
RecursiveDet: End-to-End Region-based Recursive Object Detection

Jing Zhao1, Li Sun1,2∗, Qingli Li1

1Shanghai Key Laboratory of Multidimensional Information Processing,
2Key Laboratory of Advanced Theory and Application in Statistics and Data Science,

East China Normal University, Shanghai, China

Abstract

End-to-end region-based object detectors like Sparse R-
CNN usually have multiple cascade bounding box decod-
ing stages, which refine the current predictions according
to their previous results. Model parameters within each
stage are independent, evolving a huge cost. In this pa-
per, we find the general setting of decoding stages is actu-
ally redundant. By simply sharing parameters and making
a recursive decoder, the detector already obtains a signif-
icant improvement. The recursive decoder can be further
enhanced by positional encoding (PE) of the proposal box,
which makes it aware of the exact locations and sizes of in-
put bounding boxes, thus becoming adaptive to proposals
from different stages during the recursion. Moreover, we
also design centerness-based PE to distinguish the RoI fea-
ture element and dynamic convolution kernels at different
positions within the bounding box. To validate the effective-
ness of the proposed method, we conduct intensive ablations
and build the full model on three recent mainstream region-
based detectors. The RecusiveDet is able to achieve obvious
performance boosts with even fewer model parameters and
slightly increased computation cost. Codes are available at
https://github.com/bravezzzzzz/RecursiveDet.

1. Introduction
Object detection has been intensively investigated by

computer vision community for decades. Traditional detec-

tors built by deep convolutional neural network (CNN) are

either anchor-based [13, 32, 26] or anchor-free [30, 37, 46].

The former performs classification and regression based on

pre-defined densely tiled bounding boxes, while the latter

only assumes grid points in the 2D image plane. On the

other hand, detection can be completed in a single stage,

two stages or even multiple cascade stages. The single-stage

*Corresponding author, email: sunli@ee.ecnu.edu.cn. This work

is supported by the Science and Technology Commission of Shang-

hai Municipality under Grant No. 22511105800, 19511120800 and

22DZ2229004.

(a) End-to-end region-based detector

(b) RecursiveDet

Decoder Decoder

Encoder

Decoder

I

q q

bbbb c c c

Decoder Decoder

Encoder

Decoder

I

q q q q

bbbb c c c

I

q q

b

p p p

Figure 1. Comparison between end-to-end region-based detector

and RecusiveDet. I is the input image feature. q and b are pro-

posal feature and proposal box at input. c and b indicate the class

and bounding box of the predictions at output. In RecursiveDet,

we encode b into PE vector p. (a) Detectors like Sparse R-CNN,

AdaMixer and DiffusionDet have cascade stages, which bring a

huge amount of parameters. (b) Our proposed RecursiveDet sim-

ply shares the decoder parameters and makes the structure recur-

sive, which reduces the model size.

method directly gives predictions without further modifica-

tions, which is usually simple and efficient. Two- or multi-

stage methods repeatedly make corrections based on previ-

ous results, which offer better results but cost more model

parameters and calculations. Except for the first stage, later

stages are usually region-based, focusing on the local re-

gion within the bounding box, which is often realized by

RoI Align [15].

Although these detectors have been widely used, they are

often complained for complex pre- and post-designs, e.g.,
anchor sizes, standards for positive and negative samples,

and non-maximum suppression (NMS) on results. DEtec-

tion TRansformer (DETR) simplifies the framework. It re-

lies on multi-stage transformer decoder layers to update

learnable queries into object features, which can be decoded

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6307

into bounding box predictions at each stage. During train-

ing, DETR utilizes bipartite matching to determine positive

and negative query samples in a dynamic way. Since each

ground truth (GT) box is assigned with only one query as

positive, NMS is no longer necessary. However, DETR has

extremely low efficiency, mainly due to the lack of inductive

bias in the transformer decoder. Later works incorporate ei-

ther bounding box positional encoding (PE), iterative refine-

ment or local deformation into the decoder, hence greatly

improve the training efficiency.

Similar to DETR, region-based methods [35, 11, 4] also

treat object detection as a set prediction task between pre-

dictions and GTs, and they all adopt a multi-stage strategy.

Sparse R-CNN is a representative work depending on RoI

Align. It employs a set of learnable proposal features to

generate dynamic conv filters for image RoI features within

corresponding proposal boxes. Compared to DETR, region-

based methods obtain accurate results and high data effi-

ciency. However, the model sizes are obviously larger than

DETR-series, which not only limit their applications but

also cause degradation for the small-scale dataset. We find

that some specific layers in region-based methods account

for most of the parameter number, so they can potentially be

improved. Moreover, since proposal features are equivalent

to object queries in DETR, it should be practical to intro-

duce PE of bounding boxes like [25], so the self attention

and dynamic conv know the exact global and local positions

of image features.

Based on the above considerations, this paper proposes

the RecursiveDet, a common cascade decoder structure

built on dynamic conv for region-based detectors. Specif-

ically, we share the decoder parameters and make the same

module recursive in different stages, allowing training it

based on proposal boxes of different qualities. By simply

sharing all decoder parameters among different stages, the

model size is apparently reduced while its performance only

suffers a slight drop. Moreover, since the dynamic layer for

generating conv kernels and out layer after dynamic conv

are huge, we intend to make full use of them and apply

the dynamic conv for more layers. In practice, we up-

date the proposal feature after the first group of dynamic

convs. Then the updated feature is given to the same dy-

namic layer, specifying conv kernels for the second group.

