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Abstract

Diffusion models (DMs) have become the new trend of
generative models and have demonstrated a powerful abil-
ity of conditional synthesis. Among those, text-to-image dif-
fusion models pre-trained on large-scale image-text pairs
are highly controllable by customizable prompts. Unlike
the unconditional generative models that focus on low-
level attributes and details, text-to-image diffusion models
contain more high-level knowledge thanks to the vision-
language pre-training. In this paper, we propose VPD (Vi-
sual Perception with pre-trained Diffusion models), a new
framework that exploits the semantic information of a pre-
trained text-to-image diffusion model in visual perception
tasks. Instead of using the pre-trained denoising autoen-
coder in a diffusion-based pipeline, we simply use it as a
backbone and aim to study how to take full advantage of
the learned knowledge. Specifically, we prompt the denois-
ing decoder with proper textual inputs and refine the text
features with an adapter, leading to a better alignment to
the pre-trained stage and making the visual contents inter-
act with the text prompts. We also propose to utilize the
cross-attention maps between the visual features and the
text features to provide explicit guidance. Compared with
other pre-training methods, we show that vision-language
pre-trained diffusion models can be faster adapted to down-
stream visual perception tasks using the proposed VPD.
Extensive experiments on semantic segmentation, referring
image segmentation, and depth estimation demonstrate the
effectiveness of our method. Notably, VPD attains 0.254
RMSE on NYUv2 depth estimation and 73.3% oIoU on
RefCOCO-val referring image segmentation, establishing
new records on these two benchmarks. Code is available
at https://github.com/wl-zhao/VPD.

1. Introduction

Recently, large text-to-image diffusion models [45, 42]
have demonstrated phenomenal power in generating di-
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Figure 1: The main idea of the proposed VPD frame-
work. Motivated by the compelling generative semantic of
a text-to-image diffusion model, we propose a new frame-
work named VPD to exploit the pre-trained knowledge in
the denoising UNet to provide semantic guidance for down-
stream visual perception tasks.

verse and high-fidelity images with high customizabil-
ity [45, 19, 38, 6], attracting growing attention from both
the research community and the public eye. By leverag-
ing large-scale datasets of image-text pairs (e.g., LAION-
5B [48]), text-to-image diffusion models exhibit favorable
scaling ability. Large-scale text-to-image diffusion mod-
els are able to generate high-quality images with rich tex-
ture, diverse content and reasonable structures while having
compositional and editable semantics. This phenomenon
potentially suggests that large text-to-image diffusion mod-
els can implicitly learn both high-level and low-level visual
concepts from massive image-text pairs. Moreover, recent
research [19, 38] also has highlighted the clear correlations
between the latent visual features and corresponding words
in text prompts in text-to-image diffusion models.

The compelling generative semantic and compositional
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abilities of text-to-image diffusion models motivate us to
think: is it possible to extract the visual knowledge learned
by large diffusion models for visual perception tasks?
However, it is non-trivial to solve this problem. Conven-
tional visual pre-training methods aim to encode the input
image as latent representations and learn the representa-
tions with pretext tasks like contrastive learning [18, 10]
and masked image modeling [2, 17] or massive annotations
in classification and vision-language tasks. The pre-training
process makes the learned latent representation naturally
suitable for a range of visual perception tasks where seman-
tic knowledge is extracted from the raw images. In contrast,
text-to-image models are designed to generate high-fidelity
images based on textual prompts. They take as input ran-
dom noises and text prompts, and aim to produce images
through a progressive denoising process [45, 20]. While
there is a notable gap between the text-to-image generation
task and the conventional visual pre-training mechanisms,
the training process of text-to-image models also requires
them to capture both low-level knowledge of images (e.g.,
textures, edge, and structures) and high-level semantic rela-
tions between visual and linguistic concepts from diverse
and large-scale image-text pairs in an implicit way. Al-
though rich representations are learned in large diffusion
models, it is still unknown how to extract this knowledge
for downstream tasks and whether it can benefit visual per-
ception.

In this paper, we study how to leverage the knowledge
learned in text-to-image for visual perception. Compared to
transferring knowledge from conventional pre-trained mod-
els to downstream visual perception tasks, there are two dis-
tinct challenges to performing transfer learning on diffusion
models: the incompatibility between the diffusion pipeline
and visual perception tasks and the architectural differences
between UNet [46]-like diffusion models and popular visual
backbones. To tackle these challenges, we introduce a new
framework called VPD to adapt pre-trained diffusion mod-
els for visual perception tasks. Instead of using the step-by-
step diffusion pipeline, we propose to simply employ the
autoencoder as a backbone model to directly consume the
natural images without noise and perform a single extra de-
noising step with designed prompts to extract the semantic
information. Our framework is based on popular Stable Dif-
fusion [45] models, which conduct the denoising process in
a learned latent space with a UNet architecture. We extract
features from different hierarchies from the UNet decoder
to construct visual representations of the input image. To
align with the pre-trained stage and facilitate interactions
between visual content and text prompts, we prompt the
denoising diffusion model with proper textual inputs and
refine the text features with an adapter. Additionally, in-
spired by previous studies on the relations between prompt
words and visual patterns in diffusion models, we propose

to utilize the cross-attention maps between the visual and
text features to provide explicit guidance. The combined
implicit and explicit guidance can be fed to various task-
specific decoders to perform visual perception tasks. Our
main idea is summarized in Figure 1.

