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Figure 1. COOP can consistently generate realistic whole-body grasping poses as the position of the object changes. The figure shows
generated poses for 10 people grasping novel objects in the vicinity of them.

Abstract

Generating life-like whole-body human grasping has
garnered significant attention in the field of computer
graphics. Existing works have demonstrated the effec-
tiveness of keyframe-guided motion generation framework,
witch focus on modeling the grasping motions of humans
in temporal sequence when the target objects are placed in
front of them. However, the generated grasping poses of the
human body in the key-frames are limited, failing to capture
the full range of grasping poses that humans are capable of.

To address this issue, we propose a novel framework
called COOP (DeCOupling and COupling of Whole-Body
GrasPing Pose Generation) to synthesize life-like whole-
body poses that cover the widest range of human grasping
capabilities. In this framework, we first decouple the whole-
body pose into body pose and hand pose and model them
separately, which allows us to pre-train the body model with
out-of-domain data easily. Then, we couple these two gen-
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erated body parts through a unified optimization algorithm.
Furthermore, we design a simple evaluation method

to evaluate the generalization ability of models in gener-
ating grasping poses for objects placed at different po-
sitions. The experimental results demonstrate the effi-
cacy and superiority of our method. And COOP holds
great potential as a plug-and-play component for other
domains in whole-body pose generation. Our models
and code are available at https://github.com/
zhengyanzhao1997/COOP.

1. Introduction

Grasping is a common activity in human daily life. To
make virtual humans act realistically in a 3D scene, an
avatar needs to be able to perform diverse grasping poses,
similar to those of real humans, adapting to the targets from
different positions.

In this paper, we focus on the task of synthesizing life-
like whole-body grasping poses with objects located at var-
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Figure 2. Whole-body grasping poses generated by GNet [36] (Left) and COOP (Right) for 10 testing samples with 2 genders.

ious heights in the vicinity of a human. It is worth empha-
sizing that this task does not require modeling any tempo-
ral aspects, such as moving to the object. Although exist-
ing works [36, 40] can generate life-like grasping poses of
humans, the objects in the generated key-frames are often
concentrated close to the human body due to limitations in
training data and generation methods. As shown on the left
side of Fig. 2, [36] generates the body and hand pose as a
whole. When the position of the given object is far away
from the human or beyond the scope of the training data, ei-
ther the body pose is distorted and unbalanced or the grasp-
ing hand is far away from the target object in the generated
grasping key-frame. Although IK (Inverse Kinematic) [30]
can force the hand to touch the given object by adjusting the
generated body pose, it can also result in some side effects
such as unrealistic body pose or floating feet.

Since whole-body grasping involves multiple body parts
such as the body, feet, and hands, the realism of a grasping
pose needs to be evaluated from multiple aspects. Firstly,
the generated hand should fit the given 3D object with high
contact and low penetration. Secondly, the generated body
pose should resemble that of a real human while avoiding
ground penetration or floating. Finally, the body poses need
to be balanced.

To address these challenges, we propose a novel frame-
work called COOP (for an overview, see Fig. 3). Due to the
decoupling and subsequent coupling of body parts, COOP
can simultaneously consider the precision of hand grasp-
ing pose and the fidelity of the body pose. In the whole-
body pose generation stage, we design two networks (HNet
and BNet) to generate hand poses and body poses sepa-
rately. In HNet, we introduce a fine-grained representation
of hand-object contact, which we call Point2Finger Contact
Map (PF-map), as an important intermediate information
for guiding the generation of the grasping hand pose. In
BNet, we propose the Body Graph Transformer (BGT) to
generate the body pose conditioned on the target position
of the right wrist. The Body Graph Transformer mainly
consists of the Pose Graph Layer we proposed, which can

explicitly encode the hierarchy of body joints. Based on the
decoupling, we can easily pre-train the BGT with out-of-
domain data, witch significantly improves the performance.
In the unified optimization stage, we design the Stitch Loss
to couple these two generated body parts. We further uti-
lize the sampled PF-map as a contact constraint to improve
the hand grasping and introduce the Body Balance Loss to
ensure the generated body pose is balanced.
Contributions. Our work makes the following contribu-
tions:

1. COOP, a novel generation framework that can synthe-
size life-like whole-body grasping pose, given different 3D
objects in various positions;
2. Body Graph Transformer, a body pose generation model

that explicitly encodes the hierarchy of body joints, along
with a unique pre-training method that can use a large
amount of out-of-domain data for pre-training;
3. Our framework and pre-training method can be easily

applied to other domains in whole-body pose generation or
downstream tasks as a plug-and-play component.
4. We propose an evaluation method that can test the gen-

eralization ability of different whole-body grasping pose
generation methods on object positions. The experimen-
tal results demonstrate the efficacy and superiority of our
method.