In other words, the dynamic layer and out layer are reused

to increase the model depth within a stage without extra pa-

rameter cost.

Due to sharing parameters of decoder stages, its input

becomes indispensable to distinguish each decoding stage.

Therefore, more information about the previous predictions

needs to be utilized as input. Inspired by [28, 39, 25], we en-

code the positions and shapes of the bounding boxes into PE

vectors, which are then employed for both position-aware

self attention and dynamic conv. Since the PE of bound-

ing box is only computed from the global image coordinate

and shape size, we design a centerness-based PE to repre-

sent different locations within the RoI as compensation. By

combining the PE of bounding box and centerness within

dynamic conv, our RecursiveDet model is able to fully ex-

ploit both proposal features and boxes in the end-to-end

region-based detector.

To validate the effectiveness of the proposed Recur-

siveDet, intensive experiments and ablation studies are con-

ducted on MS-COCO dataset. We implement RecursiveDet

in three mainstream detectors, including Sparse R-CNN,

AdaMixer and DiffusionDet, and achieve consistent perfor-

mance boosts. We point that Sparse R-CNN and AdaMixer

are end-to-end, while DiffusionDet is not. In summary, the

contribution of this paper lies in the following aspects.

• We propose to share the decoder parameters among

different stages in the region-based detector, which

significantly reduces the model size without severely

degrading the performance. Moreover, we repeatedly

use the dynamic layer to generate conv kernels for

more layers in a single stage, increasing the model

depth for further performance gain.

• We design the bounding box PE according to the ge-

ometry information from predictions. Besides, the lo-

cal coordinate is represented based on centerness PE,

discriminating each feature within RoI. We make these

PEs to participate in self attention and dynamic conv in

the region-based detector.

• The proposed RecursiveDet is implemented in differ-

ent end-to-end region-based detectors, showing that it

enhances all of them and reduces the model size at the

same time.

2. Related Work
CNN-based detector. Earlier CNN-based object detec-

tors hold assumptions on densely located anchor boxes

[13, 26, 22, 1] or gird points [19, 47, 37, 40] in 2D plane,

and they compute the classification and bounding box re-

gression loss for each candidate sample. Anchor-based

methods heavily rely on hyper-parameters of anchor sizes.

Moreover, they need heuristic rules, like the IoU threshold,

to determine positive and negative anchors. The NMS post

operation is also cumbersome. Grid point-based methods

make detectors free from anchor boxes. They directly locate

the GT box from the grid, however, positive and negative

assignment is still a critical issue, which is often realized in

a simple way. E.g., FCOS [37] assumes the points inside

a GT box to be positive, and RepPoints [40] labels a grid

point nearest to the GT box as the positive. Giving the im-

portance of sample assignment, researchers propose differ-

ent schemes [43, 18, 12] to prevent heuristic rules. Another

6308

way to characterize different detectors is based on the num-

ber of detection stages. Single stage detectors [26, 30, 31]

are more efficient than two- [13, 32, 7] or multi-stage [1]

competitors. They directly give results from whole image,

while two- or multi-stage methods bring region-based fea-

ture from RoI Align to later stages to increase the accuracy.

Detection transformer. DETR [2] opens a new era for ob-

ject detection, since it eliminates most handcrafted designs.

It starts from a set of learnable queries and employs multi-

ple decoder attention blocks to update them into object fea-

tures for the detection head. DETR adopts dynamic bipar-

tite matching to build one-to-one relation between the GTs

and predictions. However, the slow convergence and large

training set requirement become its obstacle. Later works

[49, 10, 41, 28, 39, 25, 20, 42, 5] focus on incorporating

spatial prior or extra query group into model for faster train-

ing and better results. Deformable DETR [49] utilizes de-

formable attention [8, 48] and iterative refinement. SMCA

[10] predicts a spatial mask from query to modulate atten-

tion matrix. REGO [5] employs RoI Align in DETR-series.

Conditional [28] and Anchor [39] DETR encode the cen-

ter of bounding box as PE to assist the decoder, and DAB-

DETR [25] further extends PE to bounding box coordinates

including width and height. DN-DETR [20] introduces de-

noising query group to accelerate training. DINO [42] im-

proves it through contrastive learning and query selection.

End-to-end region-based detector. Similar to DETR-

series, end-to-end region-based detectors [35, 11, 45, 44, 4]

start from learnable proposal features and update them into

object features for final predictions in a cascade manner.

They also borrow the dynamic bipartite matching in DETR

to prevent NMS. However, instead of cross attention, dy-

namic conv is used to connect image with proposal fea-

tures. Moreover, such detectors sample RoI feature within

the bounding box from the previous stage for dynamic conv.

The first representative work is Sparse R-CNN [35]. To

further speed up the convergence, AdaMixer [11] replaces

RoI Align by sampling points directly from the 3D feature

pyramid and borrows the idea of MLP-Mixer [38] which

changes axis of the second time dynamic conv. Diffusion-

Det [4] first utilizes training loss in diffusion model, and

builds a multi-step multi-stage detector based on Sparse R-

CNN. Our RecursiveDet belongs to this type, and it can be

applied in most of them to improve the cascade decoding

stages.

