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Abstract

This work focuses on training a single visual relation-
ship detector predicting over the union of label spaces
from multiple datasets. Merging labels spanning differ-
ent datasets could be challenging due to inconsistent tax-
onomies. The issue is exacerbated in visual relationship de-
tection when second-order visual semantics are introduced
between pairs of objects. To address this challenge, we
propose UniVRD, a novel bottom-up method for Unified
Visual Relationship Detection by leveraging vision and lan-
guage models (VLMs). VLMs provide well-aligned image
and text embeddings, where similar relationships are op-
timized to be close to each other for semantic unification.
Our bottom-up design enables the model to enjoy the ben-
efit of training with both object detection and visual rela-
tionship datasets. Empirical results on both human-object
interaction detection and scene-graph generation demon-
strate the competitive performance of our model. UniVRD
achieves 38.07 mAP on HICO-DET, outperforming the cur-
rent best bottom-up HOI detector by 14.26 mAP. More im-
portantly, we show that our unified detector performs as
well as dataset-specific models in mAP, and achieves fur-
ther improvements when we scale up the model. Our code
will be made publicly available on GitHub1.

1. Introduction
Visual relationship detection (VRD) is a fundamental

problem in computer vision, where visual relationships are
typically defined over pairs of localized objects, connected
with a predicate. Despite the availability of a diverse set of
data with rich pair-wise object annotations [6, 21, 25, 32],
existing VRD models, however, are typically focusing on
training from a single data source. The resultant models
are therefore restricted in both image domains and text vo-
cabularies, limiting their generalization and scalability. Can

1https://github.com/google-research/scenic/
tree/main/scenic/projects/univrd
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Figure 1. Different VRD datasets provide different sets of unary
object classes and binary relationships. We train a single visual
relationship detector to unify their label spaces that generalizes
across datasets. For each visual relationship, we highlight its sub-
ject in red, predicate in green, and object in blue.

we train a single visual relationship detector that unifies di-
verse datasets with heterogeneous label spaces?

Consider Figure 1, labels for objects and relations across
datasets are non-disjoint and therefore could be synony-
mous (e.g., ‘read’ in HICO-DET [6] vs. ‘look at’ in V-
COCO [21]), subsidiary (e.g., ‘person’ in COCO [43] vs.
‘woman’ / ‘man’ in Visual Genome [32]), or overlapping
(e.g., ‘wine glass’ in Objects365 [59] vs. ‘glass’ in Visual
Genome). Furthermore, VRD models need to infer rela-
tionships (i.e., predicates) of second-order visual semantics
between objects. The combinatorial complexity elevates the
challenge to a new level. Depends on context, the same ob-
ject or predicate might appear in different tenses or forms
(e.g., ‘man’ vs. ‘men’ or ‘wears’ vs. ‘wearing’ in Visual
Genome) and their meanings may vary (e.g., ‘eating a sand-
wich’ vs. ‘eating (with) a fork’ in V-COCO). Therefore,
manually curating a merged label space spanning different
datasets for training a unified VRD model is difficult.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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On the other hand, recent breakthroughs in vision and
language models (VLMs) that are jointly trained on web-
scale image-text pairs (e.g., CLIP [54] and ALIGN [27])
provide an alternative direction to approach our challenge.
Intuitively, benefiting from the large language encoders [14,
55] and contrastive image-text co-training, a pre-trained
VLM should be able to encode “similar visual relation-
ships” close to each other in the embedding space. These
relationships contain similar action, subject, and object la-
bels in semantics, e.g., “a person watching a television” vs.
“a man looking at a TV”. They are commonly measured
by distances between semantic words or language embed-
dings [48], which motivates us to use large language models
for unification. Specifically, the learnt text embeddings of
VLMs can be used to reconcile heterogeneous label spaces
across VRD datasets of similar visual relationships, while
their jointly trained image encoders ensure the alignment
with the visual content.

In light of this, we propose UniVRD (Unified Visual
Relationship Detection), a bottom-up framework consisting
of an object detector and pair-wise relationship decoder in
a cascaded manner. To fine-tune VLMs for object detec-
tion, we adopt an encoder-only architecture [50] and attach
a minimal set of heads to each Transformer output token so
that the learnt knowledge from the image-level pre-training
can be preserved. A lightweight Transformer decoder [2] is
then appended to the object detector for decoding pair-wise
relationships from the predicted objects by formulating the
optimization target as a set prediction problem [5]. Fur-
ther, we use natural languages in place of categorical inte-
gers to define and unify the label space. Our bottom-up de-
sign and language-defined label space enable the model to
enjoy various existing object detection and visual relation-
ship detection datasets for training, yielding strong scalabil-
ity and substantial performance improvements over existing
bottom-up detection approaches.

