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Abstract

Recent advancements in 3D hand pose estimation have
shown promising results, but its effectiveness has primarily
relied on the availability of large-scale annotated datasets,
the creation of which is a laborious and costly process.
To alleviate the label-hungry limitation, we propose a self-
supervised learning framework, HaMuCo, that learns a
single-view hand pose estimator from multi-view pseudo
2D labels. However, one of the main challenges of self-
supervised learning is the presence of noisy labels and the
“groupthink” effect from multiple views. To overcome these
issues, we introduce a cross-view interaction network that
distills the single-view estimator by utilizing the cross-view
correlated features and enforcing multi-view consistency to
achieve collaborative learning. Both the single-view esti-
mator and the cross-view interaction network are trained
jointly in an end-to-end manner. Extensive experiments
show that our method can achieve state-of-the-art perfor-
mance on multi-view self-supervised hand pose estimation.
Furthermore, the proposed cross-view interaction network
can also be applied to hand pose estimation from multi-view
input and outperforms previous methods under the same
settings.

1. Introduction
3D hand pose estimation is essential in various applica-

tion scenarios, from action recognition and sign language
translation to AR/VR [19, 20]. Hand pose estimation has
achieved a significant improvement in recent years. How-
ever, the progress heavily relies on the emergence of many
hand pose datasets with accurate 3D annotations. Acquir-
ing labeled datasets is quite time-consuming and laborious,
exposing a realistic challenge for deep learning models to
learn with limited and noisy data.

Self-supervised learning is an emerging solution to the
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challenge posed by manual annotation. Though worth ex-
ploring, self-supervised pose estimation with RGB hand im-
ages is a challenging and relatively unexplored area with
only one pioneering method, S2HAND [9]. S2HAND aims
to conduct 3D hand reconstruction from a single RGB im-
age with the noisy off-the-shell 2D hand pose estimation
results for supervision. Unfortunately, S2HAND faces a
predicament where its performance is significantly reliant
on the quality of the pseudo label, and inferior labeling may
result in reduced performance. Moreover, evaluating the
quality of the pseudo label is an ill-posed problem that lacks
clear criteria or input, further complicating the issue.

This observation motivates us to leverage multi-view in-
formation for enhancing self-supervised learning, as the
complementary nature of multi-view observations can help
mitigate the ambiguity inherent in pose estimation. Al-
though the first 3D hand dataset with synchronized multi-
view input (HanCo [62]) was proposed in 2021, to our
knowledge, there is no previous work exploring the poten-
tial of multi-view for self-supervised hand pose estimation.
Therefore, we turn to studies in the human body pose esti-
mation, which share some similarities.

As mentioned in previous work [24], naively enforc-
ing multi-view consistency is prone to generate degener-
ated solutions, thus they resorted to additional 2D labels
of unrelated datasets and proposed a solution under the
scope of weakly supervised learning. Other studies, such
as EpipolarPose [27] and CanonPose [52], utilized multi-
view data with special designs to enhance the supervision
and achieved promising results under the scope of self-
supervised learning.

In this paper, we push along this direction on hand pose
estimation via multi-view collaborative learning. We take
one step further by designing a learnable network, which
utilizes multi-view information, to tackle 1) noisy pseudo
labels and 2) unreliable multi-view “groupthink” issues
causing training collapse in the early training stage. For-
mally, we name the pipeline HaMuCo, which stands for
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Figure 1. Overall pipeline comparison: HaMuCo learns a monocular 3D hand pose estimator from multi-view self-supervision via cross-
view feature interaction. Our cross-view interaction network addresses the importance of introducing learnable feature interaction, which
is absent from previous methods [27, 52]. At inference time only the gray part is applied.

Hand Multiview Collaborative learning.
The core idea of our approach is to enhance the single-

view estimation by means of cross-view feature interac-
tion and further integrate multi-view results to supervise the
single-view output to achieve self-distillation in an end-to-
end fashion. Thus, our framework is built with a single-
view hand pose estimator and a cross-view interaction net-
work for supervision. The single-view estimator uses the
MANO [45] hand model as the decoder, which provides the
hand prior to regularizing irrational anatomy when super-
vised by noisy pseudo labels. The cross-view interaction
network captures cross-view features and utilizes several
consistent losses among different views to guide collabo-
rative learning.