Recursive module in deep model. The typical recursive

model in neural networks is RNN [16, 6], which is unrolled

in multi-step during training. Many models [17, 21, 36]

with recursive module have been proposed to address dif-

ferent tasks. Recent work [34] applies recursive transformer

block to increase the model depth. In object detection, re-

cursive backbone [27] and FPN [29] have been proposed,

however, none of the work deals with recursive decoder at-

tention, particularly for object detection task.

3. Method

3.1. Preliminaries

This paper focuses on the end-to-end region-based detec-

tors, among which Sparse R-CNN is the first typical model.

It has a learnable proposal feature set Q = {qi|qi ∈ R
c}, in

which each qi is a c dimension vector to represent an object

in image. Here i = 1, 2, · · · , N and N is the total num-

ber of proposal features. Correspondingly, it keeps a set of

proposal boxes B = {bi|bi = (x, y, w, h)} with the same

number of Q, where bi is a bounding box centered at (x, y)
with its width and height representing by w and h. Accord-

ing to B, the image RoI feature set F = {fi|fi ∈ R
7×7×c}

is obtained from a multi-resolution feature pyramid by RoI

Align operation, and each element is of the spatial size 7×7.

Sparse R-CNN has multiple cascade stages that gradually

refine B to approach the GT box set. In each stage, the

self attention within Q set is first computed. Then, the pro-

posal feature qi is given to a huge dynamic layer, providing

a pair of dynamic conv kernels ki ∈ R
c×d and vi ∈ R

d×c

for corresponding RoI feature fi. Here ki and vi form a

bottleneck, which can be regarded as two successive layers

consisting of 1 × 1 conv whose parameters are specified as

ki and vi. c and d are the channel of input RoI feature and

hidden dimension respectively, with c � d. After the dy-

namic convs, fi is updated into f ′
i , which is then mapped

into object feature oi through an out layer, so that it can be

utilized by the detection head to give results.

Sparse R-CNN performs the one-to-one dynamic inter-

actions between Q and B. In each stage, it not only predicts

the bounding boxes, but also updates Q and B. Particu-

larly, object feature oi updates proposal feature qi, prepar-

ing for the next stage, and bounding box prediction also up-

dates bi as the next stage input. During training, Sparse

R-CNN dynamically computes a cost matrix between the

predictions and GTs. It carries out bipartite matching based

on it, so that the GT box is only assigned with one pre-

diction. The one-to-one sample assignment strategy pre-

vents it from NMS post processing. The cost and train-

ing loss are the same and they can be formulated as L =
λclsLcls + λL1L1 + λgiouLgiou, where Lcls is the focal

BCE loss [23] for classification, L1 and Lgiou are L1 and

generalized IoU loss [33] for regression.

Besides Sparse R-CNN, AdaMixer and DiffusionDet are

also region-based detectors,the former is end-to-end while

the latter is not. They have similar cascade structures con-

sisting of dynamic convs whose kernels are provided from

dynamic layer based on proposal feature set Q. Our Re-

cursiveDet shares the basic computation pipeline with all of

them, which is shown in Fig. 2 (a). And it is compatible

with all of them, with a significant reduction on the model

6309

size and increase on the result accuracy.

3.2. Recursive Structure for Decoder

Compared with DETR-series, end-to-end region-based

detectors usually have a large decoder, which obviously ex-

pands their model size. The decoder Dect at stage t, param-

eterized by θt, takes the current proposal set Qt and box set

Bt as input, and updates them into Qt+1 and Bt+1 for the

next stage. We formalize the decoder in Eq. (1). Note that

RoI feature set F t is also utilized by Dect.

[Qt+1,Bt+1] = Dect(Qt,Bt,F t; θt) (1)

The key module in Dec is the dynamic conv, and it builds

the connection between proposal feature qi and image RoI

feature fi. However, we find one distinction between cross

attention and dynamic conv. The former is usually light-

weight, while the latter depends on a heavy dynamic layer

Dyn, which maps qi into two sets of kernels ki and vi, as is

shown in Eq. (2).

[ki, vi] = Dyn(qi) = FCc→2c×d(qi) (2)

Actually, Dyn is a single FC layer with its input dimen-

sion c the same as qi, and output dimension equals 2c × d,

which accommodates both ki and vi. It accounts for a large

percentage of model parameters in Dec. Another module,

which costs many params and does not even exist in DETR-

series, is the out layer Out. It is also an FC layer for reduc-

ing the spatial dimension from 7 × 7 to 1, as is illustrated

in Eq. (3). The input of Out is the updated RoI feature f ′
i

and the output is object feature oi, which is utilized by the

detection head for prediction and the next stage Dect+1 as

its input proposal feature.

oi = Out(f ′
i) + qi = FC7×7×c→c(f

′
i) + qi qt+1

i = oi
(3)

The module details within Dec, particularly, the connection

between different modules are illustrated in Fig. 2 (a).

In following Tab. 1, the number of parameters in a single

stage of the decoder is listed. We can see that a single Dyn
has 8.4M parameters, therefore, its parameter cost in six dif-

ferent stages already surpasses the full model of DETR. The

second largest module is Out, and it costs 3.2M parameters

in Sparse R-CNN and DiffusionDet, and 8.4M in AdaMixer.