2. Related work
Hand Grasp Synthesis. Hand Grasp Synthesis is a chal-
lenging task and has been widely studied in both robotics
and computer graphics [4–6, 8, 9, 13, 22, 48]. In the field
of robotic grasping [6, 22, 31], many works have proposed
methods to plan collision-avoiding trajectories for robotic
grippers to grasp objects. Most previous research in com-
puter graphics [14, 19, 25, 26] has focused on synthesizing
realistic hand grasping in 3D virtual environments based on
physics simulations. In recent years, deep learning has been
widely applied to hand grasp synthesis [5, 13, 15, 37, 42].
[15] proposed Grasping Field to represent the interaction
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Figure 3. Overview of COOP. Given the 3D shape and global translation of the target object, Hand Net first samples a PF-map and generates
a right grasping hand. The Body Net generates the SMPL-X parameters of the body, excluding the right hand, conditioned on the object
translation and body shape. Finally, the unified optimization module couples these two body parts and optimizes them.

between hand and object. The hand mesh is generated by
fitting MANO model [27] to the hand point cloud recon-
structed from the representation. However, the quality of
generated hand poses largely depends on the generated rep-
resentation, and the generated hand may not fit the given
object well. [37] adopted a coarse-to-fine pipeline for 3D
grasp predictions. Given a 3D object, it first generates a
reasonable grasping pose by CoarseNet and then refine the
distance between hand and object by RefineNet. [13] ar-
gues that it is crucial to model the consistency between the
hand contact points and object contact regions, and intro-
duces hand-object contact consistency to further update the
model parameters. In contrast, [3, 41] found a strong as-
sociation between contacted binoculars points with fingers
and used this information to optimize hand gripping poses
further.

While some works have focused on static interactions,
others have focused on dynamic grasp synthesis [4, 5, 42,
44, 46]. [5] formulated the dynamic grasp synthesis task
as a reinforcement learning problem and proposed a pol-
icy learning approach that leverages a physics simulation.
[42] proposed a neural network-based motion synthesis sys-
tem that can generate detailed finger motions for one-/two-
hand dexterous object manipulation. [4] presented a simple
model-free framework that can learn to reorient objects with
both the hand facing upwards and downwards.

Whole-Body Grasp Synthesis. In contrast to the hand
grasp synthesis task, which only considers the hand, whole-
body grasp synthesis considers the body, feet, and hands
jointly. [35] proposed a body pose taxonomy for loco-

manipulation tasks. [12] introduced imitation learning to
teach a robot to grasp objects using unrealistic humanoid
models and simple objects. To generate a realistic whole-
body grasp with complex 3D objects, [2, 37] captured a
dataset named GRAB. Based on this dataset, two exist-
ing works [36, 40] generate whole-body grasp motion us-
ing a pipeline containing a grasping pose generation mod-
ule and a motion filling module. The grasping pose gen-
eration module first generates a SMPL-X [24] whole-body
grasping pose with the right hand in contact with the target
object, and then the motion filling module fill the motions
between the given start pose and the generated key-frame
pose. [36] proposes GNet, a two-stage grasping pose gener-
ation module in which a trained CVAE network first gener-
ates a coarse whole-body grasping pose with a certain body
shape, and then an optimization module optimizes the gen-
erated SMPL-X parameters to improve the fidelity based on
several designed constraints. [40] also built a similar two-
stage pipeline to generate the whole-body grasping pose.
However, unlike [36] which generates a whole-body mesh
directly, [40] first generates several critical markers on the
body mesh based on the given object, and then recovers the
body shape and SMPL-X parameters using a contact-aware
pose optimization algorithm, which means that the shape,
gender, and translation of the generated body pose are un-
controllable. Compared to the task of synthesizing missing
middle frames between two key-frame poses [7, 10, 16],
how to generate key-frame poses of whole-body grasping
that match the grasping ability of real humans has not been
fully studied. Therefore, we focus on building a genera-
tive method that can synthesize realistic key-frame poses to
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grasp objects within a wide range.

