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Panoptic Scene Graph has recently been proposed for
comprehensive scene understanding. However, previous
works adopt a fully-supervised learning manner, requiring
large amounts of pixel-wise densely-annotated data, which
is always tedious and expensive to obtain. To address this
limitation, we study a new problem of Panoptic Scene Graph
Generation from Purely Textual Descriptions (Caption-to-
PSG). The key idea is to leverage the large collection of free
image-caption data on the Web alone to generate panop-
tic scene graphs. The problem is very challenging for three
constraints: 1) no location priors; 2) no explicit links be-
tween visual regions and textual entities; and 3) no pre-
defined concept sets. To tackle this problem, we propose
a new framework TextPSG consisting of four modules, i.e.,
a region grouper, an entity grounder, a segment merger,
and a label generator, with several novel techniques. The
region grouper first groups image pixels into different seg-
ments and the entity grounder then aligns visual segments
with language entities based on the textual description of
the segment being referred to. The grounding results can
thus serve as pseudo labels enabling the segment merger to
learn the segment similarity as well as guiding the label
generator to learn object semantics and relation predicates,
resulting in a fine-grained structured scene understanding.
Our framework is effective, significantly outperforming the
baselines and achieving strong out-of-distribution robust-
ness. We perform comprehensive ablation studies to cor-
roborate the effectiveness of our design choices and pro-
vide an in-depth analysis to highlight future directions. Our
code, data, and results are available on our project page:
https://vis-www.cs.umass.edu/TextPSG.

1. Introduction

A scene graph is a directed-graph-based abstract repre-
sentation of the objects and their relations within a scene.
It has been widely utilized to develop a structured scene
understanding of object semantics, locations, and relations,
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Figure 1. Problem Overview. Different from the traditional
bbox-based form of the scene graph as shown in (a), Caption-to-
PSG aims to generate the mask-based panoptic scene graph. In
Caption-to-PSG, the model has no access to any location priors,
explicit region-entity links, or pre-defined concept sets. Conse-
quently, the model is required to learn partitioning and grounding
as illustrated in (b), as well as object semantics and relation predi-
cates as illustrated in (c), all purely from textual descriptions.

which facilitates a variety of downstream applications, such
as image generation [14, 8], visual reasoning [42, [, 39],
and robotics [2, 10].

Typically, in a scene graph, each node denotes an ob-
ject in the scene located by a bounding box (bbox) with a
semantic label, and each directed edge denotes the relation
between a pair of objects with a predicate label. Nonethe-
less, a recent work [49] points out that such a bbox-based
form of scene graph is not ideal enough. Firstly, com-
pared with pixel-wise segmentation masks, bboxes are less
fine-grained and may contain some noisy pixels belonging
to other objects, limiting the applications for some down-
stream tasks. For example, as shown in Fig. 1 (a), about
half of the pixels in the yellow bbox for gir/ belong to wall.
Secondly, it is challenging for bboxes to cover the entire
scene without ambiguities caused by overlaps, which pre-
vents a scene graph from including every object in the scene
for a complete description. To this end, the work [49] pro-
poses the concept of Panoptic Scene Graph (PSG), in which
each object is grounded by a panoptic segmentation mask,
to reach a comprehensive structured scene representation.
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However, all existing works [49, 45] approach PSG gen-
eration through a fully-supervised manner, i.e., learning to
perform panoptic segmentation and relation prediction from
manually-annotated datasets with explicit supervision for
both segmentation and relation prediction. Unfortunately, it
is extremely labor-intensive to build such datasets, making
it difficult to scale up to cover more complex scenes, object
semantics, and relation predicates, thus significantly limit-
ing the generalizability and the application of these methods
to the real world. For instance, the current PSG dataset [49]
only covers 133 object semantics and 56 relation predicates.

To relieve the reliance on densely-annotated data,
weakly-supervised methods [52, 58, 22] for scene graph
generation are promising. These methods could induce
scene graphs from image-caption pairs, which can be eas-
ily harvested from the Web for free. Even so, they still rely
heavily on two strong preconditions, i.e., a powerful region
proposal network (e.g., [35]) and a pre-defined set of object
semantics and relation predicates. Although these precondi-
tions facilitate the learning process of the methods, they also
limit the generalizability for locating novel objects (unfore-
seen objects for the region proposal network) and constrain
the understanding into the limited concept set.

Inspired by previous weakly-supervised methods, we in-
troduce a new problem, Panoptic Scene Graph Genera-
tion from Purely Textual Descriptions (Caption-to-PSG), to
explore a holistic structured scene understanding without
labor-intensive data annotation. Considering the limitation
of the preconditions mentioned, we set three constraints to
Caption-to-PSG to reach a more comprehensive and gener-
alizable understanding, which results in a very challenging
problem: a) only image-caption pairs are provided during
training, without any location priors in either region pro-
posals or location supervision; b) the explicit links between
regions in images and entities in captions are missing; ¢) no
concept sets are pre-defined, i.e., neither object semantics
nor relation predicates are known beforehand.