Note that the multi-head cross or deformable attention layer

in DETR-series is much smaller than Dyn.

Based on the above analysis, we make two simple but

important modifications to the decoder. The principle is to

fully exploit it, particularly the Dyn and Out layers. Con-

sidering the large size of Dec and its cascade structures in

multiple stages, we share their params θ among stages to

reduce the model size, thus Dec becomes recursive with

the same module repeatedly appearing in different stages.

Method MSA Dyn/MCA Out Head Others Total

DETR 0.3M 0.3M - 26.0K∗ 1.0M 1.6M

Deformable DETR 0.3M 0.2M - 0.2M 0.5M 1.2M

DAB-DETR 0.4M 0.4M - 26.0K∗ 1.2M 2.0M

Sparse R-CNN 0.3M 8.4M 3.2M 0.3M 1.0M 13.2M

AdaMixer 0.3M 8.4M 8.4M 0.1M 1.2M 18.4M

DiffusionDet 0.3M 8.4M 3.2M 0.3M 1.6M 13.8M

Table 1. Analysis of parameters in a single decoder layer.’MSA’,

’Dyn’, ’MCA’, ’Out’ and ’Head’ indicate multi-head self atten-

tion, dynamic layer, multi-head cross attention, output layer and

detection head. ’Others’ includes ffn, layer norm, etc. Note that,

the detection head in DETR and DAB-DETR is shared among all

stages, thus results with ’∗’ are divided by total stage number.

However, the recursion may result in unstable gradients dur-

ing training, which is commonly encountered by RNN. Sup-

posing the loss in stage t is Lt, its gradient ∂Lt

∂qt takes its

effect into stage (t−1) since ot−1 = qt, hence the Jacobian

matrix ∂qt

∂qt−1 keeps multiplying until the first stage, caus-

ing the possible gradient vanishing or exploding. We argue

that the total recursion number is not big. Moreover, the

detection loss is also computed in the intermediate stages,

so the recursion of Dec does not bring instabilities during

training. In practice, considering the difficulty of the first

decoding stage, detecting the object from the initial whole

image or randomly located bounding box, we keep it out

of the recursion loop with unique parameters to boost the

performance. This causes a slightly increased model size.

Besides the recursion in different stages, we additionally

make full use of Dyn and Out layers by making a short re-

cursion from object feature oi to the input of the dynamic

layer Dyn within the same stage. In other words, oi is given

to Dyn layer again for generating new kernels k′i and v′i.
And they are used to perform dynamic conv on RoI fi again

and update it into f ′′
i , which is then given to Out to spec-

ify o′i. We emphasize that the in-stage recursion does not

increase the model size, since all trainable modules in the

recursive loop, such as Dyn and Out, share the same pa-

rameters. It only increases the amount of computation.

3.3. Bounding Box Positional Encoding

By sharing Dec among stages, the model gets compact

and already achieves a better result. However, due to the

common model parameters, Dec treats input qi and bi from

different stages in the same way, which could reduce its

adaptability and be a limitation for the performance. We in-

tend to introduce more information from the previous stage

and make a compensation, so that Dec has a sense of de-

coding stages and adjusts itself accordingly. Note that for

DETR-series, it is common to give bounding box PEs to de-

coder. They help better model the relation between queries

and keys during self and cross attention, therefore accu-

rately representing objects. However, PE is usually ignored

by end-to-end region-based detectors, mainly due to the de-

6310

Position-aware
Self Attn

Add & Norm

Dynamic Layer

Q K V

RoIs f kernel k kernel v

Out Layer

FFN FFN

Proposal Features qProposal Boxes b

Bboxes Classes

Im
ag

e
Fe

at
ur

es

Add & Norm

Multi-Head
Self-Attention
Q K V

Proposal Features q

MLP

 (b) Position-aware Self Attn

 (a) Pipeline of RecursiveDet

Proposal Boxes b

RoIs f kernel k kernel v

Proposal Features q

sp
at

ia
l p

os
iti

on
al

em

be
dd

in
gs

 (c) Position-aware Dynamic Convs

Proposal Boxes b

o

box sine
embedding

Local
Centerness

RoI Align

Position-aware
Dynamic Convs

Dynamic Convs

box sine
embedding

module with
parameters

module without
parameters

update to
next stagetensor update within

stage

Figure 2. The details about decoder structure in RecursiveDet. (a) An overview of our method. We share the decoder parameters among

different stages and make it recursive. The Dynamic layer and Out layer repeat twice for increasing the depth of decoder. The object

feature o and predicted bounding boxes are updated to the next stage as proposal features q and proposal boxes b. The bounding boxes are

encoded to PE vectors p and pk to participate in position-aware self attention and dynamic conv in (b) and (c), respectively. As shown in

(c), the local coordinate within RoI is calculated into a centerness mask to assist the bounding boxes PE in dynamic conv.

struction of global position by RoI Align.