3. Method

Problem definition. It is worth emphasizing again that our
focus is to generate key-frame poses of human grasping ob-
jects at different positions. To encourage the model to gen-
erate a various poses, such as bending, squatting, tiptoeing,
turning, etc., we do not require modeling any temporal as-
pects. Therefore, we fix the human’s horizontal coordinates
at the origin of the 3D global coordinate system. Given the
target objects, represented by point cloud P , in the vicin-
ity of the human, we need to generate life-like whole-body
grasping poses Θ, represented by SMPL-X[24], with body
shape β and gender G as conditions.

As shown in Figure 3, the framework of COOP con-
sists of two separate components trained during the train-
ing phase: Hand Net (HNet), which generates diverse hand
grasping poses based on the object shape, and Body Net
(BNet), which generates a stable body pose with the right
wrist reaching the target position. During inference, the
unified optimization module couples these two body parts
and optimizes them together simultaneously.

3.1. Hand Net (HNet)

Based on the existing concept of fine-grained contact
map, we are the first to introduce the Point2Finger Map
as an important condition to control the generation of hand
poses. It significantly outperforms traditional binary contact
map and further enhances precision when combined with
the Finger Contact Loss we designed.
Point2Finger Map (PF-map). [3, 41] have found a strong
association between contacted binoculars points with fin-
gers. Based on this observation, we introduce a more fine-
grained representation of hand-object contact similar to that
of [3, 41], which we named Point2Finger Map (PF-map).
As shown in the HNet in Fig. 3, we pre-define 5 prior con-
tact regions of the right hand motivated by [13]. For each
grasping sample, we calculated the nearest finger joint for
each contact point in the object point cloud and label the
contact category for it.
HNet. As shown at the top of Fig. 3, the HNet we build
contains FingerCVAE and a hand decoder. FingerCVAE is
a Conditional Variational Auto-Encoder [34] based gener-
ative network, which is trained to sample diverse PF-maps
instead of the binary contact map. And the hand decoder
generates the corresponding MANO [27] parameters of the
right hand based on the PF-map and hand shape βh ∈ R10.
We introduce the translations of objects as an additional
condition to control the rotation of the wrist. To better cap-
ture the distribution information of the contact points, we
apply Point Cloud Transformer [45] as the encoder and de-
coder of FingerCVAE and the hand decoder.

Figure 4. The PF-maps generated by FingerCVAE are displayed
at the top, with the corresponding generated grasping hands pre-
sented below. The heights of the object positions are A: 0.4m, B:
0.8m, C: 1.2m, D: 1.6m.

Training. During the training stage, the input features
consist of the centered point cloud feature of the object
Po ∈ R(N×6) (where N is the number of points, and 6
represents the 3D locations and 3 normal features), and the
PF-map C ∈ R(N×Ef ) (where Ef is the dimension of the
contact categories embedding). To ensure that the generated
hand poses match the body pose better, we introduce an ad-
ditional normalization step for the translation of the object
to ∈ R3. The normalized translation is used as a condi-
tion to control the direction of the generated grasping. All
of these features are concatenated point-wise and input to
the encoder of FingerCVAE. The encoder outputs the mean
µ ∈ R16 and variance σ2 ∈ R16 of the posterior Gaussian
distribution Q(z|µ, σ2) [18]. The decoder of FingerCVAE
takes the concatenation of the latent code z, the point cloud
feature, and the object translation as input to reconstruct the
PF-map. The training objective of FingerCVAE is given by:

LFingerCV AE = Lce + λKLLKL (1)

where Lce is the cross-entropy loss of reconstructed contact
categories of the PF-map and LKL is the Kullback-Leibler
divergence, and λKL is the weight.

The hand decoder learns to predict the MANO parame-
ters Θh of the grasping hand, which is conditioned on the
PF-map and the object translation. Here, Θh = {θh, th}
represents the hand pose θh ∈ R15×6 and the relative trans-
lation th ∈ R3 of the hand with respect to the object. The
differentiable MANO layer takes the parameters Θh and
outputs the mesh vertices Vh and faces Fh of the hand. The
training loss is given by:

Lhand = ∥Θh − Θ̂h∥2 + ∥V h − V̂ h∥1 (2)

where Θ̂h and V̂h are the parameters and vertices of the
ground true hand pose/mesh.
Inference. During the inference time, given the object point
cloud, the decoder of FingerCVAE samples a PF-map con-
ditioned on the object translation and the latent code z ran-
domly sampled from a Gaussian distribution. The hand de-
coder uses the sampled PF-map to form the grasping hand
mesh. Fig. 4 shows the high correlation between the sam-
pled PF-maps and hand poses. Given a novel object placed
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Figure 5. Architecture of Body Pose Graph Transformer. The rota-
tion of body joints is input as token embedding after linear projec-
tion. [T ] is a special token used to predict the z-coordinate zb of
the body. TE represents the token type embedding which will be
added to the input tokens to distinguish different joints. Each block
of BGT includes one Pose Graph Layer and one Cross-Attention
Layer. Pose Graph Layer encodes the hierarchy of body joints by
applying modified relative self-attention, and the cross-attention
layer induces the condition information C such as the target posi-
tion of the right wrist, human gender, and body shape.

at different positions, the sampled PF-maps adapt to the ob-
ject translation and determine the direction of grasp. To fur-
ther improve the accuracy of the hand grasping, we utilize
the sampled PF-map to refine the hand pose in the optimiza-
tion module, as detailed in Sec. 3.3.

3.2. Body Net (BNet)

We propose Body Graph Transformer, a novel body
model which can explicitly models the body joint hierarchy.
Along with the unsupervised pre-training method, we are
free to pre-train our model with large amounts of out-of-
domain data.
Task definition. We adopt the SMPL-X model to repre-
sent the human body. Due to the decouping of the body
parts, BNet doesn’t need to pay attention to the hand pose,
and its objective is to generate the SMPL-X parameters
Θb of the body with the right wrist at the target position.
Θb = {θb, tb}, θb = J ∈ Rn×6 represents the articulated
rotations of joints [49], where n is the number of joints to
be predicted. In this work n = 40, which equals to the total
number of joints of SMPL-X minus the number of right-
hand joints. And tb ∈ R3 represents the body’s translation.
Since the horizontal position of the human body is fixed at
the origin, BNet only predicts the vertical coordinate, rep-
resented by the z-axis coordinate zb ∈ R1, of the human
body.
Body Pose Graph. To explicitly encode the SMPL-X joint
hierarchy, which is defined by a kinematic tree that keeps
the parent relation for each joint, we convert the hierarchy
into a directed graph G = ⟨Vj , E⟩, where the vertices Vj

represent the body joints and the directed edges E represent

the relations between joints. The edges are categorized as
parent, child, or none.
Body Graph Transformer (BGT). The architecture of the
proposed Body Graph Transformer is illustrated in Fig. 5.
Unlike prior work [36, 37], which directly flattens the joint
rotation parameters and feeds them into the network, we
modify the Transformer architecture [39] to encode the
body pose graph. In this model, each joint Ji ∈ R6, treated
as a vertex in the body graph, is input as an independent
token. It is linearly projected to the high-dimensional em-
bedding EJ

i ∈ RH , where H is the hidden size of BGT.
To enable the model to distinguish different joints, we add
a learnable token type embedding TE ∈ R(n+1)×H to the
joint embedding.

Based on the body pose graph, the relationships be-
tween different joints are diverse, and many may be less
relevant. Previous work [1] directly applied full-type self-
attention [39], which may introduce excessive noise or mis-
guidance. Instead, we propose Pose Graph Layer (PGL),
which employs a modified Relative Self-Attention Mecha-
nism [32, 47] to explicitly encode the directed edges in the
pose graph whose vertices are at the token level. We rede-
fine the calculation of the self-attention module as follows:

eij =
xiW

Q(xjW
K + rKij )

T

√
dz

, zi =

n∑
j=1

αij(xjW
V + rVij)

(3)
where αij = softmax

j
{eij}.

Specifically, we initialize learnable embedding
RV , RK ∈ R3×H for each type of edge defined above.
For all the input samples, we build a relation matrix
R ⊆ (n × n). R(i,j) represents the index of relation type
of token Ji for Jj . While computing the relative attention,
we set the rKij = RK

R(i,j) ∈ RH and rVij = RV
R(i,j) ∈ RH .