Given these three constraints, we argue that there are two
key challenges for the model to solve the problem. Firstly,
the model should learn to ground entities in language onto
the visual scene without explicit location supervision, i.e.,
the ability to perform partitioning and grounding, as shown
in Fig. 1 (b), should be developed purely from textual de-
scriptions. Secondly, during training, the model should also
learn the object semantics and relation predicates from tex-
tual descriptions, as shown in Fig. 1 (c), without pre-defined
fixed object and relation vocabularies. By solving these
challenges, the model could associate visual scene patterns
with textual descriptions, gradually acquire common sense
among them, and finally reach a more comprehensive and
generalizable understanding, including novel object loca-
tion, extensive semantics recognition, and complex relation
analysis, which is more suitable to the real world.

With these considerations, we propose a novel frame-
work, TextPSG, as the first step towards this challenging
problem. TextPSG consists of a series of modules to co-
operate with each other, i.e., a region grouper, an entity
grounder, a segment merger, and a label generator. The
region grouper learns to merge image regions into several
segments in a hierarchical way based on object semantics,
similar to [48]. The entity grounder employs a fine-grained
contrastive learning strategy [51] to bridge the textual de-
scription and the visual content, grounding entities in the
caption onto the image segments. With the entity-grounding
results as pseudo labels, the segment merger learns similar-
ity matrices to merge small image segments during infer-
ence, while the label generator learns the prediction of ob-
ject semantics and relation predicates. Specifically, in the
segment merger, we propose to leverage the grounding as
explicit supervision for merging, compared with [48] which
learns merging in a fully implicit manner, to improve the
ability of location. In the label generator, different from
all previous pipelines for scene graph generation, we refor-
mulate the label prediction as an auto-regressive generation
problem rather than a classification problem, and employ a
pre-trained language model [21] as the decoder to leverage
the pre-learned common sense. We further design a novel
prompt-embedding-based technique (PET) to better incor-
porate common sense from the language model. Our ex-
periments show that TextPSG significantly outperforms the
baselines and achieves strong out-of-distribution (OOD) ro-
bustness. Comprehensive ablation studies corroborate the
effectiveness of our design choices. As a side product, the
proposed grounder and merger modules also have been ob-
served to enhance text-supervised semantic segmentation.

In spite of the promising performance of TextPSG, cer-
tain challenges persist. We delve into an in-depth analysis
of the failure cases, provide a model diagnosis, and discuss
potential future directions for enhancing our framework.

To sum up, our contributions are as follows:

*We introduce a new problem, Panoptic Scene Graph
Generation from Purely Textual Descriptions (Caption-to-
PSG), to alleviate the burden of human annotation for PSG
by learning purely from the weak supervision of captions.

* We propose a new modularized framework, TextPSG, with
several novel techniques, which significantly outperforms
the baselines and achieves strong OOD robustness. We
demonstrate that the proposed modules in TextPSG can
also facilitate text-supervised semantic segmentation.

* We perform an in-depth failure case analysis with a model
diagnosis, and further highlight future directions.

2. Related Work

Bbox-based Scene Graph Generation. Bbox-based scene
graph generation aims to create a structured representa-
tion of object semantics, locations, and relations in the
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scene, where each object is identified by a bbox. Most
of existing works [50, 47, 41, 12, 24] follow a fully-
supervised approach to learn the generation from densely-
annotated datasets [18, 13], which requires significant hu-
man labors. To reduce the labeling effort, some weakly-
supervised methods have been proposed [32, 55, 57, 40].
Recent works [52, 58, 22] further explore learning scene
graph generation from image-caption pairs. However, they
all rely on off-the-shelf region proposal networks for the
location of objects in the scene, which are typically pre-
trained on pre-defined fixed sets of object semantics, lim-
iting their generalizability to locating unforeseen objects.
To reach a more granular and accurate grounding, [ 7] pro-
poses to ground each object by segmentation. A recent
work [49] further introduces the concept of PSG, where
each object is identified by a panoptic segmentation mask,
as a more comprehensive scene representation.
Text-supervised Semantic Segmentation (TSSS).
TSSS [48, 20, 26, 9, 27, 59] aims to learn image pixel
semantic labeling from image-caption pairs without fine-
grained pixel-wise annotations. Similar to TSSS, our
proposed Caption-to-PSG aims to learn to connect visual
regions and textual entities from only image-caption pairs
and has the potential to leverage the large collection of free
data on the Web. However, different from TSSS, Caption-
to-PSG further requires the model to learn the relations
among different visual regions, resulting in a higher-order
structured understanding of visual scenes. In addition
to unknown object semantics, Caption-to-PSG does not
assume any pre-defined relation predicate concepts.