We conduct comprehensive experiments on the
HanCo [62] dataset and our approach outperforms previous
methods by a considerable margin for self-supervised 3D
hand pose estimation. Notably, our results demonstrate
competitive performance compared to a state-of-the-art
fully supervised approach proposed by Chen et al. [7]. Our
proposed framework is highly versatile, as it can be trained
with or without calibration, and is capable of incorporating
the cross-view interaction network to achieve superior
multi-view inference results when multi-view test data is
available. Moreover, our model can generalize well to other
datasets [29, 46, 64] and in-the-wild images.

In summary, our contributions are the following:

• We propose the first self-supervised learning frame-
work for single-view hand pose estimation without any
training data annotation and achieve state-of-the-art
performance via multi-view collaborative learning.

• We propose a cross-view interaction network to super-
vise the single-view estimator by enforcing multi-view
consistency and capturing cross-view features for col-
laborative learning among multiple views.

• The proposed framework is capable of multi-view
inference by incorporating the cross-view interac-

tion network and achieves state-of-the-art performance
without bells and whistles.

2. Related Work
Hand Pose Estimation. Hand pose estimation can be cat-
egorized into RGB-based methods [23, 49, 63] and depth-
based methods [14, 15, 36], depending on the input modal-
ity. In this paper, we focus our attention on RGB-based
hand pose estimation. The RGB-based methods can be
further divided into three categories, skeleton-based meth-
ods [5, 12, 23, 31, 38, 39, 48, 49, 55–57, 63], model-based
methods [1, 2, 4, 9, 58, 59, 64], and mesh-based methods
[7,8,10,16,28,30,32,33,37,50,61]. Skeleton-based methods
regress the hand joints directly. Zimmermann et al. [63] in-
troduces a multi-stage network that lifts the regressed 2D
joints to 3D ones. Variational autoencoder [26] is em-
ployed to learn a cross-modal latent space to achieve better
hand pose estimation and disentanglement [49, 56, 57]. La-
tent 2.5D representation regression is proved more effective
than direct coordinates regression for hands by [23], which
is also adopted by [13, 31, 48, 61]. There are also many
works solving hand pose estimation with two hands inter-
actions [13, 29, 38] and hand-object interactions [2, 12, 29].
Recent model-based methods make use of MANO [45],
which can incorporate the hand prior and predict the hand
mesh simultaneously. Those methods [1, 4, 9, 58, 59] rely
on additional supervisions [1, 4, 9, 58, 59] or inputs [4]. In
contrast, mesh-based methods regress each vertex directly,
which is more accurate but requires large-scale datasets
with hand mesh annotations [18, 29, 38, 64]. Most of
these methods utilize graph convolutional network (GCN)
[7, 8, 10, 16, 28, 50, 61] or transformers [32] or both [30, 33]
for regression. I2L-MeshNet [37] regresses each vertex by
predicting 1D heatmaps of three axes. Chen et al. [6] uses
an image-to-image translation network to predict the UV
map of the mesh. Similar to previous works [30, 33], we
also use transformer and GCN. However, we employ them
for cross-view interaction.
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Multi-View Fully-Supervised Pose Estimation. Multi-
view information is widely explored to improve 3D human
pose estimation by tackling occlusions and depth-ambiguity
in a fully-supervised manner [3, 22, 25, 41–43, 47, 60].
Volume-based methods [25, 41, 42, 51] unproject 2D fea-
tures or heatmaps of joints to a 3D space for estimation.
Another kind of method [22, 43, 60] utilizes the geometry
information to fuse the features in 2D space directly and ef-
ficiently. Recently, some works [35,47] utilize transformers
for implicit cross-view fusion without camera extrinsics.
Label-Efficient Learning. Label-efficient learning aims to
reduce the 3D label requirements. Many works devote to
solving hand pose estimation in a label-efficient manner [1,
4, 5, 7, 9, 39, 48, 55, 59, 63]. Synthetic data is used to avoid
manual annotation [7,39,63], but may need domain transfer
[39]. Or use weakly supervised learning [4,48] to obtain 3D
results by manually annotating 2D labels to assist with hand
priors. Multi-view label-efficient learning is also explored
in 3D pose estimation [24, 27, 44, 52]. Rhodin et al. [44]
trains a semi-supervised network with only a small amount
of labeled 3D data and multi-view consistency constraints.
Iqbal et al. [24] mixes single-view images with 2D labels
and unlabelled multi-view images for training. Our goal
is the same as that of previous methods, which is to train
without any manual 3D labels.
Self-supervised 3D Pose Estimation. (1) Single-view
training and inference. To the best of our knowledge, there
is only one method for self-supervised 3D hand pose es-
timation, proposed by Chen et al. [9]. Their framework,
S2Hand, uses only single-view 2D noisy labels for training
and achieves self-supervision through rendering. However,
the performance is limited due to the use of single-view in-
formation and the quality of the noisy labels. (2) Multi-view
training, single-view inference. Our approach belongs to
this category but is fundamentally different from the exist-
ing methods. EpipolarPose [27] triangulates multi-view 2D
pseudo labels according to epipolar geometry to 3D ones
for training. CanonPose [52] learns to lift 2D pseudo la-
bels to 3D canonical pose space with multi-view consis-
tency constraints. All the aforementioned methods use non-
learnable self-supervised modules like geometric modules
or consistency loss functions, as shown in Fig. 1. However,
they [27, 52] ignore the importance of introducing cross-
view interaction and multi-view collaborative learning. Pre-
vious methods struggle to achieve good performance since
the pose of a hand can change drastically over time and dif-
ferent joints may have similar appearances.