Condition encoding. To incorporate conditions to control
the generated body poses, we stack a cross-attention layer
on the Pose Graph Layer in each block. In this attention
layer, the K and V are projected from the concatenated con-
dition feature Fc = [tw, βb, G], where tw ∈ R3 represents
the target right wrist position, βb ∈ R10 represents the body
shape, and G ∈ Rg represents the gender embedding with
g being the embedding size for each gender.
Translation decoding. We initialize a special token [T ] ∈
RH and concatenate it to the joint embedding, and set up a
sub-task for the model to predict the z-coordinate zb of the
body from this special token.
Unsupervised pre-training. By utilizing the Transformer-
like model structure and special objectives that generate
body poses where the right wrist reaches a designated target
position, BGT can effectively learn the prior knowledge of
the hierarchy of body joints through pre-training with out-
of-domain data.
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We pre-train BGT using AMASS [23]. We randomly
mask 50% joints embedding to encourage the model to re-
cover them conditioned on the right wrist position. To pre-
vent the model from being confused by masking joints that
are weakly correlated with the right wrist position, we mask
only 20 critical joints. The training objective is as follows:

Lpre =
∑
k=1

∥Jmask
k − Ĵmask

k ∥2 + ∥zb − ẑb∥1

+ ∥V b − V̂ b∥1 + ∥tbw − tw∥1

(4)

where the distance between the right wrist position tbw and
the target position tw is minimized.

It’s worth emphasizing that the entire pre-training pro-
cess is unsupervised, which is an advantage of our frame-
work that previous methods cannot achieve. Our frame-
work, when combined with this pre-training method, can be
easily applied to other generation domains as a plug-and-
play component. By merely switching the target joint from
the wrist to other joints like legs, head, and hips.
Fine-tuning. During the fine-tuning stage, we mask all
joint embeddings directly, which encourages BGT to gener-
ate the ground truth grasping body pose from scratch based
solely on the target position of the right wrist.
Inference. At the inference stage, since the accurate posi-
tion of the right wrist is unavailable, BGT takes the transla-
tion of the target object to as the rough condition and gen-
erates a stable grasping pose, with the right wrist positioned
in close proximity to the object.

3.3. Unified Optimization (U-Opt)

Given the MANO parameters Θh and SMPL-X parame-
ters Θb initialized by the generation from HNet and BNet,
we propose a unified optimization algorithm (U-Opt) to
couple and optimize these two body parts with gradient de-
scent using Adam [17]. U-Opt leverages the PF-map sam-
pled by FingerCVAE and the constraint algorithm we de-
veloped for body rationalization to simultaneously enhance
the fidelity of the body pose and grasping-hand pose.

The optimization objectives of U-Opt are:

E(Θ) = λsEstitch(Θ
b) + Eh(Θ

h) + Eb(Θ
b) + λ∥Θ∥2,

Eh(Θ
h) = λcEcontact + λpEpenet,

Eb(Θ
b) = λbEbalance + λgEground + λhEhead

(5)
Finger Contact Loss. We further improve the stability and
accuracy of the hand grasping by minimizing the consis-
tency loss between the hand vertices Vh and the predicted
PF-map C:

Econtact(Θ
h) =

5∑
f=1

∑
o∈Cf

d(o,Vh
f ), (6)

Figure 6. Three cases of minimizing Body Balance Loss. The base
of support is a closed polygon calculated by the pre-defined points
in contacted with the ground on the feet. If there are only two con-
tact points, the base of support turns into a line segment. The goal
of Balance Loss is to minimize the distance between the projection
of the center of gravity and the supporting polygon.

where Cf are the points corresponding to the finger f in the
contact point cloud, Vh

f are the vertices in the prior contact
regions of finger f . And d(a,B) = minb∈B ∥a− b∥2 is the
minimum distance from point a to point cloud B.
Penetration Loss Epenet is implemented to penalize the
penetration between hand and object following [13].
Stitch Loss. To couple the generated body pose and hand
pose, Stitch Loss is proposed to minimise the distance be-
tween the right wrist of the body from BNet and that from
HNet. Note that Stitch Loss only adjusts the body pose pa-
rameters Θb, while ensuring that the accuracy of the hand
grasp is not affected:

Estitch(Θ
b) = ∥tbw − thw∥2 (7)

where tbw is the right wrist position of the body from BNet
and thw is the wrist position of the hand from HNet.
Body Balance Loss. Previous studies [20, 28, 29] have es-
tablished that the balance of a human is only sufficient when
the gravity line is aligned with the base of support. Building
on this insight and inspired by the successful implementa-
tion of [33], we are the first to introduce Body Balance Loss
in SMPL-Body pose generation and carefully designed a
novel calculation method for this loss.