We evaluate our method on three representative vi-
sual perception tasks covering: 1) semantic segmenta-
tion [60] which requires the understanding of high-level and
fine-grained visual concepts, 2) referring image segmen-
tation [58, 35] that requires the ability of visual-language
modeling, and 3) depth estimation [49] that requires low-
level and structural knowledge of images. With the help
of the proposed VPD, we show that a vision-language pre-
trained diffusion model can be a fast and powerful learner
of downstream visual perception tasks. Our method at-
tains 73.3% oIoU and 0.254 RMSE on RefCOCO [58] re-
ferring image segmentation and NYUv2 [49] depth esti-
mation, respectively, establishing new state-of-the-art on
these two benchmarks. Equipped with a lightweight Se-
mantic FPN [24] decoder, our model achieves 54.6% mIoU
on ADE20K [60], outperforming supervisedly pre-trained
ConvNeXt-XL [31] model with comparable computational
complexity. We also exhibit that models pre-trained with
diffusion tasks can fast obtain 44.7% mIoU on this chal-
lenging benchmark with only 4K iteration training, outper-
forming existing pre-training methods. We expect our study
to offer a new perspective on learning more generic visual
representations with generative models and spark further re-
search on bridging and unifying the vibrant research fields
of image generation and perception.

2. Related Work

Diffusion Models. Diffusion denoising probabilistic mod-
els, also known as diffusion models, have emerged as a
new prevailing family of generative models that demon-
strate remarkable synthesis quality and controllability. The
fundamental concept behind the diffusion models involves
training a denoising autoencoder to learn the inverse of
a Markovian diffusion process [50, 20]. With proper re-
parameterization, the training objective of diffusion mod-
els can be formulated as a simple weighted MSE loss [20],
which makes diffusion models enjoy more stable training
compared with GANs [16] and VAEs [23]. Sampling from
a diffusion model [51, 28, 32] can then be viewed as a pro-
gressive denoising procedure, which requires multiple eval-
uations of the denoising autoencoder. As a step towards
high-resolution image synthesis based on diffusion models,
Rombach et al. [45] propose the latent diffusion models,
which perform diffusion on a latent space of a lower reso-
lution and thus can significantly reduce the computational
costs. They also propose a generic solution to add con-
ditions via the cross-attention [53] mechanism. These ad-
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Figure 2: The overall framework of VPD. To better exploit the semantic knowledge learned from text-to-image generation
pre-training, we prompt the denoising UNet with properly designed text prompts and employ the cross-attention maps to
provide both implicit and explicit guidance to downstream visual perception tasks. Our framework can fully leverage both
the low-level and high-level pre-trained knowledge and can be applied in a variety of visual perception tasks.

vancements allow for training text-to-image diffusion mod-
els on a large-scale dataset LAION-5B [48], which are now
available in the famous “Stable Diffusion” library. Re-
cent work by [19] has witnessed a clear visual-text corre-
lation in the large text-to-image diffusion models, which
motivates us to study whether the pre-trained knowledge
can be exploited to facilitate downstream visual percep-
tion tasks. Different from previous diffusion-based frame-
work [9, 1] that reformulate the visual perception task as
progressive denoising, we employ the denoising autoen-
coder pre-trained on the text-to-image generation as a back-
bone and study how to make full use of the learned high-
level and low-level knowledge, which only require a single
forward pass of the denoising autoencoder.

Visual Pre-training. The pre-training & fine-tuning
paradigm has significantly pushed the development of com-
puter vision, especially in downstream visual perception
tasks where labels are hard to collect. The most widely
used pre-training is supervised pre-training on large-scale
image classification datasets like ImageNet [12]. Besides,
self-supervised learning such as contrastive learning [7, 18]
and masked image modeling [40, 17] have also proved to
be able to learn transferrable representations. In this paper,
we will demonstrate that large-scale text-to-image genera-
tion can also be a possible alternative for visual pre-training.
Different from the standard visual pre-training methods that
are specifically designed for extracting high-level represen-
tation of visual data, a model trained on a generative task
focuses on the synthesis quality and captures more low-
level clues. However, our results show that due to the exis-
tence of natural language during pre-training, a well-learned
text-to-image diffusion model contains sufficient both high-
level and low-level knowledge, which can also be applied
in downstream visual perception tasks.