Visual Grounding. Our work is also related to visual
grounding [ 16, 56, 29, 11, 6, 33], which grounds entities in
language onto objects in images. Early works [54, 53, 7] on
visual grounding typically detect object proposals [35, 43]
from images first and then match them with language de-
scriptions by putting features of both modalities into the
same feature space, which are in a fully-supervised learning
manner. There are also some weakly-supervised ground-
ing methods [15, 36, 5] which relieve the need for dense
regional annotations by multiple instance learning [15] or
learning to reconstruct [36]. Different from them, Caption-
to-PSG is more challenging since it requires grounding fine-
grained object relations between entities without region pro-
posal networks for a pre-defined object vocabulary.

3. Problem Formulation

Panoptic Scene Graph Generation from Purely Textual
Descriptions (Caption-to-PSG). A PSG G = (V,€) is a
directed graph representation of the objects and the relations
among them in a scene image I € RH¥*W>3_ Each node
v; € V denotes an object in I located by a panoptic seg-
mentation mask m; € {0,1}7*" with an object semantic
label 0; € C,, and each directed edge e¢;; € £ denotes a

pair of subject o; and object o; with a relation predicate la-
bel r;; € C,, where C, and C, are the defined concept sets
of object semantics and relation predicates. Note that for a
PSG, it is constrained that all segmentation masks could not
overlap, i.e., ZLZ‘l m; < 1HXW,

Given a large collection of paired scene images and tex-

tual descriptions S = {(I;, T;) };, Caption-to-PSG aims to
learn PSG generation from purely text descriptions for a
holistic structured scene understanding, i.e., during training,
only S is provided as supervision, while during inference,
with a scene observation I’ as input, the model is required
to generate a corresponding PSG G'.
Three Constraints. Note that in Caption-to-PSG, three
important constraints are set to reach a more comprehen-
sive and generalizable scene understanding: a) no loca-
tion priors: different from all previous scene graph genera-
tion methods, neither pre-trained region proposal networks
nor location supervision are allowed; b) no explicit region-
entity links: the links between regions in the image I and
entities in the textual description 7" are not provided; c) no
pre-defined concept sets: the target concept sets defined for
inference, i.e., object semantics C, and relation predicates
Cy, are unknown during training.

4. Method

Overview. As illustrated in Fig. 2, our proposed frame-
work for Caption-to-PSG, TextPSG, contains four modules
to cooperate with each other: a region grouper, an entity
grounder, a segment merger, and a label generator.

During training, TextPSG takes batched image-caption
pairs as input. For each pair, the image is passed through
the region grouper to be partitioned into several image seg-
ments, while the caption is first pre-processed to extract its
linguistic structure as a text graph and then taken by the en-
tity grounder to ground textual entities in the graph onto the
image segments. With the grounding results as pseudo la-
bels, the segment merger learns similarity matrices between
small image segments for further merging during inference,
while the label generator learns the prediction of object se-
mantics and relation predicates.

During inference, for each input image, the image seg-
ments output from the region grouper are directly passed to
the segment merger to be further merged according to the
learned similarity matrices, and then fed to the label gen-
erator to predict the object semantic labels and the relation
predicate labels.

4.1. Text Graph Preprocessing

Following previous methods [52, 58, 22] that leverage
a rule-based language parser [46] based on [37] to prepro-
cess textual descriptions, in TextPSG, we employ the same
parser to extract linguistic structures from captions. Addi-
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Figure 2. Framework Overview of TextPSG. The framework consists of four modules cooperating with each other: a region grouper to
merge regions in the input image into several segments, an entity grounder to ground entities in the caption onto the image segments,
a segment merger to learn similarity matrices to merge small image segments during inference, and a label generator to learn the prediction
of object semantics and relation predicates. The solid arrows indicate the training flow, while the dash arrows indicate the inference flow.
The arrows from the region grouper to the label generator indicating the segment feature and mask query are omitted.

tionally, inspired by the success of open information extrac-
tion (OpenlE) [3] in natural language processing, we also
employ an OpenlE system from Stanford CoreNLP [28] for
extraction as a supplement. After merging, for each caption,
we obtain its linguistic structure represented in a text graph,
where each node denotes an entity, and each directed edge
denotes the relation between an entity pair.

4.2. Region Grouper

With a scene image as input, the region grouper aims to
merge the regions with similar object semantics into several
segments and extract corresponding high-level features.

Our region grouper follows the hierarchical design of
GroupViT [48]. Given an input image, the grouper first
splits the image into N non-overlapping patches as the
initial image segments {s},. These segments are
then passed through K grouping layers, where they are
merged into larger, arbitrary-shaped segments progres-
sively. Specifically, within each grouping layer Grp,, (k =
1,2,---,K), Hj grouping centers {cF}% could be
learned. The grouping operation is performed through an
attention mechanism between the centers and the segments,
merging Hy_ 1 input segments into H}, larger ones, i.e.,

) i 1 Hr_1
{S?}iH:kl = Grpk({cf}fz‘l, {Sf 1}1‘;1 )-

Note that Hy = N. After the hierarchical grouping, multi-
ple groups of segments {sf}fi’“l at different grouping stages
are obtained. More details about the design of {Grp; } 5,
can be found in the supplementary material.