3. Method
As depicted in the left part of Fig. 2, our framework

consists of a simple yet effective single-view estimator and
cross-view interaction network. The core idea of our ap-
proach is that prediction from a monocular view can be

enhanced via cross-view feature interaction and the inter-
acted results can further supervise the single-view output to
achieve self-distillation.

3.1. Single-View Estimator
Overview. Our framework takes multi-view synchronized
hand images I = {Ii}vi=0 with v views as input, each view
is an image of Ii ∈ R3×h×w. The output is a 3D hand mesh
M on each view. We designed a simple yet effective model-
based network as a single-view estimator. Using the hand
model will reduce the adverse effects of using poor pseudo
labels as supervision by providing hand prior information
for regularization. Please refer to supplementary materials
for more details about the single-view estimator.
Hand model. We employ MANO [45] as the hand model.
The hand mesh can be derived from the MANO layer using
parameters β and θ, i.e. M(β,θ). β ∈ R10 and θ ∈ R16×3

control the shape and pose of the hand respectively. We can
use a predefined regressor to obtain the 3D joints from the
3D mesh vertices by P = JM , where J ∈ Rk×n, where
n = 778 and k = 21 are the joints number and vertices
number. For more details, we recommend referring to [45].
Camera model. Following Boukhayma et al. [4], we model
the geometry correspondence by the weak-perspective cam-
era model and obtain camera parameters from the single-
view network predictions. Given the translation t and scale
s, the 2D coordinates in image plane can be obtained by:
Π(P ) = sΩ(P ) + t, where Ω is the orthographic projec-
tion and Π denotes the weak-perspective projection.
Network Structure. Since the single-view estimator is not
the main component, for the sake of simplicity, we employ
a CNN as the encoder Fe, and an MLP as the decoder Fd for
regressing the MANO parameters. We have 3D hand mesh:
Mi(θi,βi) = Fs (Ii), where Fs = Fd (Fe (·)) denotes the
entire single-view network. The estimator also passes dif-
ferent levels of features Hj (where Hj is the intermediate
feature of the encoder after j residual blocks, j=1, 2, 3, 4)
to our cross-view interaction network.

3.2. Cross-view Interaction Network

In this section, we introduce the cross-view interaction
network (CVI-Net), which is the core of our system to en-
able the network to exploit multi-view information. This
stage conducts cross-view interaction and distillation. The
critical components of this stage are a cross-view interac-
tion network for capturing cross-view features and several
consistent losses for guiding collaborative learning.

3.2.1 View-Shared Graph Feature Extraction
The first step for interaction is to extract the appropriate fea-
tures. Different from [7, 8, 61], our module collects useful
information into a graph through view-shared graph feature
extraction module (VSGFE) as shown in Fig. 2. Specif-
ically, it makes use of multi-level feature maps from dif-
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Figure 2. The left illustrates our whole pipeline (2 views for simplicity). During the training phase, the network takes multi-view hand
images and pseudo-labels as inputs. The bottom right depicts our cross-view interaction networks. The top right shows the view-shared
graph feature extraction (VSGFE) module and view-shared feature (VSF) module. ⊕ and ⊗ denotes add and concatenation respectively.