3. Method
In this section, we present VPD, a new framework

that achieves visual perception with a pre-trained diffusion
model. Our key idea is to investigate how to fully extract the
pre-trained high-level knowledge in a pre-trained text-to-
image diffusion model. We will start by reviewing the back-
ground of diffusion models, and then describe our designs
of VPD, including how to implicitly and explicitly leverage
the visual-language correspondence lies in the pre-trained
text-to-image diffusion models. The overall framework of
our VPD is illustrated in Figure 2.

3.1. Preliminaries: Diffusion Models

To begin with, we will provide a brief overview of the
diffusion models [50, 20, 22]. Diffusion models are a new
family of generative models that can reconstruct the dis-
tribution of data by learning the reverse process of a dif-
fusion process. Denoting zt as the random variable at t-
th timestep, the diffusion process is modeled as a Markov
Chain:

zt ∼ N (
√
αtzt−1, (1− αt)I), (1)

where {αt} are fixed coefficients that determine the noise
schedule. The above definition leads to a simple close form
of p(zt|z0):

zt =
√
ᾱtz0 +

√
1− ᾱtϵ

ᾱt =

t∏
s=1

αs, ϵ ∼ N (0, I),
(2)

which further allows sampling an arbitrary zt efficiently
during training. With proper re-parameterization, the train-
ing objective of diffusion models can be derived as [20]:

LDM = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt(z0, ϵ), t; C)∥22

]
, (3)
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where zt is computed as Equation (2). ϵθ is an autoencoder
(usually implemented as a UNet [46]) that is learned to pre-
dict the ϵ given the conditioning inputs C. The sampling of
diffusion models is achieved by discretizing the diffusion
SDE or ODE [52] thus requires multiple model evaluations
at different timesteps.

The training objective (3) enables stable training of dif-
fusion models, even with complex conditioning inputs.
Recently, [45] released a series of text-to-image models
(namely “Stable Diffusion”) trained on large-scale image-
text dataset LAION-5B [48], which have demonstrated re-
markable performance on image synthesis controlled by
natural language. Specifically, they first train a VQGAN
consisting of an encoder E and a decoder D, which can
achieve the conversion between the pixel space and the la-
tent space. They then train a diffusion model on that la-
tent space with the same objective in Equation (3). In this
work, we will exploit how to fully use the learned high-level
knowledge of the pre-trained text-to-image diffusion model
in the downstream visual tasks.

3.2. Prompting Text-to-Image Diffusion Model

A pre-trained diffusion model contains sufficient infor-
mation to sample from the data distribution since the model
ϵθ can be viewed as the learned gradient of data density
∇zt

log p(zt|C) [3]. As for the text-to-image model, we
believe that there is enough high-level knowledge due to
the weak supervision of the natural language during pre-
training. Our goal is to fully exploit the knowledge of
a well-trained text-conditioned ϵθ and transfer the learned
knowledge to downstream visual perception tasks. A gen-
eral perception task aims to model the distribution p(y|x),
where y is the task-specific label and x is the input im-
age. Our basic idea is to build a connection between the
task-specific label and the natural language, such that the
learned semantic information can be efficiently extracted.
To achieve this, we first rewrite the prediction model as
pϕ(y|x,S), where S is a set containing all the category
names of the task. This is reasonable since the label y is
related to the S in both shape and semantic meaning. We
then implement pϕ(y|x,S) as:

pϕ(y|x,S) = pϕ3
(y|F)pϕ2

(F|x, C)pϕ1
(C|S), (4)

where F is a set of feature maps and C denotes the text
features. We now describe each term in Equation (4) and its
instantiation in detail:
(1) pϕ1

(C|S) is responsible to extract text features from the
class names. We use the same CLIP [41] text encoder as
the pre-training stage of Stable Diffusion [45], and the text
inputs are simply defined using a template of “a photo
of a [CLS]”. However, the domain gap is usually wit-
nessed when transferring the text encoder to downstream

tasks [61, 15]. Inspired by [15], we use a text adapter im-
plemented as a two-layer MLP to refine the text features
obtained by the CLIP text encoder. To sum up, the text fea-
tures are computed as follows:

T ← {template(s)|s ∈ S}
C ← CLIPTextEncoder(T )
C ← C + γMLP(C),

(5)

where T denotes the raw texts generated by applying the
prompt template to the set of class names and γ is a learn-
able scale factor that is initialized to be very small (e.g., 1e-
4). This design can help us to maximally preserve the pre-
trained knowledge of the text encoder, as well as mitigate
the domain gap between the pre-training task and the down-
stream task. Note that different from the usage of CLIP text
encoder in [45] where the features of the whole sentence
are used, we simply use the feature from the [EOS] token.
Therefore, the shape of C is |S| × C where C is the output
dimension of the CLIP text encoder.
(2) pϕ2(F|x, C) aims to extract hierarchical feature maps
F given the input image x and the conditioning inputs C.
Since C contains information from the natural language, pϕ2

needs to capture the cross-domain interactions between vi-
sion and language. Interestingly, we find the pre-trained
text-to-image diffusion model can be a very good initial-
ization of pϕ2