We argue that PE of the bounding box can still be valid

even for region-based detectors. First, detectors like Sparse

R-CNN still need self attention to model the pairwise sim-

ilarities among qi ∈ Q, which can be effectively measured

between the spatial positions of two bounding boxes. Sec-

ond, the dynamic kernels can be more adaptive and directly

related to location and shape. So we build the position-

aware self attention and dynamic conv modules, as is shown

in Fig. 2 (b) and (c). We adopt a similar strategy for self at-

tention with [25]. It first maps the 4D vector (x, y, w, h)
to sinusoidal embedding. Then it is further projected into a

PE vector p ∈ R
c by an MLP, and p is finally added onto

the query and key tokens before self attention. For dynamic

conv, the center (x, y) and box shape (w, h) are encoded in

a separate manner. Utilizing two MLPs, denoted by MLPc

and MLPs, proposal feature q is mapped into two vectors

qc and qs in the geometry space, reflecting the center and

shape of bounding box, respectively. The computations of

qc and qs are provided in Eq. (4). Here qs, consisting of two

scalars wref and href , is predicted from q by MLPs. qc,x
and qc,y together form qc, and each contributes half of the

full dimension.

qc = [qc,x, qc,y] = MLPc(q) ∈ R
c

qs = [wref , href] = MLPs(q) ∈ R
2

(4)

Then, they are modulated by geometry features from (x, y)
and (w, h), specifying pk for kernels. We formalize this in

Eq. (5). Here � means the Hadamard product. pk(x,w)
and pk(y, h) are finally concatenated into pk.

pk(x,w) =
wref

w
Sinusoidal(x)� qc,x

pk(y, h) =
href

h
Sinusoidal(y)� qc,y

(5)

At the same time, image feature at each coordinate is also

assigned with a PE vector according to the Sinusoidal func-

tion. As a result, each element in RoI feature fi has its

unique positional representation, denoted by pf . Note that

pf and pk have the same dimensions, and they are concate-

nated with f and k, respectively, completing the position-

aware dynamic conv.

3.4. Centerness-based Positional Encoding

The bounding box PE for self attention and dynamic

conv described in the previous section encodes (x, y, w, h)
in the global image coordinate. Thus, for each RoI feature

f , the generated kernels k and v are shared by all elements

within it. We intend to further enhance the adaptability of

dynamic conv by expanding kernels k to ke ∈ R
7×7×c×d,

therefore, equipping each element in f with unique conv

kernels. Based on this motivation, we propose a centerness-

based PE, which encodes the local coordinate in bounding

6311

Method Backbone Epoch Params AP AP50 AP75 APS APM APL

DETR [2] ResNet-50 500 41M 42.0 62.4 44.2 20.5 45.8 61.1

Deformable DETR [49] ResNet-50 50 40M 45.9 64.9 49.3 28.2 48.9 61.7

Conditional DETR [28] ResNet-50 50 44M 40.9 61.8 43.3 20.8 44.6 59.2

DAB-DETR [25] ResNet-50 50 44M 42.2 63.1 44.7 21.5 45.7 60.3

DN-DETR [20] ResNet-50 50 44M 44.1 64.4 46.7 22.9 48.0 63.4

RecursiveDet(Deformable DETR) ResNet-50 50 36M 46.7 65.0 50.6 28.8 49.7 62.2

Sparse R-CNN [35] ResNet-50 36 106M 45.0 63.4 48.2 26.9 47.2 59.5

AdaMixer [11] ResNet-50 36 135M 47.0 66.0 51.1 30.1 50.2 61.8

DiffusionDet [4] ResNet-50 60 111M 45.8 65.6 49.2 29.7 48.6 61.1

RecursiveDet (Sparse R-CNN) ResNet-50 36 55M 46.5 65.4 50.9 29.7 49.1 59.9

RecursiveDet (AdaMixer) ResNet-50 36 43M 47.9 66.7 52.2 32.5 50.7 61.9

RecursiveDet (DiffusionDet) ResNet-50 60 57M 47.1 66.8 51.0 30.9 49.3 62.3

DETR [2] ResNet-101 500 60M 43.5 63.8 46.4 21.9 48.0 61.8

Deformable DETR‡[49] ResNet-101 50 59M 47.2 66.6 51.1 28.5 50.9 62.4

Conditional DETR [28] ResNet-101 50 63M 42.8 63.7 46.0 21.7 46.6 60.9

DAB-DETR [25] ResNet-101 50 63M 43.5 63.9 46.6 23.6 47.3 61.5

DN-DETR [20] ResNet-101 50 63M 45.2 65.5 48.3 24.1 49.1 65.1

Sparse R-CNN [35] ResNet-101 36 125M 46.4 64.6 49.5 28.3 48.3 61.6

AdaMixer [11] ResNet-101 36 154M 48.0 67.0 52.4 30.0 51.2 63.7

DiffusionDet [4] ResNet-101 60 130M 46.6 66.3 50.0 0.0 49.3 62.8

RecursiveDet (Sparse R-CNN) ResNet-101 36 74M 47.1 65.7 51.8 29.3 50.6 61.5

RecursiveDet (AdaMixer) ResNet-101 36 62M 48.9 67.8 53.1 32.1 52.2 63.8

RecursiveDet (DiffusionDet) ResNet-101 60 76M 46.9 66.7 50.3 29.5 49.8 62.7

Sparse R-CNN [35] Swin-T 36 110M 47.9 67.3 52.3 - - -

AdaMixer [11] Swin-S 36 160M 51.3 71.2 55.7 34.2 54.6 67.3

Sparse R-CNN [35] Swin-B 36 169M 52.0 72.2 57.0 35.8 55.1 68.2

RecursiveDet (Sparse R-CNN) Swin-T 36 58M 48.9 68.2 53.6 33.1 51.3 63.2

RecursiveDet (AdaMixer) Swin-S 36 68M 52.1 71.6 56.9 36.2 55.1 68.3

RecursiveDet (Sparse R-CNN) Swin-B 36 118M 53.1 73.0 58.4 37.0 56.6 69.5

Table 2. Main results and comparisons with other object detectors on COCO 2017 val set. DETR uses 100 object queries, DiffusionDet