Specifically, we encourage that the vertical projection of
the body’s center of gravity (approximated by the hip joint)
to pass through the base of support formed by four pre-
defined support points located at the forefoot and heel, as
illustrated in Fig. 6. Body Balance Loss is defined as

Ebalance(Θ
b) = D(Jb

hip−xy, S) (8)

where D(p, P ) is the distance between point p to the poly-
gon P , it will be zero if p is in P . Jb

hip−xy is the vertical
projection of the hip to the ground, and S represents the
base of support formed by the ground contact points of feet.
Ground contact Loss Eground is implemented to keep
the feet contacting the ground, where we encourage the z-
coordinate of the lowest vertices of two feet to be zero.
Head orientation Loss Ehead is implemented to encourage
the head of the human body to face the object.
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Figure 7. The body pose (green) and hand pose (pink) generated
by COOP before optimization (left) and after optimization (right).

Model FingerCVAE Hand Decoder

Encoder Decoder

Nblocks 4 4 4
Nneighbor 16 16 16
Transformer dim 256 256 512
Contact dim 4 - 4
Npoints 2048 2048 2048
Latent dim 8 8 -

Table 1. The main hyperparameter settings of HNet. Contact dim
represents the embedding size of each contact category.

Layers Attention head Hidden size Dropout Gender

8 8 256 0.2 16

Table 2. The main hyperparameter settings of the Body Graph
Transformer. Gender represents the embedding size of gender.

3.4. Whole-Body Pose Synthesis

After finishing U-Opt, we compose the hand pose pa-
rameters θh ∈ R15×6 and the body pose parameters θb ∈
R40×6 into the complete SMPL-X parameters Θ = {θ ∈
R55×6, tb} as the final output. Fig. 7 displays a case of the
unified optimization.

4. Experiment
4.1. Model Architecture

HNet. We utilize the Point Cloud Transformer [45] as the
baseline model for FingerCVAE and the hand decoder in
HNet. We replicated most of the hyperparameter settings
from [45] and adjusted the model structure to suit the task
of HNet. In particular, we only retain the transition-down
layers for the Encoder of FingerCVAE and added two fully
connected layers to map the global feature to the param-
eters of a normal distribution, µ, σ ∈ R8. The hand de-
coder, like the FingerCVAE Encoder, maps the hand-object
contact information (PF-map concatenated with the object
point cloud and object translation) to the MANO [27] pa-
rameters Θh of the grasping right hand. Meanwhile, for
the FingerCVAE Decoder, we adopted the settings from the
“Part Segmentation” task, keeping the transition-down and

Figure 8. The distribution of translated objects in the training set
is expressed as a percentage. The 3D global coordinate system is
used, with X and Y as the horizontal axes and Z as the vertical
axis.

transition-up layers to categorize the points in the object
point cloud into 6 different categories. Table 1 presents the
primary hyperparameter settings for HNet.
Body Graph Transformer (BGT). Table 2 presents the
primary hyperparameter settings for our proposed Body
Graph Transformer (BGT). To input the 6D rotation of
each body joint Ji ∈ R6 [49] and the condition feature
Fc ∈ R(3+10+16) into the model, we separately map them
into hidden size embeddings using linear projection.

4.2. Datasets

We utilize GRAB [2, 37], a dataset capturing the whole-
body 3D SMPL-X human grasping sequences, to train and
evaluate HNet and BNet. We down-sample the motion se-
quences of GRAB from 120fps to 30fps, then collect the
frames in which the object is only in contact with the hu-
man’s right hand and leaves the table. Moreover, we filter
out frames in which the object is too close to the human,
causing deviations from grasping poses (e.g. eyes not look-
ing at the object). Subsequently, for each frame, we normal-
ize the translation of human to the origin of the horizontal
plane. To ensure no overlap between objects in the training,
validation, and testing set, we divide the dataset according
to the objects as done in [36]. The distribution of object
translation in the training set we created is shown in Fig. 8.

AMASS [23] is a vast dataset of human motion that
comprises multiple action types, such as sports, dance, and
more. Although these action types differ significantly from
grasping, which we refer to as out-of-domain data, we can
still leverage them to pre-train the BGT due to the decou-
pling method used in COOP. We down-sampled the motion
sequences from AMASS to 30fps and filtered out frames
where at least one foot of the human is in contact with the
ground. For each frame, we normalize the translation of
human to the origin of the horizontal plane.