We evaluate our approach on two VRD tasks: human-
object interaction (HOI) detection and scene graph genera-
tion (SGG). Crucially, we demonstrate competitive perfor-
mances on both tasks — our model achieves the state of the
art on HICO-DET (38.07 mAP), a substantial improvement
of 14.26 mAP over the current best-performing bottom-up
HOI detector. For the first time, we show that a unified
model can perform as well as dataset-specific ones, and
obtain notable improvements in mAP on long-tailed VRD
datasets when the model is scaled up.

In summary, this paper makes the following main con-
tributions: (1) a novel VRD framework that unifies multi-
ple datasets which cannot be done by previous work without
VLMs; (2) an effective and strong model training recipe,
including improvements on models, losses, augmentations,
training paradigms, etc.; (3) state-of-the-art results showing
strong scalability and generalization of our model. Our de-

sign is simple, interoperable, and can easily leverage new
advances in VLMs. We believe our work is first-of-its-kind
that brings new insights to the community and as a flexible
starting point for future research on tasks requiring visual
relationship understanding.

2. Related Work

Visual relationship detection: Visual relationship detec-
tion/prediction (VRD) is first proposed in [48] then formu-
lated as a dual-graph generation task called scene graph
generation (SGG) by [69]. Prior methods [37, 69] refine
the representations in a scene graph by a message passing
mechanism. More recent works aim to eliminate data bias in
SGG (i.e., unbiased/informative SGG) during the inference
process by using graph semantic relationships [74], bi-level
resampling strategies [37], or data augmentation [1].

Human-object interaction (HOI) detection [6], as a popu-
lar VRD task, aims to detect human-object pairs and infers
their interactions. Existing HOI detectors can be summa-
rized into two paradigms: bottom-up methods [17, 18, 19,
53, 64, 65] and single-stage methods [11, 29, 41, 60, 81, 92].
Bottom-up methods detect instances first and predict inter-
actions based on them, while single-stage methods detect
all HOI triplets directly and simultaneously in an end-to-
end manner. Our method uses a bottom-up design and out-
performs both types of methods thanks to label unification
and knowledge transferred from image-level pre-training.

Some prior works [17, 30, 46, 86] incorporate language
priors [48] to VRD based on the observation that relation-
ships are semantically related to each other in the language
space. They use word embeddings [49] to cast relationships
into a vector space so that similar visual relationships are
close to each other. However, they are limited to a small
and fixed set of semantic categories. Different from them,
we use well-aligned image-text embeddings to capture se-
mantic relationships in VRD, which are more powerful.

Unifying label spaces from multiple datasets: Training
on multiple datasets is an effective way to improve model
generalization. Prior works [23, 56, 71, 84, 90] focus on
merging different visual semantic concepts across differ-
ent label spaces for object detection or segmentation tasks.
MSeg [34] manually unifies the taxonomies of different
semantic segmentation datasets and utilizes Amazon Me-
chanical Turk to resolve inconsistent annotations. Zhou et
al. [90] propose to learn a label space from visual data auto-
matically for object detection, without requiring any man-
ual effort. Zhao et al. [84] train a universal object detector
by manually merging the taxonomies and generating cross-
dataset pseudo-labels. Most methods [34, 67, 84] find a
performance drop when training a single unified model. In-
stead, we train a unified VRD model and show that it can
perform as well as dataset-specific ones in mAP.
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Vision and language models: Over the past several years,
there are a surge of works that leverage vision and language
models (VLMs) to build vision systems [27, 35, 54, 75, 80].
By using large amounts of image-text data for model train-
ing, VLMs are able to learn well-aligned image and text em-
beddings, yielding major improvements in open-vocabulary
and zero-shot classification tasks [36, 76, 78, 83]. Some re-
cent studies [72, 73, 76] propose to employ VLMs for VRD.
They focus on designing efficient pretext tasks to capture
object relationships and show promising few-shot and trans-
fer learning ability. In contrast, we take the advantage of
image-text embeddings from pre-trained VLMs [54, 80] for
label space unification, which has never been explored.

3. Approach
The goal of VRD is to predict a set of 〈subject, predicate,

object〉 triplets, representing the bounding box of a subject,
that of an object, and multi-label relationship types, from a
given image. The proposed UniVRD presents a bottom-up
recipe: (1) adapting VLM for object detection by adding
detection heads; (2) decoding visual relationships among
the detected objects through their fine-tuned visual embed-
dings. Each of them is viewed as a direct set prediction
problem [5]: we use Hungarian algorithm [33] to find a bi-
partite matching between ground-truth and prediction, and
compute losses only on matched pairs. The trained model
can be queried in different ways (e.g., natural languages or
visual embeddings) to perform relationship detection. Our
full pipeline is illustrated in Figure 2.

We consider training UniVRD on multiple datasets. Af-
ter merging them, we have two label spaces: Cobj for objects
and Crel for relationships. Both of them can be ambiguous
as discussed in Section 1, and we convert them to language
spaces Cobj → Tobj, Crel → Trel as shown later. We allow
training with datasets containing no relationships and they
downgrade to object detection datasets. Next, we describe
the bottom-up recipe in the following sections.