and RecusiveDet built on it use 500 proposal features, and all other detectors use 300 of that. The results are from the original paper,

mmdetection[3] and Detectron2 [14]. ”‡” is the enhanced version with iterative box refinement and two-stage processing.

box b for feature f and kernels k. Particularly, a single chan-

nel centerness [37] mask m ∈ R
7×7 defined by Eq. (6) is

first calculated. Here (x∗, y∗) denotes the local coordinate

within the bounding box, and x∗, y∗ = 0, 1, · · · , 6 have the

same value range.

m(x∗, y∗) =

√
min(x∗, 6− x∗)
max(x∗, 6− x∗)

min(y∗, 6− y∗)
max(y∗, 6− y∗)

(6)

Note that m is between 0 and 1, and a higher value means

(x∗, y∗) is near the center of the bounding box. Then, we

multiply m onto the RoI feature f and kernel k. Since m
has only one channel, it is replicated on channel dimension

c to match f . For k, m needs replication on both channel c
and hidden dimension d. k also needs expansions on spatial

dimension before the multiplication with m, enlarging its

size to 7× 7. After the modulation by m, dynamic kernel k
is adapted into ke, giving each element in f a unique kernel.

Our centerness-based PE is also shown in Fig. 2 (c).

The centerness mask m is static with the same size of

RoI feature f , which means it has the same value for dif-

ferent fi and ki, and it always gives the largest value at the

center position. In practice, we try following two strategies

to enhance it. First, we make it learnable as model param-

eters, with its initialization in Eq. (6). Second, we adjust

the largest value position by predicting the center coordi-

nate from proposal feature q. However, we find the static m
strategy gives better results than the other two. Details are

provided in the ablation study in Sec. 4.3.

4. Experiments

4.1. Implementation Details

Datasets. We conduct extensive experiments on MS-

COCO 2017 detection dataset [24] with 80 categories in to-

6312

Method Backbone TTA AP AP50 AP75 APS APM APL

AdaMixer [11] ResNeXt-101-DCN 49.8 69.3 54.3 30.0 52.1 64.3

Dynamic DETR [9] ResNeXt-101-DCN 49.3 68.4 53.6 30.3 51.6 62.5

Sparse R-CNN Swin-T 47.0 66.8 51.2 28.3 49.0 60.6

Sparse R-CNN Swin-B 52.2 72.6 57.2 32.3 54.9 67.2

RecursiveDet Swin-T 49.1 68.5 53.9 30.5 51.2 61.9

RecursiveDet Swin-B 53.1 73.9 58.5 33.7 55.8 67.9

RecursiveDet Swin-B � 55.1 75.0 61.8 37.7 57.3 68.5

Table 3. Results on COCO 2017 test-dev set. ”TTA” indicates test-time augmentations, following [43].

tal. There are about 118k images in the train2017 set and

5k in val2017. We report the standard MS COCO AP as the

main evaluation metric.

Training settings. We adopt the same data augmentation

as Sparse R-CNN, including random horizontal flipping,

random crop and scale jitter of resizing the input images

such that the shortest side is at least 480 and at most 800

pixels while the longest is at most 1333. The training loss

is the same as matching cost with loss weight λcls = 2,

λL1 = 5 and λgiou = 2. The learning rate is divided by 10

at 210K and 250K iterations if the training schedule is 270k

iterations, or at 350K and 420K if the training schedule is

450K. The default number of decoding stages is 6.

4.2. Main Results

The proposed RecursiveDet is built on three region-

based detectors, including Sparse R-CNN, AdaMixer and

DiffusionDet. We provide the performance comparisons

of RecursiveDet with well-established methods on COCO

2017 validation set in Tab. 2. Note that, the sampling

points in 3D feature space are out of the proposal boxes

in AdaMixer, so the centerness-based PE is not imple-

mented into it. It can be seen that the three region-based

detectors exceed Cascade R-CNN and the other DETR-

series detector, but require more model parameters. Ow-

ing to the recursive structure, our method saves a massive

amount of parameters. With ResNet-50 backbone, Recur-

siveDet built on Sparse R-CNN outperforms Sparse R-CNN

by 1.5 AP, while parameters are reduced from 106M to

55M. The models built on DiffusionDet and AdaMixer beat

their baseline 1.6 AP (47.1 vs. 45.5) and 0.9 AP (47.0

vs. 47.9). RecursiveDet also behaves well when backbone

scales up. With ResNet-101, RecursiveDet achieves 47.1,

46.9 and 48.9 based on Sparse R-CNN, DiffusionDet and

Adamixer. More surprisingly, RecursiveDet(AdaMixer)

and RecursiveDet(Sparse R-CNN) reach 52.1 and 53.1 with

the help of Swin-S and Swin-B, respectively. Although

RecursiveDet(DiffusionDet) doesn’t exceed its baseline, it

reduces more than 30% of the model size. Note that, all

our models save a large number of parameters. The re-

sults of our method on COCO test-dev set are listed in

Tab. 3. RecursiveDet reaches 53.1 AP on Swin-B without

bells and whistles. When test-time augmentation is utilized,

it achives 55.1 AP. We also implement our method into De-

formable DETR, and make an improvement of 0.8 AP.