. Although ϵθ is trained to perform score-
matching [52] according to the training objective, it has al-
ready bridged the vision and language domains. In our im-
plementation, we first use the encoder of the VQGAN E
to encode the image into the latent space (e.g., z0 = E(x))
and then feed the latent feature map and the conditioning in-
puts to the pre-trained ϵθ network. Note that we simply set
t = 0 such that no noise is added to the latent feature map.
The hierarchical featuresF can also be easily obtained from
the last layer of each output block in different resolutions.
Typically, the size of the input image is 512 × 512 and F
contains 4 feature maps, where the i-th feature map Fi has
the spatial size of Hi = Wi = 2i+2, i = 1, 2, 3, 4.
(3) pϕ3(y|F) is the prediction head that generates results
from the hierarchical feature maps F . We implement pϕ3

as a Semantic FPN [24], consisting of several convolutional
layers and upsampling layers. The prediction head can be
designed to be very lightweight since the ϵθ already has
enough capacity to perform downstream vision tasks.

The above formulation enables us to decompose the gen-
eral visual perception tasks such that the role of the pre-
trained diffusion model can be better understood. By in-
jecting the task-specific labels S as the inputs, we implicitly
prompt the pre-trained denoising autoencoder to explore the
learned semantic knowledge. It is also worth noting that
our method is not a diffusion-based framework anymore,
because we only use a single UNet as a backbone (see Fig-
ure 1 to better understand the differences).
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3.3. Semantic Guidance via Cross-attention

Apart from designing proper prompts to implicitly ex-
tract high-level knowledge from ϵθ network, we also pro-
pose to use the cross-attention maps as explicit semantic
guidance. It has been observed in [19] that in a well-trained
text-to-image diffusion model, the cross-attention map be-
tween the feature map and the conditioning text feature en-
joys good locality. This nice property motivates us to lever-
age the cross-attention maps to explicitly facilitate down-
stream visual perception. The cross-attention operation ex-
ists in each of the 4 resolutions of the ϵθ network. There-
fore, for the i-th resolution, we can simply average all the
cross-attention maps belonging to the resolution to obtain
an averaged map Ai. Since the cross-attention maps are
computed by using the conditioning inputs C as the key
and value, the averaged attention map has the shape of
Ai ∈ R|S|×Hi×Wi .

The averaged cross-attention map is useful because each
channel of it aggregates some semantic information of a
certain category. We can then concatenate the averaged
cross-attention maps with the original hierarchical feature
maps and fed the results to the prediction head, i.e., Fi ←
[Fi, Ai]. By default, we do not use the cross-attention maps
at the lowest resolution since they are not very accurate
(which we will analyze in the experiments). We empirically
find that explicit semantic guidance through cross-attention
can help our model faster adapt to downstream tasks.

3.4. Implementation

We consider three visual perception tasks in this work,
including semantic segmentation, referring image segmen-
tation, and depth estimation. Basically, we use a similar
architecture for these tasks, as mentioned above. How-
ever, there are some differences in minor design, which we
will describe as follows. Firstly, the procedure to obtain
the conditioning inputs C slightly differs in different tasks.
For semantic segmentation, S contains the class names in
the dataset. For referring image segmentation, we simply
use the referring expression (a single sentence) to compute
the conditioning inputs C. For depth estimation, we can
build the text prompt similarly using the category name of
the scene, such as “kitchen”, “bathroom”, etc. Second, the
output channels of the task-specific head pϕ3

(y|F) are dif-
ferent. Third, the training objective of the three tasks are
varied. We use the cross-entropy loss for both semantic
segmentation and referring image segmentation, while the
Scale-Invariant loss (SI) [14] is used for depth estimation.

4. Experiments
To verify the effectiveness of our method, we conduct

experiments on three visual tasks including semantic seg-
mentation, referring image segmentation, and depth estima-

tion, covering both high-level and low-level visual percep-
tion. We will first present the experimental settings of these
tasks and then give our main results. We will also provide
detailed ablation studies and analyses of our method.

4.1. Experiment Setups

We first provide some common configurations of VPD.
For all three downstream tasks, we fix the VQGAN encoder
E and the CLIP text encoder during training. To fully pre-
serve the pre-trained knowledge of the ϵθ, we always set the
learning rate of ϵθ as 1/10 of the base learning rate. We use
γ=1e-4 for the text adapter. The task-specific settings and
training details are elaborated as follows.