4.3. Entity Grounder

Since the explicit region-entity links are not provided,
bridging the textual description and the visual content au-
tomatically plays an important role in solving Caption-to-
PSG. Inspired by FILIP [51], in TextPSG, we employ a
similar fine-grained contrastive learning strategy to perform
region-entity alignment.

For each grouping stage k, on image side, the grounder
projects the segment group {s¥} f{:kl into a new feature space
F by a multi-layer perceptron (MLP) Pro ji to obtain seg-
ment embeddings {x*} 52‘1 On text side, the input caption
is first tokenized into M tokens {t;},, which are then pro-
cessed by a Transformer [44] Tfm" to propagate informa-
tion between each other. A recurrent neural network (RNN)
Rnn further merges the tokens corresponding to the same
entity, encoding tokens into their associated weights one by
one and utilizing weighted sum to merge the token features
into a singular entity feature. Finally, these entity features
are projected to the same feature space F by a MLP Pro i’
to obtain entity embeddings {y;}? ,, where E denotes the
number of entities in the caption.

With the segment embeddings and the entity embeddings
in the shared feature space J, we compute their token-wise
similarities. Specifically, for the i-th segment, we compute
its cosine similarities with all entities to obtain the token-
wise similarity from the i-th segment to the caption p¥ via

k k
;= Inax Ccos|X; i
p; 1<;<E [ z’yj]v
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where cos[-, -] denotes the cosine similarity operation. Note
that different from the original FILIP [51], in the scenario
of region-entity alignment, some regions in the scene may
not be described in the caption, while some entities in the
caption may not exist in the scene. To tackle this problem,
we propose to set a filtering threshold 6, where pairs with
similarity lower than 6 will be considered in different se-
mantics and filtered out. The fine-grained similarity from
the image to the caption p* can thus be computed via

Hy,

1

k k

P = = (0f - 1is0):
>t Lprse im

Similarly, we can also compute the token-wise similarity
from the j-th entity to the image qJ’? via
k k
= max cos|x;,y;
qj 1<i<H, [ 17YJ]a
and the fine-grained similarity from the caption to the image
q* via
1 E
K k
qg = Z (Qj ‘1qj’>9)-
Zg 1 1 k>9 j=1
Denoting the training batch with batch size B as
{(I;,T;)}2.,, the fine-grained similarity from the image
I; to the caption T} as p**=J and from the caption 7} to
the image I; as ¢*7 %, the image-to-text fine-grained con-

trastive loss £%:7 =7 and the text-to-image fine-grained con-

fine

trastive loss L'?;Z:I can then be formulated as
kT 1< exp (p* /1)
LT =53
fine B B )
=1 Z exp (pk z~>]/7-)
j=1
ke, T—1 1 & exp (¢M /)
)
fine B ’

B
=S exp (ghio /)

where 7 is a learnable temperature. The total fine-grained
contrastive loss is

L:k _ 1(£k711—>T + Lk‘,,IT—>I).

ine — 2 fine fine

By minimizing £ Fine at all grouping stages during train-
ing, our framework could reach a meaningful fine- grained
alignment automatically, i.e., for the i-th segment s¥, the

[¥-th entity satisfying

IF = arg max cos[x¥, y;]

1<j<E
tends to have a similar semantics with s¥. We thus obtain
{lk} 1 as the grounding results for the image segments
{sk} . A further explanation of the automatic meaningful
ahgnment can be found in the supplementary material.

4.4. Segment Merger

To improve the ability of location, we propose to lever-
age the entity-grounding results as explicit supervision to
learn a group of similarity matrices between image seg-
ments for small segments merging during inference, com-
pared with [48] that learns the merging fully implicitly.

For each grouping stage k, we compute the cosine sim-
ilarity between each pair of image segments, which is then
linearly re-scaled into [0, 1] to formulate a similarity matrix
Simy, € [0, 1]Hx*Hk  where

. . 1
Simy[i, j] = 2(cos[x X ] +1).

We further leverage {I¥} =y as pseudo labels to build a

pseudo target matrix Slrnt‘"ge € {0, 1}HrxHx where

1,if IF = l;-“ A cos[xF yi] > 0

Sim!"9°![i, 5] = A cos[X?Yzf.] >0,

0, otherwise.