4.3. Ablation Study

In this section, we use ResNet-50 to perform ablation

studies based on Sparse R-CNN architecture as default. The

number of proposal features is 100.

Recursive Structure. Since Sparse R-CNN has multiple

cascade decoder stages to refine the predictions progres-

sively, the parameters of it are redundant. We propose to

share them in different stages. As shown in Tab. 4, simply

sharing the parameters and making the structure recursive

reduces the model size from 106M to 40.1M, with a slight

performance drop of 0.4 AP. To take full advantage of the

decoder’s capabilities, we reuse the dynamic layer and out

layer to increase the depth of model without adding new

parameters. It gains 43.6 AP, surpassing the original Sparse

R-CNN 0.8 AP. As the first stage is difficult to locate ob-

jects, we keep the initial stage independent with the other

recursive ones. Note that the total number of stages remains

6. The performance reaches 43.9 AP, gains 0.3 AP from

model ’RecSt + RecDy’ with a small cost and negligible

latency.

RecSt RecSt† RecDy AP Params(M) Flops(G) L(ms) FPS

42.8 106 134 49 20

� 42.4 40 134 48 21

� � 43.6 40 142 50 20

� � 43.9 53 140 51 20

Table 4. Ablation about recursive structure. ’RecSt’ indicates that

the parameters of different stages are shared, ’RecDy’ means dy-

namic layer and out layer are reused. ’†’ implies the first stage’s

parameters are independent of the remaining stages.

Centerness form in PE. As discribed in Sec. 3.4, the

local coordinate PE of centerness makes model explore lo-

cation information more precisely. In addition to the static

centerness computed within 7 × 7 region, it can be trained

as learnable parameters of the model. The result in Tab. 5

6313

shows a performance drop of about 0.3 AP. As different ob-

jects have various shapes and focus on different points, we

predict a group of offsets to distinguish where the object

center is. Let the value of centerness at this position be the

maximum, the further away, the smaller. However, the re-

sult is unsatisfactory with 44.5 AP, which is 0.7 less than

the static one.

centerness AP AP50 AP75

static 45.2 63.9 49.4

learnable 44.9 63.5 49.0

adjust 44.5 63.3 48.4

Table 5. Variations of centernss-based PE. ’static’ means the cen-

terness is the same for different proposal boxes within the 7 × 7
region. ’learnable’ makes the static centerness be learnable pa-

rameters. ’adjust’ indicates a set of offsets is generated from RoI

feature to adjust the position of the maximum value.

Influences of different modules in RecursiveDet. In this

part, we analyze the effectiveness of different components

in our model. As shown in Tab. 6, all modules proposed in

this paper substantially contribute to the final results. The

recursive structure improves the Sparse R-CNN from 42.8

AP to 43.9 AP. PE has not been introduced into region-

based detectors before. We encode bounding boxes into em-

bedding to participate in self attention and dynamic conv.It

achieves 0.3 AP performance gain. When different stages

are shared, it is challenging for the decoder input to dis-

criminate which stage is. Bounding box encoding plays its

role by providing geometry information for decoder to dis-

tinguish the stage, and it gains 44.4 AP, exceeding the model

of recursive structure by 0.5 AP. And the time cost mainly

comes from it. Since the bounding box only has the global

coordinates and shape sizes, we further employ centerness

within the proposal box to introduce a local prior. With the

help of centerness, the result finally reaches 45.2 AP.

Recursive bb-PE cb-PE AP Params(M) Flops(G) L(ms) FPS

42.8 106 134 49 20

� 43.9 53 140 51 20

� 43.1 110 137 69 15

� � 43.4 110 138 72 14

� � 44.4 55 145 73 14

� � � 45.2 55 149 76 13

Table 6. Ablations about different components (Recursive struc-

ture, bounding-box PE(bb-PE) and centerness-based PE(Cb-PE))

in the proposed RecursiveDet.

Visualization. In Fig. 3 we present the convergence speed

of Sparse R-CNN, AdaMixer, DiffusionDet and Recur-

siveDet. It shows that our models are more efficient than

their baselines. Since our method shares the decoder pa-

rameters, making the cascade detector recursive, we com-

pare the effectiveness of the number of decoder stages at in-

ference between Sparse R-CNN and RecursiveDet in Fig. 4.

It can be seen that our method outperforms Sparse R-CNN

with any number of stages.

Figure 3. Convergence curves of Sparse R-CNN, AdaMixer, Dif-

fusionDet and their counterpart in RecursiveDet. All models are

trained with ResNet-50. Number of proposal feature is 300 for

Sparse R-CNN and AdaMixer, and 500 for DiffusionDet.