ferent views H = {Hj
i }vi=0, 3D joints P = {Pi}vi=0, and

MANO pose parameters Θ = {θi}vi=0 from the single-view
estimator to extract a graph feature G. The graph feature
of each view Gi consists of three parts. G1

i , G2
i and G3

i

aim to capture joint location features, global image features,
and local image features, respectively. The first part is joint
location embedding G1

i ∈ Rk×c1 , providing the explicit
geometric information. This embedding is obtained by us-
ing an MLP to map the single-view 3D joints locations Pi

and pose parameters θi to dimension c1. The second part is
joint-wise high-level image features G2

i ∈ Rk×c2 generated
by spatial-aware initial graph building (SAIGB) [61] mod-
ule using the last level feature maps H4

i . This part provides
compact image clues of all views for interaction. The third
part is joint-aligned features G3

i ∈ Rk×c3 gathered by joint
feature sampler (JFS). JFS projects joints onto multi-level
image feature maps {Hj

i }3j=1 to gather fine-grained percep-
tual features like [53,54] for better local alignment. We then
concatenate graph features to get Gi =

[
G1

i ⊗G2
i ⊗G3

i

]
.

3.2.2 Dual-Branch Cross-View Interaction (DCVI)

We first stack {Gi}vi=0 of all views to obtain multi-view
graph feature G ∈ Rvk×(c1+c2+c3). We design a com-
ponent to effectively capture complementary information
from other views on multi-view graph feature G. The in-
teraction module has two branches, (1) cross-view attention
branch (CVA) and (2) view-shared feature branch (VSF).
Cross-view attention branch utilizes a cross-view trans-
former Ft consisting of several multi-head attention layers
with token size vk and MLPs, which allows each joint to
aggregate features from other joints or views. This branch
implicitly captures the multi-view information. An explicit

multi-view prior information is that the observed poses from
all the views should be consistent in 3D. Therefore, we
add a branch to excavate the multi-view shared information
to enhance the feature representation. Specifically, view-
shared feature branch first employs adaptive-GCN [12] Fa

to map the view-specific features Gi to a canonical feature
space Ci = Fa(Gi), the nodes in adaptive-GCN repre-
sents the hand joints and the edges represents joint feature
correlation. Then, we stack C = {Ci}vi=0 together to get
multi-view canonical features C ∈ Rv×k×(c1+c2+c3). Af-
ter that, we use max-pooling on C to get the max activated
features of every joint then repeat them in the view dimen-
sion as the view-shared features C

′ ∈ Rvk×(c1+c2+c3). We
denote the dual-branch cross-view interaction as: G∗ =
G+ Ft(G) +C

′
, where G∗ is the updated graph feature.

Parameters regression. The view specific feature G∗
i after

the interaction can be obtained by reshaping G∗. We then
employ a shared MLP Fr as a decoder to regress the pose
parameters θ∗

i = Fr(G
∗
i ) to derive the hand mesh of each

view M∗
i (θ

∗
i ,βi) and corresponding joints P ∗

i = JM∗
i .

3.2.3 Multi-View Collaborative Learning

To allow all the views and the networks to learn collabo-
ratively, we utilize consistency losses Lc upon interaction
outputs and distillation loss Ld between multi-view fusion
results and single-view outputs, as shown in Fig. 2. Lc

introduces collaborative learning between multiple views,
guiding the poses from different views to be as close as
possible. While Ld makes the CVI-Net and single-view
estimator work in a collaborative manner, achieving a self-
distillation effect.
Results fusion. Since we need to supervise the single-view
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estimator with the results after the interaction, instead of
simply using the refined results M∗

i of each view, we en-
semble all the results into a unified and more reliable result
M̃ . Considering the lack of explicit guidance, we empiri-
cally introduce a prior that all the views contribute equally.
Thus, we simply average all aligned results to obtain M̃ .
Specifically, we use A to denote the align procedure. When
the extrinsics are known, we use the relative camera pose
for alignment. When the camera extrinsics are unavailable,
we use Procrustes analysis [62, 64] to compute relative ro-
tation and align meshes to a canonical view. The final result
is calculated as follows: M̃ = 1

v

∑v
i=1 A(M∗

i ).
Consistency losses. We design two types of consistency
loss Lc: 2D consistency loss Lc2D and Fusion consistency
loss Lcf . The motivation behind Lc2D is that the 2D pre-
dictions in the x-axis and y-axis are more accurate than
the depth prediction in the z-axis. Therefore, Lc2D utilizes
the 2D predictions in every single view as the pseudo label
to supervise other views, which explores the view-specific
reliable information to collaboratively improve the predic-
tions of all the views. 2D consistency loss is defined as:
Lc2D = 1

v2

∑v
i=1

∑v
j=1 ∥Π(M∗

i )−Π(Ai(M
∗
j ))∥1, where

Ai(·) denotes the alignment operation to align other view-
j to view-i. Fusion consistency loss uses the fused re-
sults to supervise each view. The loss is defined as:Lcf =
1
v

