-
tion to improve quality over depth maps alone.

Our approach proceeds in three stages. We first extract
multi-scale feature representation from each image, along
with its lighting directions, using a shared neural network,
‘Light Informed Feature Extractor’ (LIFE). To aggregate
features extracted by LIFE across all images under the same
viewpoint but different lighting conditions, we use max-
pooling operation. We can then create a cost volume for the
reference view by matching LAFM of the reference view
with all the LAFM from neighboring views. Finally, for
each reference view, we predict a depth map using cost
volume regularization and a surface normal map from the
LAFM. We train our system in a multi-task learning frame-
work with supervised losses over depth and normal predic-
tions. In the following sections, we provide the details of
our MVPSNet pipeline. An overview of MVPSNet archi-
tecture is illustrated in Figure 1.

3.3. Light Aggregated Feature Maps (LAFM)

We introduce Light Aggregated Feature Maps (LAFM)
that provide geometrically distinct multi-scale features for
cost volume creation in a Plane Sweep Stereo approach.
Our key observation is that the multi-light images provide
us with important information for feature matching. For
textureless regions, the variation in shading (including cast
and attached shadows) created by different lighting direc-
tions can be interpreted as ‘artificial’ textures. Thus the
role of LAFM for textureless regions is to capture the varia-
tion in shading as an ‘artificial’ texture that can be used for
feature matching across different viewpoints. We also use
LAFM to predict surface normal maps, enabling it to cap-
ture geometric details required for producing high-quality
normal maps. Hence LAFM can capture better features
for textureless regions and for reconstructing details, which
were absent in the usual deep image features used in deep
multi-view stereo algorithms.

We first define a multi-scale feature extractor, Light In-

formed Feature Extractor (LIFE), that takes an image Iij
associated with its lighting direction lij as input and pro-
duces feature maps at three different scales F 1

ij , F
2
ij , F

3
ij at

resolutions 1/4, 1/2, 1 of the input resolution, and another
feature map NFij that will be used for normal prediction.
The network architecture of LIFE is shown in Fig. 1(a) and
will be discussed in details in the supplementary material.

NFij , F
1
ij , F

2
ij , F

3
ij = LIFE(Iij , lij ; θ) (1)

Note lij is of the same resolution as Iij by simply repeating
the same 3-dimensional lighting vector at each pixel.

Then we extract these multi-scale features for every im-
age captured under the same viewpoint and different light-
ing conditions, {Ii1, ..., IiMi

}, using the same shared en-
coder LIFE. Let the feature maps obtained from these im-
ages be denoted as: {NFij , F

1
ij , F

2
ij , F

3
ij}, j = 1, ...,Mi.

We create ‘Light Aggregated Feature Maps’ (LAFM) from
these multi-scale feature representations by performing a
max-pooling operation for each scale. Pooling operations
can handle various number of input feature maps and are
order-agnostic. Moreover, max-pooling helps save the
most prominent feature across all views and ignores non-
activated features, which automatically handles shadows
casted by directional lights [10].

F s
i = max

j
F s
ij , ∀s = 1, 2, 3 (2)

NFi = max
j

NFij . (3)

Thus for multi-light images we obtain LAFM as LFi =
{NFi, F

1
i , F

2
i , F

3
i }.

The features at 3 scales F 1
i , F

2
i , F

3
i are then used to

build cost volumes using differentiable homography warp-
ing, which we will talk about in detail in Section 3.4. The
normal feature NFi is fed into a lightweight normal regres-
sion network to predict per-view normal map, as shown
in Figure 1(c). With the supervision from normal infor-
mation and depth information, our LAFM benefit from the
advantages of both MVS and PS which are good at global
shape modeling and high-frequency component reconstruc-
tion, respectively.

3.4. Cost volume and depth map prediction

Given Light Aggregated Feature Maps (LAFM), LFi,
for each view i, we aim to build a cost volume for each refer-
ence view by selecting a set of source views with sufficient
overlap. We adopt the multi-scale cost volume construc-
tion proposed in CasMVSNet [21], where the plane sweep
is first performed at a low resolution and then at higher res-
olutions. Depth estimated from the previous step is used for
generating depth proposals for the next step. Multi-scale
cost volume reconstruction and depth map prediction fol-
low the following steps.