3.1. Architecture

Object detector: Our model uses a standard Vision Trans-
former (ViT) [15] as the image encoder and a similar ar-
chitecture as the text encoder, which is a common config-
uration in two-tower VLMs [27, 54, 80]. To adapt the im-
age encoder for object detection, we fine-tune the model
by predicting one object instance directly from each image
token. We remove the pooling and final projection layers,
and instead project each output token representation (i.e.,
instance embedding2) to get the per-instance classification
embedding by a linear layer. Bounding box coordinates are
obtained by passing instance embeddings through a feed-
forward network (FFN). The final outcomes of the detec-

2An instance refers to an object instance in the image.

tor are a set of predicted bounding boxes B = {bi}Ni=1

and their corresponding instance embeddingsZ = {zi}Ni=1,
where N is the maximum number of predicted objects and
it equals to the number of tokens (i.e., sequence length) of
the image encoder.

This encoder-only design resembles DETR [5], but is
simplified by removing the decoder, leading to several ad-
vantages. First, it ensures that nearly all of the parameters
(of both image and text encoders) can benefit from image-
level pre-training, without the need for knowledge distil-
lation [20] or detection-tailored pre-training [88]. Second,
the fine-tuned instance embeddings can be directly utilized
for visual relationship decoding without feature pooling in
conventional bottom-up methods [18, 19, 53], which further
reduces the model complexity.

Relationship decoder: We append a Transformer decoder
to the object detector for decoding visual relationships from
its output. In similar spirit to query-based models [5, 26],
we learn a pre-defined number of latent input queries, i.e.,
relation queries. The decoder then takes as input a set of re-
lation queries and instance embeddings Z predicted by the
object detector. These relation queries are fed to a Trans-
former stack that attends to the instance embeddings to pro-
duce relation embeddings R = {rj}Mj=1, where M is the
number of output relation embeddings from the decoder,
equal to the number of learnt relation queries. Additionally,
the keys and values computed from the learnt latents are
concatenated to the keys and values obtained from Z like
Perceiver Resampler [2], which has been proven more effi-
cient than a plain Transformer decoder. We then apply one
linear layer and one FFN on relation embeddings to predict
per-relationship embeddings for classification and locations
of subject and object boxes, respectively.

In contrast to single-stage methods [41, 60, 81], we let
the model predict the indices of bounding boxes outputted
by the object detector instead of box coordinates. This de-
sign avoids making redundant predictions for the same in-
stance, which improves the model efficiency. Our model
finds the indices of subject and object boxes through com-
paring the predicted relation embeddings r ∈ R with the
instance embeddings z ∈ Z . To be specific, we project
each relation embedding rj using a FFN into a subject em-
bedding fsub(rj) and an object embedding fobj(rj). The
subject index sj and object index oj are obtained by:

sj = argmax
z∈Z

{sim (fsub(rj), z)} ,

oj = argmax
z∈Z

{sim (fobj(rj), z)} ,
(1)

where sim(·, ·) measures the cosine similarity between two
embeddings. We can then retrieve the corresponding sub-
ject box bsj and object box boj from B.
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(a) Object detection (b) Visual relationship decoding
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Figure 2. Overview of our method. (a) We first adapt a pre-trained vision and language model (VLM) for object detection. (b) We
then append a decoder to the output instance embeddings for decoding pair-wise relationships from predicted objects. Query strings are
embedded with the text encoder and used for classification in the unified language space. The pre-trained VLM encoders are marked in
light gray and our attached modules are in light orange. Positive and negative text strings are highlighted in green and red, respectively.

Text embeddings for classification: We use text embed-
dings, rather than class integers, to classify detected objects.
The text embeddings, also called text queries, are obtained
by converting category names or textual object descriptions
(e.g., ‘person’) to prompts (e.g., ‘a photo of a person’) [57]
and passing them through the text encoder. For each object,
the task of the detector then becomes to predict a bounding
box and a class probability over text queries. We note that
text queries can be different for each image. In effect, all
images therefore have a shared discriminative label space
Tobj, which is defined by a set of text strings. Note that we
do not add a ‘background’ class to the label space like tradi-
tional detectors [5, 60], because this avoids imposing penal-
ties on positive samples not exhaustively annotated, which
commonly occur in merged datasets [84].

To classify detected relationships, we use text queries in
a similar way as classifying objects in our object detector.
The difference is that their label space Trel is defined by pair-
wise relationship triplets, rather than unary instance cate-
gory names. To this end, we cast a set of relationship triplets
〈subject, predicate, object〉 (e.g., 〈person, ride, horse〉) into
prompts (e.g., ‘a person riding a horse’) and feed them into
the text encoder to get text queries.