∑v
i=1 ∥M∗

i −A−1
i (M̃)∥1, where A−1

i (·) denotes the in-
verse transformation from canonical view to view-i. Lc2D

and Lcf are complementary to each other. Only using Lc2D

tends to get performance saturation faster. In contrast, only
adopting Lcf can lead to unstable training since there may
exist the situation that the fusion results are worse due to
the majority of the predictions being wrong, especially at
the early training stage. During training, we alternately up-
date Lc2D and Lcf to achieve more stable optimization.
Multi-view distillation loss. Since the multi-view fusion
results are much better than the 2D pseudo label, we in-
troduce multi-view distillation loss Ld = 1

v

∑v
i=1 ∥Mi −

A−1
i (M̃)∥1 that uses the fusion results to supervise the

single-view outputs to achieve self-distillation.
Total loss. Except for the losses for multi-view collabora-
tive learning, our framework also adopts two general con-
straints, 2D joints loss, and hand prior regularization. The
prior regularization regularizes the pose and shape parame-
ters: Lp = 1

v

∑v
i=1 α(∥θi∥1 + ∥θ∗

i ∥1 + γ∥βi∥1), where α
and γ are used to balance the loss scale. The 2D joints L1
loss L2D is used to supervise the results from the 2D pseudo
labels. The final loss is defined as: L = Lc+Ld+L2D+Lp.

4. Experiments
4.1. Datasets and Metrics
FreiHAND [64] is a dataset for single-view 3D hand pose
estimation, which contains 130,240 training images and

3,960 testing images. All images are captured from the
real world with 3D annotations. The training set consists
of 32,560 composited images with four types of real-world
backgrounds and hands captured against a green screen.
HanCo [62] extends FreiHAND, which consists of 1,517
videos with multiple views and camera calibration. It has
860,304 frames in total, i.e. 107,538 time-step per view.
Since HanCo does not have an official train/test split, we
use the first 1,200 sequences for training and the last 317 se-
quences for testing in all experiments for fair comparisons.
Other datasets. We also provide additional results on other
datasets. Assembly101 [46] is an action recognition dataset
that consists of 4,321 videos sequence. H2O [29] is a hand-
object interaction dataset with 571,645 frames. Please refer
to supplementary materials for details.
Metrics. We report standard metrics for hand pose estima-
tion as follows. (1) MPJPE/MPVPE (mean per joint/ver-
tex position error) measures the average Euclidean distance
in mm between the predicted and ground-truth joints/ver-
tices. JE/VE are the abbreviations for MPJPE/MPVPE.
(2) NMPJPE/NMPVPE (normalized mean per joint/ver-
tex position error, N-JE/VE) computes MPJPE/MPVPE
after performing translation and scale alignment. (3)
PA-MPJPE/PA-MPVPE (PA-JE/VE) is a modification of
MPJPE/MPVPE with Procrustes analysis [17]. This met-
ric normalizes the absolute scale, center, and rotation. (4)
F-Score [9] is the harmonic mean of recall and precision
between two meshes w.r.t. a specific distance threshold.
F@5mm and F@15mm are reported. (5) AUC means the
area under the curve of the PCK, where the PCK refers to
the percentage of correct joints.

4.2. Implementation Details
We implement all the networks in PyTorch [40]. We

first train our framework without Lc and Ld for 10 epochs.
Then, we train the whole framework for another 30 epochs.
Each batch contains images from 8 time-step of 8 cameras.
We use AdamW [34] optimizer and set the initial learning
rate to 3e-4. We use 256×256 hand images as input. Please
refer to supplementary materials for more details.