Step 1: Depth hypothesis generation. We generate hy-
pothesis depths for each pixel based on the lower resolution
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depth estimated at the previous resolution. We store these
in h, where

h(u, v, w) = Up(Ds−1)(u, v) + ∆s(
w

Ns − 1
− 1

2
). (4)

Here h(u, v, w) is the w-th depth hypothesis at pixel (u, v).
Up(Ds−1) is the depth map at the previous lower resolution
upsampled to the current resolution. ∆s is the length of the
depth interval we are searching at scale s. Ns is the number
of hypothesis depths at the current scale.

Step 2: Cost volume construction. Building cost vol-
ume is a way of robustly searching for matches between a
point (u, v) in the reference image Ir and a point on the
corresponding epipolar line in the source image Isk . Con-
cretely, consider a pixel (u, v) in the reference image. For
every hypothesis depth d, we get a corresponding point in
the source image on the epipolar line for (u, v). We denote
this point by (u′, v′) = warprsk

(u, v, d) where u′

v′

1

 ∼ KskR
T
sk

RrK
−1
r d

 u
v
1

+ tr

− ts

 . (5)

We then construct a per-image volume:
F volsi (u, v, w) = F s

i (warp(u, v, h(u, v, w))), (6)
where i runs over the reference and source views i.e. i ∈
{r, s1, ..., sk}. These volumes are then aggregated into a
single cost volume by taking their variance, which checks
for the photo-consistency of the depth proposal d for pixel
(u, v) in the reference image and the corresponding pixels
in the warped sources images sk:

agg vols(u, v, w) = vari(F vol(u,v,w)si ). (7)
Step 3: Cost regularization. In this step we pass the

aggregated volume through a 3D convolutional network and
take a softmax to convert it to a match probability, using

prob vol = soft maxw(reg nets(agg vols)). (8)
Step 4: Regression. We take the expectation of the

hypothesis depths over the match probability given by the
probability volume to obtain the depth at the current scale,
which enables sub-pixel estimation.

Ds(u, v) =
∑
w

prob vol(u, v, w)h(u, v, w). (9)

This whole process is summarized in algorithm 1

Algorithm 1 MVPSNet Algorithm
1: NFij , F

1
ij , F

2
ij , F

3
ij = LIFE(Iij , lij ; θ)

2: NFi = maxj NFij ; F s
i = maxj F

s
ij ∀s = 1, 2, 3.

3: Ni = normal regression net(NFi)
4: D0(u, v) = (max depth + min depth)/2
5: for s = 1 to 3 do
6: h(u, v, w) = Up(Ds−1)(u, v) + ∆s(

w
Ns−1 − 1

2 )
7: F volsi (u, v, w) = F s

i (warp(u, v, h(u, v, w)))
8: agg vols(u, v, w) = vari(F volsi )
9: prob vol = soft maxw(reg nets(agg vols))

10: Ds(u, v) =
∑

w prob vol(u, v, w)h(u, v, w)
11: end for

Figure 2. Example images from proposed synthetic MVPS dataset.

Once we have depth and surface normal for each view,
our mesh reconstruction pipeline consists of three steps:
depth filtering, lifting depth and normal maps to a point
cloud, and reconstructing the mesh using Screened Pois-
son [31] (See supplementary materials for details).

3.5. Synthetic MVPS dataset

A key component of our method is that we can learn bet-
ter features for stereo matching, especially in textureless re-
gions, by learning features that incorporate multi-lighting
cues. However, there is no existing MVPS dataset that is
large enough for neural network training. Therefore, we
generate a large-scale synthetic dataset, sMVPS, consisting
of two sub-datasets, sMVPS-sculpture (800 train scenes/4
test scenes) and sMVPS-random (1000 train scenes/20 test
scenes).

sMVPS-sculpture consists of objects from the sculpture
dataset [57] while sMVPS-random includes objects com-
posed of random primitives from [60]. The objects were
generated following the method of [39] with spatially vary-
ing Cook-Torrance BRDF. We render images from 20 view-
points surrounding the object approximately every 18◦ plus
random jitter in position. For each view we render 10 ran-
domly chosen directional light sources sampled uniformly
on a 45◦ spherical cap centered at the camera’s optical axis.
In addition to the images, we render ground truth normals,
depth, albedo, and roughness.