3.2. Data Augmentation

Mosaics: We apply ‘mosaics’ image augmentation tech-
nique for training both our object detector and relationship
decoder. It aims to increase the range of image scales seen
by the model, which is achieved by assembling multiple im-
ages into grids of varying sizes: we randomly sample single
images, 2 × 2 image grids, and 3 × 3 image grids, with

probabilities of 0.4, 0.3, and 0.3, respectively. Using ‘mo-
saics’ image augmentation provides two major benefits to
model training. First, this procedure allows us to use widely
varying image scales while avoiding excessive padding and
the need for variable model input size during training. Sec-
ond, it effectively fuses samples from object detection and
visual relationship detection datasets within a batch, when
our model is trained in an end-to-end manner.

Text prompting: When generating text queries for object
categories and relationship triplets, we augment the input
text strings using prompt templates. To handle object cate-
gories, we use the prompt templates proposed by CLIP [54]
(such as ‘a photo of a 〈object〉’, where 〈object〉 is replaced
by the category name). When training the object detec-
tor, we randomly sample from the 80 CLIP prompt tem-
plates to ensure that, within an image, every instance of a
category has the same prompt, but prompt templates dif-
fer between categories and across images. This sampling
technique largely reduces the number of text embeddings
needed to be computed within each batch, which reduces
the training time and memory cost.

We produce text queries for relationship triplets in a sim-
ilar way as prompting object names. The major difference
is that we use a single prompt template (i.e., ‘a 〈subject〉
〈predicate〉-ing a 〈object〉’, where 〈subject〉 and 〈object〉
are replaced by subject and object categories, respectively;
〈predicate〉-ing3 is the present continuous tense of the pred-
icate) to prompt relationships. In addition, we use the word
‘and’ to represent the ‘no-interaction’ predicate category

3“〈predicate〉-ing” is obtained by using a standard Python NLP library:
https://github.com/clips/pattern.
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contained in some datasets (e.g., HICO-DET [6]). The same
prompt template is used for inference and we do not ap-
ply prompt ensemble [50, 54], as no performance improve-
ments are observed if CLIP-like prompt templates are em-
ployed. This is potentially because unlike object categories,
each of which is usually a single word, relationship triples
are combinations of subjects, predicates, and objects, which
already capture rich semantic contents for the text encoder
to generate meaningful language embeddings.

3.3. Model Training

Training strategy: Our whole network can be trained in ei-
ther an end-to-end fashion or multiple stages. Empirically,
we found the direct end-to-end training of the whole net-
work from scratch does not work well, likely because of
the dependency between the two modules and highly non-
linear property of the bipartite matching losses. Thus, we
propose a cascade training paradigm that we found is more
stable and effective in practice. Concretely, in the first stage,
we initialize the object detector using images with bound-
ing box annotations. In the second stage, we train the visual
relationship decoder, where images with relationship anno-
tations are used. Furthermore, we found whether to freeze
or fine-tune the object detector in the second stage highly
depends on the scale of the training data. When the training
data are limited, a frozen object detector prevents overfit-
ting; otherwise, fine-tuning it leads to notable performance
improvements if more training data are available.

Loss functions: The training objective of our model is sim-
ilar to DETR [5] by using the bipartite matching loss, but we
adapt it for training bottom-up VRD models as follows.

To train the object detector, we use the ground-truth ob-
ject category names and sampled negatives as text queries
for each image. Negatives are randomly sampled categories
in proportion to their frequency in the data from the uni-
fied label space, and we have at least 50 negatives per im-
age [89]. The classification head then outputs logits over
the per-image label space T ′obj ⊆ Tobj defined by the text
queries. To be specific, we let fcls(z) be the class embed-
ding projected from the instance embedding z using a linear
layer fcls, and ti be a text query from the label space T ′obj.
The classification loss can be written as:

Lcls(z, T ′obj; ŷ) = LCE(e, ŷ)

and e =
[
sim(fcls(z), t1), · · · , sim(fcls(z), t|T ′

obj|)
]
,

(2)

where ŷ denotes the multi-hot ground-truth label. LCE is
the cross-entropy loss: LCE = −

∑
i ŷi log(pi) and pi =

exp(ei/τ)/
∑

i exp(ei/τ ), where τ is a learnable tempera-
ture, and ŷi denotes the i-th element in ŷ, as ei does in e.
In practice, LCE in Eq. (2) is replaced by the focal sigmoid
cross-entropy loss [42, 91], since the training datasets have
non-disjoint label spaces. We use the box loss Lbox [5], i.e.,

a linear combination of the `1 loss and the generalized IoU
loss [58], to train the box regression head fbox by optimiz-
ing the difference between the predictions b = fbox(z) and
ground-truth box coordinates b̂. Then the Hungarian loss
for our object detector is defined as:

LOD =
1

N

N∑
i=1

Lcls(zi, T ′obj; ŷi) + Lbox(bi; b̂i), (3)

where N is the number of image tokens.
We use a bipartite matching loss similar to Eq. (3) for op-

timizing the relationship decoder, with two major modifica-
tions. First, since the model predicts box indices rather than
coordinates, the box loss Lbox in Eq. (3) is re-formulated
into an index prediction loss Lind. In particular, given a
ground-truth relationship containing a pair of subject and
object boxes, we let their corresponding ground-truth one-
hot subject index ŝ and object index ô be the indices of their
best-matching predicted boxes generated by the object de-
tector. Let its matched relation embedding be r, we further
define the index prediction loss as:

Lind(r; ŝ, ô) = L′cls(r,Z; ŝ) + L′cls(r,Z; ô), (4)

where Z denotes a set of instance embeddings calculated
from the input image; L′cls is a variant of Lcls in Eq. (2)
with LCE replaced by the focal softmax cross-entropy loss,
since both ŝ and ô are one-hot. Second, we replace sampled
object text queries T ′obj by relationship text queries T ′rel ⊆
Trel to classify visual relationships. The final Hungarian loss
for visual relationship decoding can be written as:

LVRD =
1

M

M∑
j=1

Lcls(rj , T ′rel; ĉj) + Lind(rj ; ŝj , ôj), (5)

where ĉj denotes the multi-hot ground-truth label for the j-
th predicted relationship. Note that our box index prediction
loss shares a similar concept with the HO Pointers [29], but
differs in the model design and loss computation.

3.4. Inference

Our inference pipeline assembles the outputs of the ob-
ject detector and relationship decoder to form relationship
triplets. Formally, given an input image, the object detector
predicts a set of object boxes {bi}Ni=1, and the relation de-
coder generates relation embeddings {rj}Mj=1 together with
their relevant subject indices {sj}Mj=1 and object indices
{oj}Mj=1. We combine them to obtain relationship triplets
{〈bsj , boj , rj 〉}Mj=1 via box retrieval (i.e., using the box in-
dex to get the corresponding box coordinates). Then, given
a text query embedding t representing a relationship string
(e.g., ‘a person riding a horse’), the triplet score is com-
puted by sim(rj , t). Among the top-K scored triplets, we
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perform pair-wise non-maximum suppression (PNMS) [81]
within each relationship class, namely per-class PNMS, to
filter out highly-overlapping results.

One-shot transfer: We note that the proposed model does
not require query embeddings to be of textual origin, which
means we can provide image- instead of text-derived em-
beddings as queries to the classification head without mod-
ifying or re-training the model. By leveraging embeddings
of prototypical visual relationships as queries, our model
can therefore perform image-conditioned relationship de-
tection. This allows detection of visual relationships which
might be hard to describe in text.

4. Experiments

The proposed method is evaluated on two popular VRD
tasks: human-object interaction (HOI) detection and scene
graph generation (SGG). We experiment with two configu-
rations: training a single model with each individual VRD
dataset (dataset-specific ones in Sections 4.2 and 4.3) and
multiple VRD datasets (unified ones in Section 4.4). We
analyze model performance and scalability under both con-
figurations and improvements obtained by a unified model.

We note that our method is the first to use VLMs to unify
multiple datasets for VRD. There are no such configurations
in previous work, so making a perfectly controlled compari-
son on the pre-trained strategy and data is infeasible. There-
fore, we perform system-level comparisons instead, where
our goal is to situate our method in the context of current
state-of-the-art methods.

4.1. Experimental Settings

Datasets: For HOI detection tasks, we conduct experi-
ments on HICO-DET [6] and V-COCO [21]. The HICO-
DET (HICO) dataset contains 37, 536 training images and
9, 515 test images, including 600 HOI triplets derived from
the combinations of 117 verbs and 80 objects. We evalu-
ate under the Default setting. V-COCO comprises 2, 533
training images, 2, 876 validation images, and 4, 946 test
images. This benchmark is annotated with 24 actions and
80 objects. Note that the object classes in HICO-DET and
V-COCO are identical to COCO [43].

We use Visual Genome (VG) [32] for SGG tasks. This
dataset contains 108, 077 images annotated with free-form
text for a wide array of objects and relationships (100, 298
object annotations and 36, 515 relation annotations). We
adopt the most common data splits from [69] that remove
rare categories by selecting the top-150 object categories
and top-50 predicate categories by frequency. The entire
dataset is then divided into training and test sets by the ratio
of 7 to 3. To further improve the object detection accuracy
of our model, we incorporate COCO [43] and Objects365
(O365) [59] during training.