4.3. Comparisons with state-of-the-arts
In Sec. 4.3.1, we evaluate the performance of our method

under the single-view inference setting. As self-supervised
hand pose estimation is a relatively new task, there is lim-
ited literature available for comparison. To address this, we
adapt self-supervised body pose estimation methods [27,52]
to hand and compare them with our method on HanCo [62].
We then compare with the only existing self-supervised
hand pose estimation method, S2Hand [9]. As S2Hand can
only be trained on single-view images, we use our single-
view network only (denote as Ours-SV) for both training
and inference as baselines. We further conduct extensive
evaluations of our full model and baselines to demonstrate

20767



Method Input N-JE↓ PA-JE↓
Fully-Supervised Method:

MobRecon [7] image 9.9 5.7
EpipolarPose [27] image 10.5 6.1

Self-Supervised Method:
EpipolarPose [27] image, � 19.7 9.3
CanonPose [52] 2D pose, � 30.9 12.6

Ours image, � 11.1 7.0
EpipolarPose [27] image 42.3 23.5
CanonPose [52] 2D pose 31.8 12.8

Ours image 15.2 7.7

Table 1. Single-view inference comparisons on the HanCo [62]
dataset. � denotes the method using camera extrinsics during
training. Notably, in the self-supervised setting, our method
exhibits a significant improvement over previous methods.

Method Data Backbone PA-JE↓ PA-VE↓ F@5↑
Fully-Supervised Method:
YoutubeHand [28] Frei. Res50 8.4 8.6 0.61
I2UV-HandNet [6] Frei. Res50 6.7 6.9 0.71

MobRecon [7] Frei. Res50† 6.1 6.2 0.76
Ours-SV Frei. Res50 7.5 7.5 0.68

Self-Supervised Method:
S2HAND [9] Frei. EffiNet-b0 11.8 11.9 0.48

Ours-SV Frei. EffiNet-b0 11.6 11.7 0.49
Ours-SV Frei. Res50 11.9 12.0 0.47
Ours-SV HanCo EffiNet-b0 11.3 11.4 0.51
Ours-SV HanCo Res50 11.6 11.8 0.48

Ours HanCo EffiNet-b0 6.3 6.8 0.71
Ours HanCo Res50 6.2 6.7 0.72

Table 2. Quantitative results on the FreiHAND evaluation set. The no-
tation † denotes using a stacked backbone structure. ”Our-SV” refers to
training only with our single-view network.

the efficacy of multi-view collaborative learning.
In addition, thanks to our cross-view interaction net-

work, our approach is capable of performing multi-view in-
ference by simply averaging individual view results when
multi-view test data is available. In Sec. 4.3.2, we com-
pare our method with state-of-the-art approaches under the
multi-view inference setting.

4.3.1 Single-View Inference
Hanco. We train EpipolarPose and CanonPose using their
open-source code. We also train fully-supervised meth-
ods [7, 27] as a reference for performance. Tab. 1 outlines
the performance of fully-/self-supervised methods in the lit-

Method MPJPE ↓ PA-MPJPE ↓
Ttraditional Triangulation Method (w/o training):
DLT [21] 16.8 13.2
Pictorial [11] 13.5 10.2
RANSAC [25] 12.3 9.8

Fully-Supervised Method:
EpipolarTrans [22] 6.2 4.2
LT-Algebraic [25] 5.5 3.6
LT-Volumetric [25] 5.8 3.6
LT-Volumetric+ [25] 4.9 3.6
EpipolarPose+ [27] 8.0 4.4
Ours (Opt-Center) 6.0 3.2
Ours (RANSAC) 5.8 3.4

Self-Supervised Method:
EpipolarTrans [22] 11.2 9.0
LT-Algebraic [25] 10.3 7.8
LT-Volumetric [25] 10.6 8.0
LT-Volumetric+ [25] 9.5 7.2
CanonPose+ [52] 21.6 10.5
EpipolarPose+ [27] 17.2 8.3
Ours (Opt-Center) 8.8 5.3
Ours (RANSAC) 8.5 5.6

Table 3. Multi-view inference results on the HanCo dataset. The
notation + indicates that methods require the GT 3D center.