3.6. Training MVPSNet

We train MVPSNet with supervised loss over surface
normal and depth using the ground-truth created within syn-
thetic sMVPS dataset. For each reference view, we use 2
source views. And we randomly choose 3 lights out of 10
to train our model. The total loss is defined as:

Lmvps = λd · Ld + λn · Ln, (10)

Ld =

3∑
s=1

λds · Lds,∀s = 1, 2, 3 (11)

where Lds and Ln refer to the depth loss for scale s and
normal loss, respectively. For loss weights, we set λn = 1
and λd = 10. The weights of each scale, λds = 1, for
s = 1, 2, 3.
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Per-scene optimization Generalizable
Category Manual Effort Standalone Single-view PS MVS MVPS
Method PJ16

[47]
LZ20
[34]

BKW22
[29]

BKC22
[27]

PS-NeRF
[61]

PS-
Transformer [24]

CasMVSNet
[21]- RT

TransMVSNet
[15]- RT

Ours

BEAR 2.54 0.73 1.01 1.01 0.76 3.17 1.47 1.48 0.80
BUDDHA 1.12 0.97 2.68 1.15 0.86 4.09 1.26 1.10 1.07
COW 1.14 0.39 1.09 0.76 0.75 3.04 1.27 1.05 0.77
POT2 3.21 0.67 1.54 1.40 0.76 3.05 1.46 1.05 0.82
READING 1.30 0.66 1.97 0.84 0.92 3.60 0.75 0.76 0.66
AVERAGE 1.86 0.69 1.66 1.03 0.81 3.39 1.24 1.09 0.82
Recon. Time/object - - 7 hrs ? 12 hrs ? 22s 52s 105s

Table 2. L1 Chamfer Distance in mm (lower is better) between reconstructed mesh and GT after ICP. ‘-RT’ denotes trained on our synthetic
MVPS dataset. For non-manual methods, the best result is shown in bold, 2nd best as underline. LZ20 & PJ16 involve carefully crafted
steps, manual efforts in finding correspondence, and an initial mesh or point cloud.

Per-scene optimization Generalizable
Category Manual Effort Standalone Single-view PS MVS MVPS
Method PJ16

[47]
LZ20
[34]

BKW22
[29]

BKC22
[27]

BKW23*
[28]

PS-NeRF
[61]

PS-
Transformer [24]

CasMVSNet
[21]-RT

TransMVSNet
[15]-RT

Ours

BEAR 0.551 0.986 0.928 0.934 0.965 0.995 0.078 0.911 0.882 0.991
BUDDHA 0.940 0.936 0.687 0.926 0.993 0.983 0.066 0.919 0.963 0.958

COW 0.918 0.990 0.937 0.986 0.987 0.986 0.140 0.914 0.941 0.993
POT2 0.484 0.985 0.909 0.889 0.991 0.991 0.101 0.901 0.964 0.994

READING 0.905 0.975 0.810 0.971 0.975 0.961 0.961 0.980 0.978 0.988
AVERAGE 0.760 0.974 0.854 0.941 0.982 0.983 0.269 0.925 0.946 0.985

Recon.
Time/object

- - 7 hrs ? ? 12 hrs ? 22s 52s 105s

Table 3. F-score with L2 distance and 1mm threshold (higher is better) between reconstructed mesh and GT after ICP. ‘-RT’ denotes trained
on our synthetic MVPS dataset. For non-manual methods, the best result is shown in bold, 2nd best as underline. LZ20 & PJ16 involve
carefully crafted steps, manual efforts in finding correspondence, and an initial mesh or point cloud. BKW23* code not available, results
from the paper.