The similarity loss for the stage k is then formulated as

Ek

target ||2
sim F-

= HQHSImk Sim;;

4.5. Label Generator

In addressing the challenge of no pre-defined concept
sets, the previous work [58] proposes to build a large vo-
cabulary for learning during training and use WordNet [31]
to correlate predictions within this vocabulary to the target
concepts during inference. However, there are two limita-
tions to the previous method. Firstly, compared with the ex-
tensive object semantics and relation predicates contained
in textual descriptions, despite the large vocabulary estab-
lished, it is inevitable that some classes will be overlooked.
Secondly, leveraging WordNet to match vocabulary predic-
tions to targets is not accurate and robust enough, for Word-
Net may only reach a coarse matching with multiple target
concepts. This imprecision is particularly pronounced for
relation predicates relative to object semantics.

Given these limitations, we introduce a novel approach
in TextPSG. Instead of approaching label prediction of ob-
jects and relations as a traditional classification problem,
we reformulate it as an auto-regressive generation problem,
which eliminates the necessity for pre-defined concept sets.

Compared with a vanilla RNN, we employ a pre-trained
vision language model BLIP [21]to leverage the pre-learned
common sense. BLIP can take an image as input and output
a caption to describe the image. In TextPSG, we borrowed
the pre-trained decoder module from BLIP to perform the
generation of object and relation labels.

During training, the label generator takes the caption-
parsed text graph, the segment features from the region
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grouper, and the grounding results {I¥}* from the entity
grounder as input. It filters out the segments with token-
wise similarity lower than the threshold 6, merges the seg-
ments mapped to the same entity, and queries the corre-
sponding image masks from the region grouper. Then,
E}, image masks {m”}Z% with their pseudo entity labels
{b¥}Ex | can be obtained, where each b is one entity in the
text graph. F, < E because some textual entities may not
exist in the image.

Prompt-embedding-based technique (PET). To better in-
corporate common sense from the vision language model,
we further design a novel PET for label generation. For ob-
ject prediction, the decoder takes the segment features and
the image mask m¥, using a prompt

a photo of [ENT)]

to guide the object generation, where the [ENT] token is
expected to be the pseudo label b%. For relation prediction,
the decoder takes the segment features and an image mask
pair (mJ, m*) as input, using a prompt
a photo of [SUBJ and [OBJ]
what is their relation [REL)]

to guide the relation generation, where the [SUB| and
[OBJ] tokens are embedded by the pseudo labels b¥ and
b?, and the [REL] token is expected to be the relation pred-

icate between (b}, b¥) with b}’ as subject and ¥ as object
in the text graph. To enhance relation generation, we fur-
ther design three learnable positional embeddings £y, £,
frcgion for indicating the different regions in the segment
features. Two cross-entropy losses £X ,, £F , are used to
supervise the generation of the [EN'T] and [REL)] tokens,
maximizing the likelihood of the target label strings, respec-

tively. More details are in the supplementary material.
4.6. Inference

During inference, the target concepts of object semantics
C, and relation predicates C,. are known. With an image I as
input and an inference stage index k;,, s specified, the region

grouper first partitions I into several candidate segments
o Hy,
{sf“‘f }iimd | which are then passed through the segment

merger to obtain the similarity matrix Simy,, .. We for-
mulate the segment merging as a spectral clustering prob-
lem and perform the graph cut [38] on Simy,  , for cluster-
ing. To improve the accuracy, we employ a matrix recovery
method [25] to reduce the noise in Simy,, .. In this step,
the segments with similar semantics tend to be merged into
the same cluster. For each cluster and each pair of clus-
ters, the label generator use a similar PET to generate the
object semantics and the relation predicates. For every la-
bel within sets C, and C,., the label generator computes its
generation probability. Subsequently, these probabilities are
used to rank the concepts, selecting the most probable as the

final prediction. Note that between object and relation pre-
diction, to convert semantic segmentation into instance seg-
mentation, we identify each connected component in the se-
mantic segmentation to be an instance, for simplicity. More
details about inference are in the supplementary material.

5. Experiments and Results

Datasets. We train our model with the COCO Caption
dataset [4], which involves 123,287 images with each la-
beled by 5 independent human-generated captions. Follow-
ing the 2017 split, we use 118,287 images with their cap-
tions for training. We evaluate models with the Panoptic
Scene Graph dataset [49] for its pixel-wise labeling as well
as its high-quality object and relation annotation. We fur-
ther merge the object semantics with ambiguities. After
merging, 127 object semantics and 56 relation predicates
are finally obtained for evaluation. More details about the
datasets can be found in the supplementary material.
Evaluation Protocol and Metrics. Following all previous
works in scene graph generation, we evaluate the quality of
a generated scene graph by viewing it as a set of subject-
predicate-object triplets. We evaluate models on two tasks:
Visual Phrase Detection (PhrDet) and Scene Graph De-
tection (SGDet). PhrDet aims to detect the whole phrase
of subject-predicate-object with a union location of subject
and object. It is considered to be correct if the phrase labels
are all correct and the union location matches the ground
truth with the intersection over union (IoU) greater than 0.5.
SGDet further requires a more accurate location, i.e., the lo-
cation of subject and object should match the ground truth
with IoU greater than 0.5 respectively.