4.3. Testing set

To evaluate the generalization of different methods for
grasping objects from different positions, we build a test
set with object positions distributed far beyond the range
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Method Contact Ratio ↑ Valid Error
(e−2) ↓ Ground Contact ↑ Penetration

Volume∗(cm3) ↓
Displacement∗

(cm) ↓

GrabNet [37]-SMPLX 0.015 0.114 0.294 16.102 7.023
GNet [36] 0.676 0.312 0.748 8.172 4.365
WholeGrasp [40] 0.948 0.258 0.495 4.335 4.871
COOP (ours) 0.987 0.223 0.996 4.098 3.592

GT-GRAB [37] 1.000 0.131 1.000 7.017 3.553

Table 3. Results of the comparison experiment on the test data we build. *: Notably, in calculating the metrics of grasping quality, i.e.,
penetration and displacement, we only consider the samples where the human body and object were in contact. This was done because
when the body mesh is not in contact with the object, the penetration value is 0, and the displacement of the object becomes a very large
value, rendering the result meaningless. However, even with this evaluation logic, COOP still achieves significant advantages.

Metric GNet [36] WholeGrasp [40] COOP (ours)

Overall Pose ↑ 2.55 ±1.07 2.29 ±0.90 3.89 ±0.80
Body Balance ↑ 2.66 ±1.21 2.45 ±0.98 3.97 ±0.82
Ground Contact ↑ 2.27 ±1.13 1.78 ±1.04 3.86 ±0.72
Hand Grasp ↑ 2.43 ±1.16 2.35 ±1.07 3.70 ±0.92

Average ↑ 2.48 ±1.15 2.22 ±1.03 3.85 ±0.82

Table 4. The average scores and standard deviation of the results
obtained from the perceptual study.

of the training set. For each testing group, consisting of
one unseen object and one specific body shape, we place
a novel object at 128 different 3D positions surrounding
the human in global coordinates and evaluate the gener-
ated whole-body grasping poses. The x-coordinate (the hu-
man’s T-pose is facing) of the positions ranged from -0.8
to 0.8m, the y-coordinate ranged from -0.6 to 0.6m, and
the z-coordinate, which represents the vertical position in
our paper, ranged from 0.2 to 1.8m. The object orientation
remained fixed within each testing group but varied across
groups, resulting in different relative rotations of the object
with respect to the human at different test positions. The test
set comprised a total of 6400 samples, with 5 novel objects
and 10 different human body shapes.

4.4. Evaluation Metrics

(1) Contact Ratio [43]. To evaluate the validity of the
grasping pose, we measure the ratio of the generated sam-
ples with body-object contact. (2) Valid Error. We uti-
lize VPoser [24], a learning-based variational human pose
prior, to evaluate the authenticity of the generated body
pose. Specifically, we calculate the L2 loss of vertex recon-
struction as Valid Error. Although VPoser tends to output
lower error for more common poses, high valid error can
represent the great likelihood of an impossible body pose to
a certain extent. (3) Ground Contact represents the per-
centage of physically plausible human-to-ground contact in
the generated samples. A sample is considered “good” if the
distances between both feet’s lowest vertex and the ground
are less than 3cm. (4) Penetration is measured by penetra-

tion volume between the object and generated body mesh
following [11, 13]. (5) Grasp Displacement. To measure
the stability of the grasping, we utilize physics simulation to
compute the displacement of the object subjected to gravity
following [11, 38]. It should be noted that the calculated
frictional force applied to the object has a positive correla-
tion with the interpenetration. So the grasping stability must
be analyzed in conjunction with the penetration.

4.5. Quantitative Evaluation

We compare our method with three others that we re-
trained on the training set we build. “GrabNet-SMPL-X”
is a variant of GrabNet [37] that adapted to SMPL-X pa-
rameters. GNet-GOAL [36] and WholeGrasp-SAGA [40]
are the current SOTA works for whole-body grasping poses
generation, including the optimization stage. Although the
shape, gender, and translation of the generated body pose
are uncontrollable in WholeGrasp, we replicated it for our
task by fixing the body parameter and horizontal translation
during the optimization stage.

The evaluation results on the test set we build are pre-
sented in Table 3. While the object positions in the ground
truth by GRAB are not entirely consistent with those in
our testing samples, we display the evaluation results as a
reference for actual grasping poses. The low Valid Loss
achieved by GrabNet-SMPL-X is due to the majority of
generated poses being ”frozen” into invalid regular grasping
poses. Our approach outperforms other methods by demon-
strating a strong ability to generalize across different object
positions while ensuring body poses rationality. Although
WholeGrasp [40] achieves a high contact ratio by setting a
strong contact constraint in the optimization, it can easily
lead to unnatural body poses such as ground penetration or
floating. As for the grasping quality, our method achieves
not only smaller penetration but also stronger stability.