Semantic Segmentation. The goal of semantic segmenta-
tion is to assign pixel-level labels to a given image, which
requires a fine-grained high-level understanding of visual
content. We evaluate our method on ADE20K [60], which
consists of 20K images for training and 2K images for val-
idation. Since our method can adapt faster to the down-
stream tasks, we train our model for 80K iterations using a
Semantic FPN [24] by default. We use a global batch size
of 16 and set the learning rate as 8e-5. We use the AdamW
optimizer with a weight decay of 1e-3 and warming-up it-
erations of 1500. We adopt the polynomial learning rate
scheduler with a power of 1.0 and a minimum learning rate
of 0. For the fast schedule (8K iterations), we linear scale
the learning rate schedule and set the warming-up iterations
to 150. During inference, we use the slide inference with a
crop size 512×512 and a stride of 341×341.

Referring Image Segmentation. Referring image seg-
mentation aims to find the related object given a natural
language expression from an image. We perform experi-
ments on the widely used benchmark RefCOCO [58], Re-
fCOCO+ [58], and more challenging G-Ref [36] datasets
with significantly longer expressions. RefCOCO, Ref-
COCO+, and G-Ref contain around 20K images and 50K
annotated objects, with 142,209, 141,564, and 104,560 an-
notated expressions respectively. Following common prac-
tice, we train our model on the training set and evaluate the
validation set. We use the overall intersection-over-union
(oIoU) as the metric to compare different methods. As for
the decoder head, we follow LAVT [56] which uses a sim-
ple convolution head to fusion the features and generate the
semantic prediction. We train our model for 40 epochs with
a total batch size of 32. We set the learning rate as 5e-5 and
the weight decay as 0.01. As we have multiple expressions
on a single image, during the training phase, we randomly
choose a language description. In the inference time, we
evaluate sequentially and calculate the mean results follow-
ing common practice.

Depth Estimation. We adopt a widely used benchmark
NYUv2 [49] to evaluate our method in depth estimation.
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Table 1: Semantic segmentation with different meth-
ods. We compare our VPD with previous methods includ-
ing supervised pre-training and self-supervised pre-training.
While most of the methods adopt the UPerNet [54] d head,
we find our VPD equipped with a lightweight Semantic
FPN [24] can also achieve good results with smaller crop
size and fewer training iterations.

Method #Iters Crop FLOPs mIoUss mIoUms

supervised pre-training
Swin-L [30] 160K 6402 647G 52.1 53.5
ConvNeXt-L [31] 160K 6402 614G 53.2 53.7
ConvNeXt-XL [31] 160K 6402 834G 53.6 54.0

self-supervised pre-training
MAE-ViT-L/16 [17] 126K - - 53.6 -

visial-language pre-training
CLIP-ViT-B [44] 80K 6402 340G 50.6 51.3

text-to-image pre-training
VPD (Ours) 80K 5122 891G 53.7 54.6

NYUv2 contains 24K images for training and 645 images
for testing, covering 464 indoor scenes. Following com-
mon practice, we report the absolute relative error (REL),
root mean squared error (RMSE), and average log10 er-
ror between predicted depth d̂ and the ground truth depth
d. We also report the threshold accuracy δn which denotes
δn = % of pixels satisfying max(di/d̂i, d̂i/di) < 1.25n for
n = 1, 2, 3. During training, we randomly crop the images
to 480×480. We set the learning rate as 5e-4 and train the
model for 25 epochs with batch size of 24. The decoder
head and other experimental setting is the same as [55]. We
use the flip and sliding windows during testing.

4.2. Main Results

In this section, we will provide our main results on three
downstream tasks, including semantic segmentation, refer-
ring image segmentation, and depth estimation. Apart from
training the models using the default schedule, we also per-
form experiments on a faster scheduler with very few itera-
tions or epochs to show that our method can quickly adapt
to downstream visual perception tasks.

Semantic Segmentation. Semantic segmentation is a
high-level visual perception task that requires per-pixel
high-level understanding. We evaluate our VPD on
ADE20K [60] and compare it with previous backbones and
pre-training methods. We start by performing experiments
on the default training schedule, where we train our model
with a Semantic FPN [24] head for 80K iterations. The
results can be found in Table 1. For fair comparisons,
we do not consider complex segmentation heads such as
MaskFormer [11]. Instead, we compare the available re-
sult with more common segmentation heads like Semantic

Table 2: Semantic segmentation with fewer training it-
erations. We compare the performance of our VPD with
previous models with different architectures and different
pre-training methods. The performance is measured by the
mIoU of single-scale and multi-scale at 4K/8K iterations.