We use No-Graph-Constraint-X Recall@QK (NXR@K,
%) to measure the ability of generation. Recall@K com-
putes the recall between the top-k generated triplets with
the ground truth. No-Graph-Constraint-X indicates that at
most X predicate labels could be predicted for each subject-
object pair. Since some predicates defined in [49] are not
exclusive, such as on and sitting on, NXR@K could be a
more reasonable metric compared with Recall@K.
Baselines. We consider several baselines for Caption-to-
PSG in the following experiments. Firstly, we design four
baselines that strictly follow the constraints of Caption-to-
PSG, where objects are located by bbox proposals generated
by selective search [43]:

* Random is the most naive baseline where all object se-
mantics and relation predicates are randomly predicted.

* Prior augments Random by performing label prediction
based on the statistical priors in the training set.

* MIL performs the alignment between proposals and tex-
tual entities by multiple instance learning [30]. Similar
to [58], it formulates the object label prediction as a clas-
sification problem in a large pre-built vocabulary, with
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Method Mode PhrDet SGDet

Model Proposal | Target N3R50 N3R100 N5R50 N5R100 | N3R50 N3R100 N5SR50 N5R100
SGGNLS-c | Detector | ¢ | bbox | 9.69 1145 1024 1222 [ 676 7.81 7.2 8.65
Random x [ bbox [ 0.2 0.03 0.02 0.03 0.01 0.02 0.02 0.03

Prior Selective | X | bbox | 0.04 0.07 0.0 0.07 0.03 0.06 0.05 0.07

MIL Search X | bbox | 197 2.18 2.04 2.61 1.2 1.35 1.56 1.97
SGCLIP X | bbox | 3.02 3.45 3.38 3.71 2.13 2.3 2.39 2.7
SGGNLS-o | Detector | X [ bbox | 6.2 6.79 6.92 7.93 3.96 421 453 5.02

Ours - x | mask | 828 9.16 906 1051 | 332 3.63 371 418

Ours - X | bbox | 1137 1274 1224 1437 | 429 4.77 4.82 5.48

Table 1. Quantitative Comparison of Different Methods on Caption-to-PSG. ‘Proposal’ indicates how the method obtains bbox pro-
posals. ‘Target’ indicates whether the concept sets for inference are known during training. ‘Mode’ indicates the mode used for evaluation.

WordNet [3 1] employed during inference. The relation la-
bels are predicted with statistical priors, similar to Prior.

* SGCLIP employs the pre-trained CLIP [34] to predict
both object semantic labels and relation predicate labels.

Secondly, to further benchmark the performance of our
framework, we set two additional baselines based on [58]
by gradually removing the constraints of Caption-to-PSG:

* SGGNLS-o [58] extracts proposals with a detector [35]
pre-trained on Openlmage [19]. It formulates the object
and relation label prediction as a classification problem
within a large pre-built vocabulary, with WordNet [31]
employed during inference.

* SGGNLS-c [58] uses the same proposals as SGGNLS-o.
In SGGNLS-c, the target concept sets for inference are
known during training. It formulates the label prediction
as a classification problem in these target concept sets.

More design details are in the supplementary material.
Implementation Details. Following GroupViT [48], we set
K = 2, Hi = 64, and H, = 8 for our region grouper.
We leverage general pre-trained models for weight initial-
ization. We employ the pre-trained GroupViT for the re-
gion grouper as well as Tfm” in the entity grounder, and
the pre-trained BLIP [21] decoder for the label generator.
During training, Tfm” and the label generator are frozen.
During inference, we set k;,y = 1. More implementation
details can be found in the supplementary material.

5.1. Main Results on Caption-to-PSG

Quantitative Results. Our quantitative results on Caption-
to-PSG are shown in Tab. 1. To make a fair comparison
with bbox-based scene graphs generated by baselines, we
evaluate our generated PSGs in both mask and bbox mode.
For the latter, all masks in both prediction and ground truth
are converted into bboxes (i.e., the mask area’s enclosing
rectangle) for evaluation, resulting in an easier setting than
the former. The results show that our framework (Ours)
significantly outperforms all the baselines under the same