4. Experiments

Dataset. We evaluate our method and conduct ablation
study on DiLiGenT-MV [34] dataset, which is the only
benchmark dataset for MVPS tasks and widely used by all
previous approaches. It contains images of 5 objects with
diverse materials captured from 20 views. For each view,
the object is illuminated by one of 96 calibrated point light
sources at one time, which gives us 96 images with varying
lighting conditions.
Evaluation metrics. We evaluate the quality of recov-
ered meshes using L1 Chamfer distance from PyTorch3D
[33,48] and F-score [32] with L2 distance and 1mm thresh-
old distance. The distances in both metrics are computed
between the vertices of two meshes and the units are mm.
Evaluation details. Ground truth meshes and meshes of
PJ16 [47] and LZ20 [34] are included in the DiLiGenT-
MV dataset [34]. We thank the authors of BKW22 [29]
and BKC22 [27] for providing us with their reconstructed
meshes. For PS-NeRF [61] we use its publicly available
mesh extraction code from stage 1 and unscale the extracted
mesh to the scale of the ground truth as suggested in the
code. The code or reconstructed meshes of BKW23 [28]
was not released, so we only include their reported F-score

on L2 distance in Table 3. To compare with PS-Transformer
[24], we get normal maps from their pretrained model and
integrate normals into depth maps, followed by a depth
fusion step after rescaling all depth maps to the ground
truth depth scales. To compare with CasMVSNet [21] and
TransMVSNet [15], we consider both the pretrained models
on DTU dataset [1] and models retrained on our synthetic
dataset, dubbed as CasMVSNet-RT and TransMVSNet-RT.
Images from 5 views are used to generate each single-view
depth map and all 20 depth maps are fused together for
3D reconstruction. For ours, we take images from 5 views
and 10 lightings conditions for each view, along with corre-
sponding light directions, as input to generate single-view
depth maps and all 20 depth maps are fused as other meth-
ods. Since there is no image showing the bottoms of objects
in DiLiGenT-MV [34], following BKW22 [29] and BKC22
[27], we remove points that are located lower than +5 on
the z-axis from all reconstructed meshes and the ground
truth. Similar to most previous approaches [27, 29, 34, 47]
we also perform a rigid registration using Iterative Closest
Point (ICP) [2,4,12,67] between the ground-truth and each
reconstructed mesh for a fair comparison.
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Figure 3. Qualitative comparison of our method with existing approaches (red arrows highlight artifacts) and ablation studies.

Method CasMVSNet CasMVSNet-
RT

Ours
(train 1
light/view)

Ours
(train 3

light/view)
BEAR 2.00 1.47 1.31 0.80
BUDDHA 1.44 1.26 1.26 1.07
COW 2.73 1.27 1.06 0.77
POT2 1.89 1.46 1.07 0.82
READING 1.07 0.75 0.77 0.66
AVERAGE 1.83 1.24 1.09 0.82

Table 4. Ablation: Results are improved by retraining CasMVS-
Net [20] on proposed synthetic dataset (sMVPS). LAFM help
in aggregating features across lighting variations, Ours (train 3
light/view) vs Ours (train 1 light/view), and is more accurate than
CasMVSNet features, Ours (train 1 light/view) vs CasMVSNet-
RT.

4.1. Comparison with existing approaches

We compare our algorithm with approaches that require
per-scene optimization or training and with feed-forward
generalizable methods. The quantitative result is shown in
Table 2 and 3. We also show visual comparison of meshes
from representative methods in Figure 3.

(i) Per-scene Optimization. Per-Scene optimization
methods can also be categorized into:
(a) Manual Efforts Needed. We compare with two tra-
ditional multi-stage MVPS methods, PJ16 [47] and LZ20
[34], which require manual efforts. We outperform PJ16
[47] with a clear margin. Although LZ20 [34] achieves
better results than ours, note that both methods, PJ16 &
LZ20, consist of multiple steps with carefully crafted geo-
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metric modeling. Besides, they require an initial mesh [47]
or point cloud [34] to build upon and their performance is
sensitive to the initialization quality. When the initializa-
tion step fails in large textureless regions, LZ20 [34] incor-
porates manual labeling to establish correspondence across
views. In contrast, our pipeline is completely automatic
without any manual efforts, does not involve any carefully
crafted multi-stage approach, and does not require separate
hyper-parameters for individual object.
(b) Standalone Methods. Recent deep learning-based
MVPS methods, including BKW22 [27], BKC22 [29],
BKW23 [28] and PS-NeRF [61], are simpler and easier
to adopt. However, like traditional methods [34, 47], they
still optimize one model for each object individually, re-
sulting in low computational efficiency. In contrast, al-
though our model is trained only on synthetic data, we out-
perform some per-scene optimized methods [27, 29] and
get comparable results as state-of-the-art, PS-NeRF [61].
Furthermore, even though PS-NeRF [61] recovers high-
quality meshes with details, its recovered surfaces contain
iso-contour pattern artifacts, e.g. see the red arrows in Fig.
3 on BUDDHA and COW, and sometimes incorrect shapes,
e.g. READING. Note that, we could not report L1 Chamfer
distance on BKW23 [28], since the code is unavailable, but
we show in Table 3 that our method is slightly better than
BKW23 on F-score.