Metrics: For both HOI detection and SGG tasks, models
are required to first detect bounding boxes and then rec-
ognize object and predicate classes of a relationship. On
the HICO dataset, we follow the default setting and report
the mAP over three different category sets: all 600 HOI
categories in HICO (Full), 138 HOI categories with fewer
than 10 training instances (Rare), and 462 HOI categories
with 10 or more training instances (Non-Rare). The com-
mon evaluation metric on V-COCO is role AP, which ig-
nores object classes. We instead report mAP on V-COCO
to make the evaluation protocol consistent across datasets.
In addition, we report mAP for two scenarios: Scenario #1
includes cases even without any objects (for the four action
categories of body motions, e.g., 〈person, walk〉), and Sce-
nario #2 ignores these cases. We follow the conventional
mean Recall@K (K equals to 50 or 100) as the evaluation
metrics [48, 69, 79] on VG and report mAP as well.

Implementation details: The proposed method is imple-
mented using JAX [3] and the Scenic library [12]. All mod-
els are trained on TPUv3 hardware. We experiment with
two VLMs: CLIP [54] and LiT [80]. We apply random
crop, random horizontal flip, and mosaics as image augmen-
tations. The number of relation queries is set to 100 and per-
class PNMS threshold to 0.7. The object detector is trained
following the setup in [50] using HICO, COCO, O365, and
VG, except that the text encoder is frozen. The relation-
ship decoder is optimized by the Adam optimizer [31] with
a learning rate of 1.0× 10−4 and 64 batch size. We use co-
sine learning rate decay [47] and per-example global norm
gradient clipping. Please refer to the supplementary mate-
rial for more details.

4.2. Human-Object Interaction Detection

Comparisons to the state of the art: Our framework is
compared to both bottom-up and single-stage methods on
HICO-DET. We do not include other studies about data aug-
mentation [51, 85] and knowledge transfer [45, 68], which
have different research targets but are complementary to our
method. As illustrated in Table 1, our smallest model (ViT-
B/32) matches the state-of-the-art performance, and consis-
tent improvements can be achieved when we scale up the
model. Our largest model with a ViT-H/14 backbone out-
performs the previous best method by 4.32 mAP, setting the
new state of the art. More importantly, compared to conven-
tional bottom-up approaches, we improve them by 14.26
mAP, a 60% relative improvement. We hypothesize that
these improvements result from (1) image-level pre-training
by leveraging VLMs and (2) our bottom-up design, which
makes it possible to utilize more object detection datasets.
Please refer to the supplementary material for results on V-
COCO, where we made similar conclusions.

Ablation study: Figure 3 studies the model scalability (in-
cluding the parameter numbers and GFLOPs) for HOI de-
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Default (%)

Model Extra-sup. mAPF mAPR mAPN

Single-stage methods
UnionDet [28] 7 17.58 11.72 19.33
DIRV [16] 7 21.78 16.38 23.39
PPDM-Hourglass [40] 7 21.94 13.97 24.32
HOI-Transformer [92] 7 23.46 16.91 25.41
GGNet [87] 7 23.47 16.48 25.60
HOTR [29] 7 25.10 17.34 27.42
QPIC [60] 7 29.07 21.85 31.23
CDN [81] 7 31.44 27.39 32.64
RLIP [76] VG† 32.84 26.85 34.63
GEN-VLKT [41] CLIP† 33.75 29.25 35.10

Bottom-up methods
InteractNet [19] 7 9.94 7.16 10.77
GPNN [53] 7 13.11 9.34 14.23
iCAN [18] 7 14.84 10.45 16.15
No-Frills [22] Pose [4] 17.18 12.17 18.68
PMFNet [64] Pose [43] 17.46 15.65 18.00
CHGNet [65] 7 17.57 16.85 17.78
DRG [17] Text [49] 19.26 17.74 19.71
IP-Net [66] 7 19.56 12.79 21.58
VSGNet [63] 7 19.80 16.05 20.91
FCMNet [46] Text [49] 20.41 17.34 21.56
ACP [30] Text [49] 20.59 15.92 21.98
PD-Net [86] Text [49] 20.81 15.90 22.28
DJ-RN [38] Pose [4, 52] 21.34 18.53 22.18
IDN [39] 7 23.36 22.47 23.63
ATL [24] 7 23.81 17.43 25.72
UniVRD (CLIP: ViT-B/32) CLIP† 29.93 22.94 32.02
UniVRD (CLIP: ViT-B/16) CLIP† 31.88 23.04 34.52
UniVRD (CLIP: ViT-L/14) CLIP† 37.41 28.90 39.95
UniVRD (LiT: ViT-B/32) LiT† 29.38 23.64 31.09
UniVRD (LiT: R26+B/1) LiT† 33.18 24.78 35.69
UniVRD (LiT: ViT-H/14) LiT† 38.07 31.65 39.99

Table 1. System-level comparison on the HICO-DET test set.
We report the Mean Average Precision (mAP) under the Default
setting [6] containing the Full (F), Rare (R), and Non-Rare (N)
sets. † denotes training supervisions obtained from the model pre-
training stage. Best performances are highlighted in bold.

tection. A remarkable improvement can be seen when the
backbone is switched from ViT-B/32 to R26+B/1 (a hy-
brid architecture) with only a slight increase in model size
and GFLOPs. Further, we can still obtain an increase of
0.7 mAP when changing ViT-L/14 to ViT-H/14 (our largest
model), demonstrating the strong scalability of UniVRD.