constraints on both PhrDet (14.37 vs. 3.71 N5R100) and
SGDet (5.48 vs. 2.7 N5R100). Our method also shows bet-
ter results compared with SGGNLS-o0 on all metrics and
all tasks (on PhrDet, 14.37 vs. 7.93 N5R100; on SGDet,
5.48 vs. 5.02 N5R100) although SGGNLS-o utilizes loca-
tion priors by leveraging a pre-trained detector. The results
demonstrate that our framework is more effective for learn-
ing a good panoptic structured scene understanding.
Qualitative Results. We provide typical qualitative re-
sults in Fig. 3 to further show our framework’s effective-
ness. Compared with SGGNLS-o0, our framework has the
following advantages. First, our framework is able to pro-
vide fine-grained semantic labels to each pixel in the image
to reach a panoptic understanding, while SGGNLS-o can
only provide sparse bboxes produced by the pre-trained de-
tector. Note that categories with irregular shapes (e.g., trees
in Fig. 3) are hard to be labeled precisely by bboxes. Sec-
ond, compared with SGGNLS-o, our framework can gener-
ate more comprehensive object semantics and relation pred-
icates, such as “dry grass field” and “land at” in Fig. 3,
showing the open-vocabulary potential of our framework.
More qualitative results are in the supplementary material.

5.2. OOD Robustness Analysis

We further analyze another key advantage of our frame-
work, i.e., the robustness in OOD cases. Since SGGNLS-c
and SGGNLS-o both rely on a pre-trained detector to lo-
cate objects, their performance highly depends on whether
object semantics in the scene are covered by the detector.

Based on the object semantics [19] covered by the detec-
tor, we split the ground truth triplets into an in-distribution
(ID) set and an OOD set. For triplets within the ID set,
both the subject and object semantics are covered, while
for triplets in the OOD set, at least one of the semantics
is not covered. As shown in Tab. 2, both SGGNLS-c and
SGGNLS-o suffer a significant performance drop from the
ID set to the OOD set. On the OOD set, the triplets can
hardly be retrieved. However, our framework, with the abil-
ity of location learned from purely text descriptions, can
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Figure 3. Qualitative Comparison between SGGNLS-o (a) and Ours (b). For each method, the results of object location are shown on
the left, while the results of scene graph generation are shown on the right. For OQurs, scene graphs predicted within the given concept sets
are provided in the middle column, and scene graphs directly predicted through the auto-regressive generation (i.e., an open-vocabulary
manner) in the label generator are additionally provided in the right column.

PhrDet SGDet
N3R100 N5R100 | N3R100 N5R100
SGGNLS-c | v bbox | 16.76 18.48 10.45 11.86
SGGNLS-0| X bbox | 11.55 13.64 7.13 8.47

Set Model Target | Mode

b Ours X mask 9.27 10.45 3.28 3.76
Ours X bbox | 13.35 14.82 4.63 5.36
SGGNLS-c | v bbox 0 0 0 0
00D SGGNLS-0| X bbox 0.05 0.06 0 0
Ours X mask 8.47 9.76 4.07 4.51
Ours X bbox | 10.18 11.69 5.23 5.72

Table 2. Analysis on OOD Robustness. ‘Set’ indicates the triplet
set used for evaluation.

PhrDet SGDet
Stage | #Seg | Cut | \3p100  NSRI00 | N3RI00 NSRI00
1 64 | X 10.73 11.39 3.18 351
1 64 | v | 1274 14.37 477 5.48
2 8 X 9.24 11.03 3.53 435
2 8 v 6.78 8.45 2.46 321

Table 3. Ablation Study on the Segment Merger. ‘Stage’ indi-
cates the grouping stage where image segments used for merging
are from. ‘#Seg’ indicates the number of image segments. ‘Cut’
indicates whether the graph-cut-based segment merging is applied.

reach similar performance on both sets, which demonstrates
the OOD robustness of our framework for PSG generation.

5.3. Ablation Studies

We conduct additional ablation studies to evaluate the
effectiveness of our design choices. For all following ex-
periments, we report N3R100 and N5SR100 evaluated in
bbox mode for simplicity. We answer the following ques-
tions. Q1: Does the explicit learning of merging in the seg-
ment merger helps provide better image segments? Q2:
Is the generation-based label prediction better than the

L PhrDet SGDet
Label Prediction | - Model | \3p 100 NSR100 | N3R100 N5R100
Cls + WordNet : 8.82 936 236 272
Gen RNN 9.12 10.44 2.65 3.07
Genw/o PET | BLIP[21] | 233 2.58 0.45 0.6
Genw/PET | BLIP[21] | 12.64  14.28 4.77 5.49

Table 4. Ablation Study on the Label Generator. ‘Cls’ indicates
classification. ‘Gen’ indicates generation.

classification-based prediction? Q3: Does the pre-learned
common sense from the pre-trained BLIP [21] helps with
the label prediction? Q4: Does the PET helps incorporate
the pre-learned common sense for label prediction?

In Tab. 3, we compare different strategies of image seg-
ment merging during inference. Row 1&2 denote that the
H, = 64 segments from the first grouping stage are used
for further merging, while row 3&4 denote that the Hy = 8
segments from the second stage are used. The results show
that applying the graph cut to merge the segments from the
first stage could reach the best performance, corroborating
that compared with the fully implicit learning of merging,
the explicit learning of merging can provide better segments
(row 2 vs 3, answering Q1).