Method
4K Iters 8K Iters

mIoUss mIoUms mIoUss mIoUms

DINO-ViT-B/8 [7] 32.4 31.1 40.8 39.9
MAE-ViT-L/16 [17] 37.8 36.3 46.7 46.4
BeiTv2-ViT-L/16 [40] 32.1 33.6 42.9 44.7
SwinV2-L [29] 40.6 41.1 47.5 48.2
ConvNeXt-XL [31] 43.2 43.7 47.1 47.8

VPDA32 43.1 44.2 48.7 49.5
VPDA64 43.9 44.7 47.7 49.1

FPN [24] and UperNet [54]. The compared methods in-
clude self-supervised pre-training (MAE [17]) and super-
vised pre-training (Swin [30] and ConvNeXt [31]). We re-
port both the single-scale and multi-scale mIoU for all the
methods. We show that VPD can achieve 53.7 mIoUss

and 54.6 mIoUms, outperforming pre-trained ConvNeXt-
XL [31] model with comparable computational complexity.
Notably, while other methods (except for [44]) utilize UPer-
Net [54] as the segmentation head and train the model for
>120K iterations, our model trained for only 80K iterations
can achieve better results with a more lightweight Semantic
FPN [24] head and 512×512 crop size. Notably, we find
VPD can indeed save training time due to its faster con-
vergence. For example, training a ConvNeXt-XL requires
47h (160K iters) while our VPD trained for only 26h (80K
iters) still performs better. We will add these comparisons in
the revision. We further perform experiments with a faster
schedule, where we train our models for only 8K iterations.
We report both the single-scale and multi-scale mIoU at
4K/8K iterations, as shown in Table 2. We use A32 and
A64 subscripts to represent cross-attention maps with spa-
tial sizes up to 32 and 64, respectively. For 8K iterations,
we find VPDA32 surpass all the baseline methods, including
those pre-trained on mask image modeling [17, 40], con-
trastive learning [7] and supervised learning [29, 31]. For
4K iterations, we show VPDA64 can yield better results.
The results indicate that VPD has the potential to enhance
adaptation to downstream tasks and that incorporating ad-
ditional semantic guidance from cross-attention maps can
expedite its convergence even further.

Referring Image Segmentation. Referring image segmen-
tation also involves high-level knowledge of the correspon-
dence between visual content and referring expression texts.
We evaluate our VPD on the widely used RefCOCO [58],
RefCOCO+ [58], and G-Ref [35]. We train our model on
the training set and report the overall IoU (oIoU) on the val-
idation set, as shown in Table 3. Under the default training
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Table 3: Referring image segmentation on RefCOCO.
We compare our VPD with previous methods using both
the default training schedule and the fast schedule (1 epoch)
on three benchmarks including RefCOCO, RefCOCO+, and
G-Ref. The performance is measured by the overall IoU
on the validation set. We demonstrate that our VPD can
achieve better performance consistently on all the three
datasets.

Method Language RefCOCO RefCOCO+ G-Ref

default schedule

MAttNet [57] Bi-LSTM 56.51 46.67 47.64
MCN [34] Bi-LSTM 62.44 50.62 49.22
CGAN [33] Bi-GRU 64.86 51.03 51.01
LTS [21] Bi-GRU 65.43 54.21 54.40
VLT [13] Bi-GRU 65.65 55.50 52.99
LAVT [56] BERT 72.73 62.14 61.24

VPD CLIP 73.25 62.69 61.96

fast schedule, 1 epoch

LAVT [56] BERT 52.56 29.17 40.31

VPD CLIP 63.04 40.01 48.11

schedule, our VPD outperforms previous methods by large
margins consistently on both two datasets. We also find that
when trained for only 1 epoch, our VPD also achieves better
overall IoU than previous state-of-the-art LAVT [56]. We
hypothesize that VPD achieves superior performance due
to two primary reasons: (1) unlike prior methods that rely
on pre-trained language models that lack interactions with
the visual modality, our VPD model leverages a pre-trained
diffusion model that learned to generate images guided by
the text, thereby establishing a natural connection between
language and visual domains. (2) the explicit guidance pro-
vided by cross-attention maps offers the model an effective
starting point for generating accurate segmentation results.

Depth Estimation. We start by evaluating VPD on depth
estimation, a visual perception task that requires low-
level per-pixel understanding. We use the popular bench-
mark NYUv2 and compare VPD with previous methods,
as shown in Table 4. Under the default training sched-
ule, our VPD achieves 0.254 RMSE, establishing the new
state-of-the-art. Notably, our method outperforms SwinV2-
B/SwinV2-L [55], which uses a very strong visual backbone
SwinV2 [29] pre-trained on masked image modeling. Addi-
tionally, we verify the fast convergence of VPD by training
the model for only one epoch. Table 4 shows that VPD
converged much faster than SwinV2-L [55]: VPD achieves
0.349 RMSE (lower is better) while the RMSE of SwinV2-
L [55] is 0.381. These results further demonstrate that large-
scale text-to-image pre-training can be very competitive in
downstream visual perception tasks, even compared with
the dedicated visual pre-training methods.