We provide a detailed ablation study on our method in
Table 2, which identifies important factors affecting the per-
formance. Especially from (1)-(6), we show how different
text prompting and image augmentation techniques influ-
ence the model performance. From (7)-(9), we find using
a cascade training paradigm substantially boosts the results,
while freezing the object detector and text encoder avoids
overfitting. This is because accurate object locations and
well-aligned image-text embeddings can stabilize decoder
optimization. However, allowing fine-tuning these modules
leads to performance boosts when we train unified models
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Figure 3. Model scale vs. performance analysis for HOI detec-
tion on the HICO-DET test set. All circles stand for bottom-up
methods. One-stage approaches are marked in green squares. Or-
ange circles represent our models with different backbones and
their marker sizes stand for GFLOPs (see the legend).

Ablation mAPF

Full approach 29.93

Data augmentation
(1) w/o CLIP prompts for the object detector −1.85
(2) Use CLIP prompts for VRD (at training/inference) 0.00
(3) Use CLIP prompt ensemble for VRD (at inference) 0.01
(4) Use no random crop −1.33
(5) Use no random horizontal flip −1.20
(6) Use no mosaics augmentation −1.76
Training and inference strategy
(7) Use one-stage training schedule −5.05
(8) Fine-tune the object detector in the second stage −1.03
(9) Fine-tune the text encoder in the second stage −0.92
(10) Use no PNMS at all (at inference) −2.01
(11) Use vanilla PNMS [81] (at inference) −1.24
Object detection datasets
(12) w/o Objects365 [59] for object detection −3.96
(13) w/o COCO [43] for object detection −2.67
(14) w/o VG [32] for object detection −3.16

Table 2. Ablation study of the main methodological improve-
ments. For simplicity, difference in mAP to the full approach is
shown. All ablations are carried out for the UniVRD (CLIP) model
with the ViT-B/32 backbone on the HICO-DET dataset.

due to the availability of more training data (see the supple-
mentary material for more details). Additionally, we can see
from (10)-(11) that performing per-class PNMS also leads
to a favorable performance gain than vanilla PNMS [81].
To further show whether incorporating diverse object detec-
tion datasets can benefit HOI detection, we experiment with
training our model by removing one object detection dataset
each time in (12)-(14). Unsurprisingly, we observe notable
performance drops, suggesting the importance of training
with diverse object detection datasets.
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Model mR@50 mR@100

Specific methods
KERN [8] 6.4 7.3
GBNet [77] 7.1 8.5
PCPL [70] 9.5 11.7
BGNN [37] 10.7 12.6
DT2-ACBS [13] 22.0 24.4

General methods
GPS-Net [44] 5.9 7.1
GPS-Net [44] w/ Resampling [37] 7.4 9.5
GPS-Net [44] w/ IETrans + Rwt [82] 16.2 18.8
Motif [79] 6.7 7.7
Motif [79] w/ TDE [61] 8.2 9.8
Motif [79] w/ CogTree [74] 10.4 11.8
Motif [79] w/ DLFE [10] 11.7 13.8
Motif [79] w/ IETrans + Rwt [82] 15.5 18.0
VCTree [62] 6.7 8.0
VCTree [62] w/ TDE [61] 9.3 11.1
VCTree [62] w/ CogTree [74] 10.4 12.1
VCTree [62] w/ DLFE [10] 11.8 13.8
VCTree [62] w/ IETrans + Rwt [82] 12.0 14.9
SG-Transformer [74] 7.7 9.0
SG-Transformer [74] w/ CogTree [74] 11.1 12.7
SG-Transformer [74] w/ IETrans + Rwt [82] 16.2 18.8
AS-Net† [7] 6.1 7.2
HOTR† [29] 9.4 12.0
UniVRD (CLIP: ViT-B/32) 9.6 12.1
UniVRD (CLIP: ViT-B/16) 10.9 13.2
UniVRD (CLIP: ViT-L/14) 12.6 14.5

Table 3. Performance on the Visual Genome test set. We adopt
the metric mean Recall@K (mR@K). † denotes methods de-
signed for HOI detection and the results are reproduced with their
open-source code. Best performances are highlighted in bold.