(ii) Generalizable. We compare our method with two
categories of generalizable methods:
(a) Single-view Photometric Stereo. PS-Transformer [24]
is a state-of-the-art PS network, which takes multiple im-
ages with the same viewpoint but different lighting condi-
tions as input and generates single-view normal map pre-
diction. To get 3D reconstruction, we integrate each normal
map into a depth map and fuse them together. Since the
integrated depths are of arbitrary scale, we rescale them to
the range of ground truth depth. Inherently, PS methods
struggle with global shape modeling and it is challenging
to stitch multi-view integrated depth of arbitrary scale, so
PS-Transformer [24] doesn’t perform well on full-view re-
covery.
(b) Multi-view Stereo. We also compare our method with
CasMVSNet [21] and TransMVSNet [15], both of which
use a single lighting image from each view. For fairness,
we retrain both methods using our synthetic dataset with
suggested hyper-parameters in original papers . We observe
that lighting information can largely improve both accu-
racy and quality, quantitatively and qualitatively. On tex-
tureless objects, e.g. BEAR, and textureless regions, e.g.
belly of BUDDHA, MVS alone gets noisy and rough sur-
faces. Moreover, our meshes have more high-frequency de-
tails that MVS alone may struggle with, e.g. the texture on
POT2. This is because our LAFM are supervised with nor-
mal maps so they can learn the high-frequency components.

4.2. Computational efficiency

While our method outperforms some per-scene opti-
mized methods [27,29] and produces comparable results to
state-of-the-arts [28,61], the key advantage of our method is
that it is fast, generalizable, and computationally efficient.
Thus we analyze the inference time of the MVPS algorithms
compared in this paper to the best of our abilities.

• LZ20 [34]: This algorithm takes 117 minutes per ob-
ject, without considering the time required for initializing
a point cloud or any manual efforts. • BKW22 [29]: takes
7 hours to train per object. • BKC22 [27], BKW23 [28]:
Since the authors did not mention the time required for
training these algorithms it is not possible to provide an
exact estimate. However, these approaches are based on
MLPs, which take hours to train. • PS-NeRF [61]: takes 12
hours to train per object. • CasMVSNet [20]:, in contrast,
takes only 22 seconds per object, including obtaining depth
maps for each view using 5 views (1 reference view and 4
source views) and 1 lighting per view (5 images processed
for estimating a depth map), fusing depth maps from all 20
views to a point cloud, computing normals for vertices in
the point cloud and adopting Screened Poisson [31] to re-
cover a mesh from the point cloud. • MVPSNet (Ours):
takes a total of 105 seconds to create a mesh, including
steps of obtaining depth maps for each view using 5 views
(1 reference view and 4 source views) and 10 lightings per
view (50 images processed in total), fusing depth maps from
all 20 views to a point cloud, and adopting Screened Pois-
son [31] to recover a mesh from the point cloud.

In summary, we are around 240× faster than BKW22
[29] and around 411.4× faster than PS-NeRF [61] ignoring
their mesh extraction time.

4.3. Ablation study

The key contribution of this work includes: (a) our
synthetic sMVPS dataset, including sMVPS-sculpture and
sMVPS-random, and (b) ‘Light Augmented Feature Maps’
(LAFM) for more accurate mesh reconstruction. Here we
design experiments to analyze impacts of these contribu-
tions.