Table 4: Depth estimation on NYUv2 [49]. We report
the commonly used metrics for depth estimation including
RMSE, δn, REL and log10 (see Section 4.1 for details). We
show that VPD outperforms previous state-of-the-art meth-
ods consistently in all the metrics. We also demonstrate our
model converges faster than SwinV2 [55] pre-trained with
masked image modeling in the fast training schedule.

Method RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ log10 ↓
default schedule

BTS [26] 0.392 0.885 0.978 0.995 0.110 0.047
AdaBins [4] 0.364 0.903 0.984 0.997 0.103 0.044
DPT [43] 0.357 0.904 0.988 0.998 0.110 0.045
P3Depth [39] 0.356 0.898 0.981 0.996 0.104 0.043
NeWCRFs [59] 0.334 0.922 0.992 0.998 0.095 0.041
SwinV2-B [29] 0.303 0.938 0.992 0.998 0.086 0.037
SwinV2-L [29] 0.287 0.949 0.994 0.999 0.083 0.035
AiT [37] 0.275 0.954 0.994 0.999 0.076 0.033
ZoeDepth [5] 0.270 0.955 0.995 0.999 0.075 0.032

VPD 0.254 0.964 0.995 0.999 0.069 0.030

fast schedule, 1 epoch

SwinV2-B [29] 0.462 0.819 0.975 0.995 0.133 0.059
SwinV2-L [29] 0.381 0.886 0.984 0.997 0.112 0.051

VPD 0.349 0.909 0.989 0.998 0.098 0.043

4.3. Analysis

In this section, we will conduct detailed analyses to fur-
ther evaluate the effectiveness of each of the components in
VPD, as well as demonstrate the scaling potential of it.

Effectiveness of components of VPD. We first evaluate the
effectiveness of the components presented in Section 3, as
is shown in Table 5. We perform the ablation studies on
semantic segmentation, using the same training configura-
tions as Table 2. We start from a vanilla usage of the pre-
trained ϵθ network as our baseline and add the proposed
components gradually to verify the contribution of each.
For our baseline (the first row), we feed an empty string
as the text prompt, such that no effective visual-language
interactions are introduced. We find the performance of
the baseline is far from satisfactory (e.g., only 46.9 mIoU
at 8K iterations). We then apply the text prompts con-
structed by filling the class names of ADE20K [60] to the
template “a photo of a [CLS]”, which can improve
the mIoU@4K and mIoU@8K by 0.5 and 0.2, respectively.
This reveals that a proper text prompt can build the con-
nection between visual and language domains. To fur-
ther mitigate the domain gap, we employ the text adapter
after the CLIP text encoder, which brings significant im-
provement (42.0→42.9 in mIoU@4K and 47.1→48.0 in
mIoU@8K). Finally, we add the cross-attention maps as ex-
plicit semantic guidance (the last row of Table 5) and find
the mIoU@8K can be further improved by 0.7. These ab-
lation studies clearly demonstrate that our designs in VPD
can effectively leverage the pre-trained knowledge of the ϵθ
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Table 5: Ablation studies. We perform ablations in seman-
tic segmentation on ADE20K [60] to verify the effective-
ness of each of the proposed components in VPD and the
influence of the different choices of cross-attention maps.
We find that all the proposed components are beneficial and
that combining the cross-attention maps in the downsam-
pling blocks and the upsampling blocks yields the best per-
formance.

text prompt text adapter cross attn mIoU 4K mIoU 8K

✗ ✗ ✗ 41.5 46.9
✓ ✗ ✗ 42.0 47.1
✓ ✓ ✗ 42.9 48.0

✓ ✓ mid 43.0 47.8
✓ ✓ down 43.2 48.2
✓ ✓ up 43.2 48.5

✓ ✓ up+down 43.1 48.7

via both implicit and explicit guidance.

Choice of the cross-attention maps. There are a lot
of cross-attention layers in the denoising autoencoder ϵθ.
Therefore, it becomes a question that which cross-attention
maps we should select to provide semantic guidance. Since
ϵθ is implemented as a UNet [46], it consists of mainly three
groups of blocks including the downsampling blocks, the
middle blocks, and the upsampling blocks. Specifically, for
an input image of 512×512, the corresponding size of the
latent features is 64×64. The downsampling blocks first
gradually reduce the spatial size of the feature maps from
64×64 to 8×8, and then feed them to the middle blocks
which do not change the spatial size. Finally, the upsam-
pling blocks progressively increase the feature map size
back to 64×64 and merge the information via some lateral
connections from the downsampling blocks.