4.3. Scene Graph Generation

We categorize the SGG approaches into two categories:
(1) general models [44, 62, 74, 79] referring to methods
that can be equipped with model-agnostic baselines [10, 37,
61, 74, 82] in a plug-and-play manner; (2) specific mod-
els [8, 13, 37, 70, 77] indicating dedicated designed mod-
els with strong performance. Table 3 shows that our model
achieves competitive performance compared with the state
of the art. To see how models transfer between HOI detec-
tion and SGG, we also report the results of two HOI detec-
tors [7, 29] on VG. We find that our model still outperforms
them by a large margin. Note that the training data of SGG
are highly biased and contain more noisy annotations than
HOI detection, which make it hard for a model to achieve
strong results without specific designs. Our model can be
directly integrated with model-agnostic baselines (colored
in gray) to further boost the results, since our design makes
no specific assumptions on the targeted VRD tasks. We also
note that DT2-ACBS [13] achieves the best performance
among specific methods, since it proposed specific architec-
tures and sampling strategies to handle the long-tailed issue
in VG, which is orthogonal to our method.

4.4. Towards Unified VRD Models

One major advantage brought by unifying label spaces
is the capability of training models over a pool of vari-
ous datasets, but prior studies [34, 67] observe performance
drops in single unified models. We next quantitatively com-
pare our unified model with dataset-specific ones to see per-
formance changes, especially, when models are scaled up.

We report the results of our model at different scales in
Table 4, where we make three important observations. First,
both mAPS#1 and mAPS#2 on V-COCO are significantly im-
proved (with more than 5.5 mAP on average) by our unified
models, because the training set is extremely small in V-
COCO (around 5, 000 images). This improvements verify
the effectiveness of our unified training schema: training
models with other datasets simultaneously reduces overfit-
ting and encourages models to transfer learnt knowledge
to small-scale datasets like V-COCO. Second, our unified
models perform as well as their dataset-specific counter-
parts in mAP on HICO-DET and VG. Notably, the improve-
ments further increase on HICO-DET along with the growth
of model sizes, suggesting the necessity for scaling up to
large models when we train unified detectors across mul-
tiple datasets. Third, all unified models have slight perfor-
mance drops in recalls on the VG dataset. This is potentially
because training on more HOI datasets (i.e., HICO-DET
and V-COCO) yields higher accuracy in the HOI domain,
but loses ground on non-HOI relationships in VG.

Image-based relation retrieval: Our model can perform
image-conditioned detection by simply replacing text query
embeddings with image-derived ones. Here we show visual
illustrations for this use case. To get the image query em-
bedding, we first run inference on the query image and se-
lect the top-1 prediction. We then use its image embedding
as query on the test images. Figure 4 visually shows ex-
amples of image-conditioned relationship retrievals for the
given image queries ranked by similarity scores. By using
image query embeddings, our model enables retrieval of re-
lationships which would be hard to describe in text.

Limitations: Our algorithm currently does not specially
handle extremely biased or long-tailed relationship cate-
gories, which may widely exist in the wild. Using auxil-
iary priors from data (through transferring [82] or resam-
pling [37]) may further improve the performance on SGG
datasets (e.g., VG). Our formulation currently does not ex-
plicitly formulate relationship hierarchies, where both ob-
jects and predicates are reasoned at a single shot. We leave
incorporating more powerful VQA-VLMs (e.g., PaLI [9])
to model such hierarchies as exciting future work.

5. Conclusion
We presented a bottom-up recipe for training a single

unified visual relationship detection (VRD) model across
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HICO-DET V-COCO Visual Genome

Model Backbone GFLOPs mAPF mAPR mAPN mAPS#1 mAPS#2 mR@50 mR@100 mAP

UniVRD (CLIP) ViT-B/32 185 29.47↓0.46 22.93↓0.01 31.42↓0.60 39.48↑5.21 40.81↑5.73 9.61↓0.01 12.04↓0.08 8.64↑0.16
UniVRD (CLIP) ViT-B/16 436 32.80↑0.92 24.64↑1.60 35.24↑0.72 41.57↑5.32 43.39↑6.49 10.58↓0.32 12.77↓0.47 8.21↓0.76
UniVRD (CLIP) ViT-L/14 992 38.61↑1.20 33.39↑4.49 40.16↑0.21 45.19↑5.39 46.52↑6.30 12.55↓0.08 14.48↓0.10 9.85↓0.12

Table 4. Performance of our unified detectors (trained with HICO-DET, V-COCO, and VG) at different scales on multiple datasets.
We also report the performance differences (↑ improvement and ↓ drop) compared with their dataset-specific counterparts.

.51 .43 .36 .11 .05 .02

.98 .66 .42 .30 .23 .11

.01.08.12.21.33.49

Figure 4. Visual examples of image-conditioned relationship retrievals using relation embeddings. The leftmost images show the
queries, and corresponding retrievals from the HICO-DET test set based on their relation embeddings are shown on the right. We mark
subjects in red, objects in blue, and similarity scores in green boxes.

multiple datasets based on vision and language models.
Our resulting detector shows competitive performances un-
der both dataset-specific and unified configurations on two
VRD tasks: human-object interaction detection and scene
graph generation. For the first time, we show scaling up
to large models can benefit unified models on VRD tasks.
We hope our model serves as a strong baseline approach
towards general VRD systems.
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