Figure 4. Effect of the number of stages in cascade and recursive

structures. Both models are trained with six decoder stages.

5. Conclusion
This paper investigates the region-based object detector.

We propose a RecursiveDet, which increases the detection

performance and reduces the model size. There are two

types of recursion loops in our detector. We first share the

decoder parameters and make it recursive among different

stages. We also reuse the dynamic layer and out layer in

decoder, and make a short in-stage recursion loop to in-

crease the depth of model. To enhance the adaptability of

the decoder, we design bounding box and centerness-based

positional encoding, and further utilize them in self atten-

tion and dynamic conv. The RecursiveDet is implemented

under three typical region-based detectors, including Sparse

R-CNN, AdaMixer and DiffusionDet. It achieves consistent

improvements on all of them with a lower cost on model pa-

rameters.

6314

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.

Springer, 2020.

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-

box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

[4] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffu-

siondet: Diffusion model for object detection. arXiv preprint
arXiv:2211.09788, 2022.

[5] Zhe Chen, Jing Zhang, and Dacheng Tao. Recurrent

glimpse-based decoder for detection with transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5260–5269, 2022.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. Ad-
vances in neural information processing systems, 29, 2016.

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017.

[9] Xiyang Dai, Yinpeng Chen, Jianwei Yang, Pengchuan

Zhang, Lu Yuan, and Lei Zhang. Dynamic detr: End-to-

end object detection with dynamic attention. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 2988–2997, 2021.

[10] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai,

and Hongsheng Li. Fast convergence of detr with spatially

modulated co-attention. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 3621–

3630, 2021.

[11] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.

Adamixer: A fast-converging query-based object detector.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5364–5373, 2022.

[12] Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian

Sun. Ota: Optimal transport assignment for object detection.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 303–312, 2021.

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,

2015.

[14] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.

[17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-

recursive convolutional network for image super-resolution.

In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1637–1645, 2016.

[18] Kang Kim and Hee Seok Lee. Probabilistic anchor assign-

ment with iou prediction for object detection. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXV 16, pages

355–371. Springer, 2020.

[19] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 734–750, 2018.

[20] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni,

and Lei Zhang. Dn-detr: Accelerate detr training by intro-

ducing query denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 13619–13627, 2022.

[21] Ming Liang and Xiaolin Hu. Recurrent convolutional neu-

ral network for object recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3367–3375, 2015.

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017.

[23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[25] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,

Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dynamic

anchor boxes are better queries for detr. arXiv preprint
arXiv:2201.12329, 2022.

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings,
Part I 14, pages 21–37. Springer, 2016.

[27] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang,

Qijie Zhao, Zhi Tang, and Haibin Ling. Cbnet: A novel

composite backbone network architecture for object detec-

tion. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 11653–11660, 2020.

[28] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,

Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.

6315

Conditional detr for fast training convergence. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3651–3660, 2021.

[29] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors:

Detecting objects with recursive feature pyramid and switch-

able atrous convolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,

pages 10213–10224, 2021.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[31] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,

stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[33] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir

Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-

tersection over union: A metric and a loss for bounding

box regression. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 658–666,

2019.

[34] Zhiqiang Shen, Zechun Liu, and Eric Xing. Sliced recur-

sive transformer. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pages 727–744. Springer, 2022.

[35] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-

feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan

Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-

ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454–14463, 2021.

[36] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3147–3155, 2017.

[37] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:

Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019.

[38] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-

cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.

Mlp-mixer: An all-mlp architecture for vision. Advances
in neural information processing systems, 34:24261–24272,

2021.

[39] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.

Anchor detr: Query design for transformer-based detector.

In Proceedings of the AAAI conference on artificial intelli-
gence, volume 36, pages 2567–2575, 2022.

[40] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen

Lin. Reppoints: Point set representation for object detection.

In Proceedings of the IEEE/CVF international conference on
computer vision, pages 9657–9666, 2019.

[41] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient

detr: improving end-to-end object detector with dense prior.

arXiv preprint arXiv:2104.01318, 2021.

[42] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun

Zhu, Lionel Ni, and Harry Shum. Dino: Detr with im-

proved denoising anchor boxes for end-to-end object detec-

tion. In International Conference on Learning Representa-
tions, 2022.

[43] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and

Stan Z Li. Bridging the gap between anchor-based and

anchor-free detection via adaptive training sample selection.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9759–9768, 2020.

[44] Jing Zhao, Shengjian Wu, Li Sun, and Qingli Li. Iou-

enhanced attention for end-to-end task specific object detec-

tion. In Proceedings of the Asian Conference on Computer
Vision, pages 2901–2917, 2022.

[45] Anlin Zheng, Yuang Zhang, Xiangyu Zhang, Xiaojuan Qi,

and Jian Sun. Progressive end-to-end object detection in

crowded scenes. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages

857–866, 2022.

[46] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-

jects as points. arXiv preprint arXiv:1904.07850, 2019.

[47] Chenchen Zhu, Yihui He, and Marios Savvides. Feature se-

lective anchor-free module for single-shot object detection.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 840–849, 2019.

[48] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-

formable convnets v2: More deformable, better results. In

Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9308–9316, 2019.

[49] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang

Wang, and Jifeng Dai. Deformable detr: Deformable trans-

formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

6316

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