erature along with ours. In the case where camera extrinsics
are available for training, CanonPose performs the worst be-
cause it lifts noisy 2D pseudo labels from OpenPose to 3D
ones. When camera extrinsics are not available, all com-
petitors experience a performance decline. This is due to
the lack of collaborative interaction across multi-view fea-
tures in previous self-supervised methods. In contrast, our
method outperforms both of them by a large margin. Our
cross-view interaction networks can enhance single-view
inference, whether camera extrinsics are available during
training or not. More details about the usage of cameras
can be found in Sec. 3.2.3. Compared to previous self-
supervised methods, our approach significantly improves
performance, highlighting the importance of cross-view in-
teraction among different views. Moreover, our approach
can get comparable results to fully-supervised methods.
FreiHAND. The comparisons on the evaluation set are
shown in Tab. 2. The experiments conducted under
self-supervised settings indicate that our baselines, Ours-
SV, already achieve performance comparable to S2Hand.
Moreover, directly equipping baselines with other back-
bones or more training data does not improve too much.
We argue that performance improvements in single-view
self-supervised hand pose estimation cannot be achieved
by changing the backbone architecture or increasing the
amount of training data. In contrast, our full model, i.e.
Ours, substantially further improves the results on the Frei-
Hand dataset, which justify the effectiveness of multi-view
collaborative learning. Moreover, our self-supervised ap-
proach achieves competitive performance with recent fully-
supervised state-of-the-art methods

4.3.2 Multi-View Inference
We show the quantitative results of our multi-view inference
performance with other competitors on HanCo in Tab. 3.
A naive solution is to triangulate pseudo labels without
training. We show the performance of traditional meth-
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ID Method NMPJPE ↓ PA-MPJPE ↓
Single Interact Fusion Single Interact Fusion

ResNet-50 as the backbone:
1 Full 11.14↑0.03 8.31↓0.03 7.65↑0.10 7.05↑0.17 5.35↑0.07 5.34↑0.06

ResNet-18 as the backbone:
2 Full 11.17 8.28 7.75 7.22 5.42 5.40

3 – VSF 11.21↓0.04 8.49↓0.21 7.81 ↓0.06 7.25 ↓0.03 5.52 ↓0.10 5.50 ↓0.10
4 – CVA 11.31↓0.14 8.45↓0.17 7.81 ↓0.06 7.29 ↓0.07 5.48↓0.06 5.46↓0.06

5 – G1 11.31↓0.14 8.56↓0.28 7.77↓0.03 7.31 ↓0.09 5.52 ↓0.10 5.49↓0.09
6 – G2 11.33↓0.16 8.38↓0.10 7.83↓0.08 7.34↓0.08 5.45↓0.03 5.42↓0.02
7 – G3 11.30↓0.13 8.99↓0.69 7.82↓0.07 7.30↓0.08 5.45↓0.03 5.44↓0.04

8 – Lc2D 11.25 ↓0.08 8.43↓0.15 7.90↓0.15 7.32↓0.10 5.58↓0.16 5.57 ↓0.17
9 – Lcf 11.74↓0.57 8.98↓0.70 8.38↓0.63 7.55↓0.33 5.84↓0.42 5.80↓0.40

10 – DCVI 13.52↓2.35 / 11.99↓4.24 9.59↓2.37 / 9.42↓4.02
11 – Lc 14.04↓2.87 17.03↓8.75 10.32↓2.57 9.04↓1.82 10.21↓4.79 7.92↓2.52
12 – Ld 17.05↓5.88 8.56↓0.28 8.01↓0.26 10.13↓2.91 5.67↓0.25 5.65↓0.25

Table 4. Quantitative ablation studies. We remove each of our components here to show
their contribution to our framework. Full denotes our complete model. CVI represents
our whole cross-view interaction network. Other notations are consistent with Sec. 3.
We report the errors of single-view outputs (Single, M ), cross-view interaction outputs
(Interact, M∗), and multi-view fusion results (Fusion, M̃ ).
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Figure 3. Error of using different (a) #training
data, (b) (line-1)#view for training , and (line-
2)#view for inference when trained with 8 views.
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Figure 4. AUC of three 2D joint sets. O, S, I, PE
denote OpenPose, single-view, interaction, and
average pixel error in resolution 256× 256.

ods. Such methods can serve as a reference for evaluat-
ing the effectiveness of self-supervised methods. We adapt
fully-supervised multi-view 3D pose estimation methods
LT [25] and EpipolarTrans [22] to a self-supervised man-
ner. Under self-supervised settings, EpipolarTrans can only
achieve limited performance improvements compared to
traditional methods. LT-Algebraic [25], which incorporates
learnable confidence into the triangulation. LT-Volumetric
model [25], which unprojects 2D features into a 3D volume
for inference, achieves better results, but the performance
is dependent on the accuracy of the hand center. Canon-
Pose [52] and EpipolarPose [27] obtain multi-view infer-
ence results through simple averaging like ours.