Synthetic Data (sMVPS-sculpture and sMVPS-
random). To illustrate the effectiveness of our synthetic
data, we evaluate the performance of a CasMVSNet [21]
model trained on DTU dataset [1], and compare it with the
CasMVSNet-RT model trained on our sMVPS dataset. The
L1 Chamfer distance metric is reported in Table 4. We ob-
serve that training on our synthetic dataset improves recon-
struction quality by 32.2%, proving the effectiveness of our
proposed data for MVPS reconstructions. See supplemen-
tary materials for comparison between pretrained Trans-
MVSNet [15] and TransMVSNet-RT trained on our syn-
thetic dataset.

Light Augmented Feature Maps (LAFM). LAFM play
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# of lightings 1 4 10 20 30 40 96
3 viewpoints 1.237 0.883 0.855 0.863 0.865 0.871 0.892
5 viewpoints 1.244 0.856 0.823 0.831 0.840 0.847 0.878

Table 5. Averaged Chamfer-L1 distance (mm) of DiLiGenT-MV.
The network is trained with 3 views and 3 lightings per view.

two key roles in our approach: (i) they aggregate features
from images captured with multiple lighting conditions but
the same viewpoints, and (ii) they are trained with surface
normal loss which helps to preserve high-frequency details
in the features. The predicted surface normals are used to
further refine the reconstructed mesh.

For understanding the impact of (i), we train our pro-
posed MVPSNet with just a single lighting image per view
instead of 3 lightings. Thus LAFM are only aggregated
across 1 image per view. In Table 4 we observe that us-
ing a single lighting per view (‘Ours (train 1 light/view)’)
produces worse results (1.09 vs 0.82) than using 3 lightings
per view (‘Ours (train 3 light/view)’). However, even using
a single lighting per view produces better performance than
CasMVSNet-RT (1.09 vs 1.24), which is also trained on sin-
gle lighting per view. This shows that LAFM are effective
in both extracting accurate information from just a single
image and aggregating shading information across multiple
images with varying illumination.

For understanding the impact of (ii), we train our pro-
posed MVPSNet without any surface normal loss, ‘Ours
(w/o normal loss)’. We observe ‘Ours (w/o normal loss)’ is
quantitatively comparable to ‘Ours (w/normal loss)’, 0.79
vs 0.82 in L1 chamfer distance and 0.985 vs 0.985 in F-
score. However, in Fig. 3 we observe that the meshes pro-
duced by ‘Ours (w/o normal loss)’ are significantly noisier
as shown with red arrows.

4.4. Effects on different numbers of viewpoints and
lighting conditions

We also test the effects of the number of viewpoints and
the number of lighting conditions used at inference time.
The results of different combinations are shown in Table 5.
We target at using sparse views to estimate depth maps, so
we only test on 3 and 5 views. The results prove that al-
though trained on 3 views, our model is able to utilize the
extra information provided more views. For lighting condi-
tions, the result gets better initially as images under more
lighting conditions are provided, but then it gets slightly
worse after around 10 lighting conditions.

4.5. Result on real-world captures

We include the result on real-world captures using a sim-
ple at-home setup, which requires no special equipment. As
shown in Fig 4, a user captures MVPS imagery by attach-
ing a flashlight with a string to the tripod to move lights in

a circle around the camera. In our example, images from 5
viewpoints with 3 lighting conditions per view are captured.

We automatically calibrate camera and lighting condi-
tions using COLMAP [49,50] and SDPSNet [8] separately.
The room isn’t strictly dark and contains some ambient
lighting. We generate the foreground mask with an off-the-
shelf segmentation algorithm. The result shows that our
method produces good reconstruction and improves over
CasMVSNet [20] in both details and global shapes.

Figure 4. Results of uncalibrated in-the-wild MVPS captures.

5. Conclusion

In this work, we propose a fast and generalizable ap-
proach for MVPS. We introduce Light Aggregated Feature
Maps that leverage shading cues from images with the same
view under multiple lighting conditions to produce richer
features in textureless regions. Being trained with normal
estimation, LAFM also enable higher quality reconstruction
than traditional MVS methods with only little compromise
to speed. When trained on the synthetic sMVPS dataset we
propose, our method produces results comparable to SOTA
method that is about 400x slower at inference time.
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