The comparisons of leveraging the cross-attention maps
from different locations can be found in the bottom part
of Table 5. First, we show that using the cross-attention
maps from middle blocks might be harmful to the perfor-
mance, mainly because the spatial resolution is too low
to provide accurate information. Second, we find that the
cross-attention maps from both the upsampling blocks and
the downsampling blocks can bring considerable improve-
ments and the upsampling blocks seem to be more benefi-
cial to the performance. This is also reasonable because the
cross-attention map will become more and more accurate
during the forward procedure. Finally, we average both the
cross-attention maps from the upsampling and downsam-
pling blocks and demonstrate that they cooperate well and
achieve better results in both mIoU@4K and mIoU@8K.

Effects of different pre-trained weights. Since our VPD
is built on pre-trained text-to-image diffusion models, it is
necessary to investigate how the pre-trained weights would
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Figure 3: Longer pre-training yields better performance
on downstream tasks. We train VPD with different
versions of Stable Diffusion (indicated by SD-1-x) on
ADE20K and investigate how the pre-training iteration
would affect the performance. The upward trend demon-
strates that our VPD can benefit from a stronger text-to-
image diffusion model.
Table 6: Comparisons of different pre-trained models.
We show that the text-to-image diffusion models have their
own advantage when transferred to downstream tasks.

Pretrained Models SD1.5 [45] SAM [25] BLIP [27]

RMSE (↓) 0.254 0.317 0.368

affect the performance of our VPD. In our previous experi-
ments, we have used the released 1-5 version of the “Stable
Diffusion” (SD-1-5 for short). Now we compare different
releases of “Stable Diffusion” by applying the weights in
the semantic segmentation on ADE20K [60], and the re-
sults are illustrated in Figure 3. The differences between
the checkpoints are the pre-training iterations on 512×512
resolution. We omit the SD-1-3 since it is trained for only
30K fewer iterations than SD-1-4. Our results in Figure 3
demonstrate a clear trend that more pre-trained iterations
of the text-to-image diffusion model will also exhibit bet-
ter performance on downstream tasks with VPD. It is worth
noting that from SD-1-1 to SD-1-5, the mIoU@8K is
improved by more than 4, which is quite considerable. We
hypothesize that this is mainly because longer training can
improve the alignment between visual and language, which
can be also verified from the CLIP score of the different
versions reported by the “Stable Diffusion”1. These re-
sults also show that the success of our method is based
on the learned visual-language knowledge rather than the
large capacity of the ϵθ network. The upward trend in the
graph demonstrates the scaling ability of our VPD, indicat-
ing that a stronger pre-trained text-to-image diffusion model
can help us achieve better results.

1see https://github.com/runwayml/stable diffusion for details.
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(a) Visualization of VPD on semantic segmentation.

(b) Visualization of VPD on depth estimation.

Figure 4: Visualizations. We visualize the predictions of VPD on semantic segmentation and depth estimation.

Figure 5: Visualizations of the cross-attention map.

Comparisons of different pre-trained models. We further
perform experiments on depth estimation by simply replac-
ing the feature extractor of VPD with the image encoder
of SAM [25] and BLIP [27] as shown in Table 6. We find
the RMSE of SAM and BLIP are 0.317/0.368, respectively.
These results suggest that models pre-trained on high-level
tasks may not generalize well to low-level tasks, and further
show that the text-to-image diffusion model is a competitive
pre-training alternative for various perception tasks.

Visualizations. We further provide some visualizations of
our method. Specifically, we visualize the predictions of
VPD on semantic segmentation and depth estimation in Fig-
ure 4. We also visualize the cross-attention maps from our
VPD trained on ADE20K in the Figure 5 and find the cross-
attention maps provide rough segmentation results.

Limitations. While our method has shown satisfactory
performance, we acknowledge that the computational cost
of VPD is currently relatively high. Unlike recognition
models that are specifically designed to balance efficiency
and accuracy, generative models prioritize synthesis qual-
ity and often lack careful consideration of complexity. Al-
though we have demonstrated the potential of extracting
valuable information from a pre-trained text-to-image dif-
fusion model, the high computational costs of ϵθ cannot be
addressed within our current framework. We believe that

further improvements in the complexity-accuracy trade-offs
of VPD can be achieved through a more lightweight design
of the generative model or a more efficient architecture ded-
icated to both generative and perception tasks.

5. Conclusion

In this paper, we have proposed a new framework called
VPD to transfer the high-level knowledge of a pre-trained
text-to-image diffusion model to downstream tasks. We
have proposed several designs to encourage visual-language
alignment and prompt the pre-trained model implicitly and
explicitly. Extensive experiments on semantic segmenta-
tion, referring image segmentation, and depth estimation
have demonstrated that VPD can achieve very competitive
performance and exhibits faster convergence compared to
methods with various visual pre-training paradigms. We
also believe that text-guided generative models other than
diffusion models[47, 42, 8] can also fit in VPD, which we
leave to future work. We expect our efforts to shed light on
the crucial role of generative text-to-image pre-training in
visual perception and make a step towards the unification of
visual generation and perception tasks.
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