4.6. Perceptual Evaluation

We conduct a perceptual study to further evaluate the
generated grasping poses in visual perception. For each
generated sample, 10 users are asked rate it on four met-
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Contact. ↑ Valid Error ↓ MAE-w(cm) ↓

Ours 1.000 0.215 12.672
w/o PGL 0.998 0.316 14.492
w/o fine-tuning 0.985 1.119 25.650
w/o pre-training 0.991 1.396 27.004
w/o pre. + PGL 0.942 2.165 39.318

Table 5. Results from the ablation study on model structure and
training methods. MAE-w represents the distance error between
the target position and the right wrist of the generated body without
optimization. w/o PGL: we replace Pose Graph Layer with the
normal self-attention layer in BGT.

Contact. ↑ Pen Vol.∗ ↓ Disp.∗ ↓ V2V(cm) ↓

Ours 1.000 4.048 3.190 1.950
w/o PF-map 0.902 2.311 6.656 2.560

Table 6. Results from the ablation study on PF-map. The PF-map
in HNet is replaced by the binary contact map, making HNet de-
grade to be similar to the current state-of-the-art hand-grasp poses
generation model [21]. V2V is the vertex-to-vertex error for the
hand mesh generated by the hand decoder on the GRAB test set.

Contact. ↑ Pen. Vol.∗ ↓ Disp.∗ ↓

w/o U-Opt 0.377 26.091 4.873
Eb + Estitch 0.978 6.500 3.274
Eb + Estitch + Econtact 1.000 10.301 2.035
Eb + Estitch + Econtact + Epenet 1.000 4.048 3.190

Table 7. Results from the ablation study on the losses in U-Opt.

Method Overall Pose ↑ Body Balance ↑

Ours 0.61 ±0.49 0.63 ±0.48
w/o Ebalance 0.39 ±0.49 0.37 ±0.48

Table 8. Result of perceptual ablation study on Ebalance. Every
two generated poses are compared by the users, with a score of 1
assigned to the preferred pose and 0 to the non-preferred pose.

rics using a 1-5 point scale. Table 4 shows that COOP out-
performs others in all the metrics related to body and hand
grasp. Additionally, 90.6% of the samples COOP synthe-
sized are considered to be life-like in terms of Overall Pose,
with an average score greater than 3.5 .

4.7. Ablation Study

To verify the effectiveness of the model structure, train-
ing methods, and optimization constraints we designed, we
perform the ablation studies on the built test data with a ran-
domly selected body shape.
Model design. Table 5 presents the results of the ablation
study that verifies the effectiveness of different model struc-
tures and training methods. The results demonstrate that
our proposed Pose Graph Layer enhances the accuracy of

body poses generated by BNet. Moreover, both pre-training
and fine-tuning further improve the fidelity of the grasping
poses. The results suggests that when BNet is unable to
generate a proper body pose, the pose may be significantly
distorted after being optimized by U-opt. To demonstrate
that PF-map, as a contact representation, brings more valid
information than the binary contact map. We replace the
PF-map with the ordinary binary contact map in HNet. Ta-
ble 6 shows that the PF-map improves the fit of hand-object
grasping and reduces confusion of the hand decoder.
Optimization Loss. Table 7 demonstrates the significance
of U-Opt as a coupling module in COOP. It reveals that us-
ing Econtact alone leads to improvement in grasping sta-
bility, but also results in increased penetration. By incor-
porating Epenet, a balance between penetration and grasp-
ing stability can be achieved. Additionally, we conduct a
additional perceptual study to evaluate the effectiveness of
Ebalance. Table 8 indicates that Ebalance effectively en-
hances the visual balance of the generated grasping poses.

5. Limitations and Conclusion
Limitations. Considering the limited distribution of train-
ing data, we constructed our Body Net as a non-VAE struc-
ture, resulting in a lack of diversity in the generated poses
for the same set of conditions. During the experiment, we
found that when an object is positioned beyond the gras-
pable range of the human, the generated pose either cannot
make contact with the object or suffer from serious penetra-
tion.
Conclusion. In this paper, we introduce COOP, a decou-
pling and coupling framework for generating whole-body
grasping poses. COOP can synthesize life-like whole-body
grasping poses for target objects over a wide range of po-
sitions that resemble those of humans in the real world. In
future research, we plan to study how to utilize these un-
seen generated grasping poses to synthesize dynamic mo-
tions. Additionally, COOP may be easily adapted for other
human daily activities such as kicking and sitting. We will
continue explore it in future work.
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