In Tab. 4, we compare different designs of the label gen-
erator. Keeping the other modules the same, we change
the label generator (row 4) into three different designs, i.e.,
classification within a large pre-built vocabulary followed
by WordNet [31] for target matching (row 1), generation
with a vanilla RNN (row 2), generation with the BLIP de-
coder but without the PET (row 3). The results show that
with the constraint of no pre-defined concept sets, compared
with formulating the label prediction into a classification
problem, formulating it into a generation problem is a bet-
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ter choice (row 1 vs 2&4, answering Q2). By employing
the pre-trained BLIP for leveraging the pre-learned com-
mon sense, the prediction could be further boosted (row 2
vs 4, answering Q3). And the PET is very important for in-
corporating the common sense from the pre-trained model
(row 3 vs 4, answering Q4).

More ablation studies for the design evaluation can be
found in the supplementary material.

5.4. Application on TSSS

As a side product, we
observe that our entity
grounder and segment GroupViT [48] | 24.28
merger can also enhance GroupViT" [48] | 24.72

TSSS. Based on the Ours 26.87
original GroupViT [48], Table 5. Results on TSSS.  in-
dicates finetuned.

Method mloU

we replace the multi-
label contrastive loss with our entity grounder and segment
merger. Then we finetune the model on the COCO Caption
dataset [4]. As shown in Tab. 5, compared with GroupViT
directly finetuned on [4], the explicit learning of merging in
our modules can boost the model with an absolute 2.15%
improvement of mean Intersection over Union (mloU, %)
on COCO [23], which demonstrates the effectiveness of our
proposed modules on better object location.

5.5. Discussion

Failure Case Analysis. Despite the impressive perfor-
mance of TextPSG, there are still challenges to address.
Upon analyzing the failure cases for PSG generation, we
identify three specific limitations of TextPSG that con-
tribute to these failures. a) The strategy we use to convert
semantic segmentation into instance segmentation is not en-
tirely effective. For simplicity, in TextPSG, we identify each
connected component in the semantic segmentation to be
an individual object instance. However, this strategy may
fail when instances overlap or are occluded, resulting in ei-
ther an underestimation or an overestimation of instances.
b) Our framework faces difficulty in locating small objects
in the scene due to limitations in resolution and the group-
ing strategy for location. c¢) The relation prediction of our
framework requires enhancement, as it is not adequately
conditioned on the image. While the label generator uses
both image features and predicted object semantics to de-
termine the relation, it sometimes seems to lean heavily on
the object semantics, potentially neglecting the actual im-
age content. Examples of failure cases for each of these
limitations can be found in the supplementary material.

Model Diagnosis. For a clearer understanding of the ef-
ficacy of our framework, we conduct a model diagnosis
to answer the following question: why does our frame-
work only achieve semantic segmentation through learning,
rather than panoptic segmentation (and thus requires further

segmentation conversion to obtain instance segmentation)?

a white sheep pair of sheep
»

(a) A white sheep and a black sheep
standing on the grass under the sky.

a black sheep

o
5

(b) Pair of sheep standing on
open grassy field on clear day.

Figure 4. Region-Entity Alignment Results of Captions in Dif-
ferent Granularity. Two captions in different granularity are
used to execute region-entity alignment with the same image, with
(a) one describing the two sheep individually while (b) the other
merges them in plural form.

In Fig. 4, we use two captions in different granularity to
execute region-entity alignment. It shows that our frame-
work has the capability to assign distinct masks to individ-
ual instances. However, the nature of caption data, where
captions often merge objects of the same semantics in plural
form, limits our framework from differentiating instances.
It is the weak supervision provided by the caption data that
constrains our framework.

More diagnoses are in the supplementary material.
Future Directions. In response to the limitations discussed,
we outline several potential directions for enhancing our
framework: a) a refined and sophisticated strategy for seg-
mentation conversion; b) increasing the input resolution,
though this may introduce greater computational demands;
¢) a more suitable image-conditioned reasoning mechanism
for relation prediction; d) a superior image-caption-pair
dataset with more detailed granularity in captions to achieve
panoptic segmentation through learning.

6. Conclusion

We take the first step towards the novel problem Caption-
to-PSG, aiming to learn PSG generation purely from lan-
guage. To tackle this challenging problem, we propose a
new modularized framework TextPSG with several novel
techniques, which significantly outperforms the baselines
and achieves strong OOD robustness. This paves the
path to a more comprehensive and generalizable panop-
tic structured scene understanding. There are still bottle-
necks in TextPSG to be explored in future work, including
a) a more sophisticated strategy for segmentation conver-
sion; b) a more suitable image-conditioned reasoning mech-
anism for relation prediction; c) a superior image-caption-
pair dataset for panoptic segmentation through learning.
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