However, both of these methods are inferior to ours be-
cause they lack cross-view interaction. As our method pre-
dicts the root-relative 3D pose, we need to conduct post-
processing to obtain the absolute coordinates. We introduce
two different ways to achieve this: 1) using the 2D pre-
dictions of different views to triangulate and refine a center
and 2) conducting RANSAC triangulation using our 2D pre-
dictions. Both methods have their merits. Opt-center can
keep the root-relative results with hand prior, resulting in
low PA-MPJPE. RANSAC gets better joint-wise accuracy,
which is indicated by low MPJPE. We also provide quali-
tative results in the supplementary materials on the Assem-
bly101 [46] dataset, which has a static camera setup. Even
for challenging head-mounted moving cameras, we achieve
convincing 3D pose estimates on the H2O [29] dataset. The
experiments show that we have significantly pushed the per-
formance of self-supervised methods to a comparable level
with fully supervised methods.

4.4. Qualitative Result
Fig. 5 presents the visual comparisons of 2 views be-

tween 2D joints of OpenPose, ours, and ground-truth on the
HanCo dataset. We can observe that our method is more ro-
bust for outliers and can generate predictions close to the
labels. Fig. 6 shows the 3D predictions from two view-
points of ours, EpipolarPose, and CanonPose on the HanCo
dataset. The results indicate that our method can get more
accurate results especially when the occlusions are severe.
Please refer to supplementary materials for more results.

4.5. Ablation Study
As shown in Tab. 4, we conduct comprehensive ablation

experiments on the HanCo [62] dataset to show the effec-
tiveness of each component. Single, Interact and Fusion
denotes the evaluation of M , M∗ and M̃ respectively.
Different backbones. We first show our performance with
different backbones. As shown in #1 and #2, using a large
backbone like Res50, our performance can be further im-
proved. For efficiency, we conduct ablation studies using
Res18 as the backbone unless otherwise specified.
Two branches for cross-view interaction module. As pre-
sented in #3 and #4, both of the branches can reduce the
error. VSF can explicitly model the view-shared informa-
tion and add reliable information from every view. CVA
can capture the self-/cross-view joint-level correlations.
Graph features. The results indicate that three kinds of
features (#5, #6, #7) all lead to performance improvement.
Especially, local feature (#7, G3) can notably reduce the
error after the interaction by providing fine-grained details.
DCVI. We also conduct experiments to show the impor-
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tance of DCVI by removing it and posing consistency con-
straints in single-view outputs like [24]. In this way, the
performance drops dramatically (#10), proving the neces-
sity of using DCVI to capture the features of all the views
for self-supervised learning.
Two branches for multi-view consistency loss. Without
enforcing cross-view interaction outputs to be consistent,
the performance significantly drops (#9). If we do not ex-
plore relatively more reliable 2D predictions to enhance
consistency, the performance can also get worse (#8).
Consistency losses. (Lc) The performance is unsatisfac-
tory (#11) when employing the cross-view interaction net-
work without any consistency constraints (i.e. discard #8
and #9). The interaction network should cooperate with
consistency so that the constraints can guide the network
to exploit multi-view information to function better.
Multi-view distillation loss. (Ld) Removing the multi-
view distillation loss, all the metrics drop by a large margin
(#12), especially in single-view estimation accuracy. This
phenomenon proves the effectiveness of collaborative learn-
ing between single- and multi-view networks.

4.6. Model Analysis
Different percentage of unlabeled images. Fig. 3 (a)
shows our method can get consistent performance improve-
ment as the unlabeled training data increases.
Different view number for training. The line-1 in
Fig. 3 (b) shows the performance of our method tested on
a certain view when trained with different view numbers.
The curve shows that our method can be consistently im-
proved as the number of views increases. We also observe
that using multiple views for training can significantly im-
prove performance when the valid views are few.
Different view number for inference. Our model allows
inferring with an arbitrary number of views. However,
when the model is trained with a fixed view number, it could
get the view number bias, resulting in better performance
using the view number close to the training one. To avoid
this, we add random masks in our interaction module and
finetune the model for a few epochs. After that, results
can get better by a small margin (the single-view error is
11.07mm and the fusion error 7.60mm, both in NMPJPE.).
The line-2 in Fig. 3 (b) shows results on a certain view when
trained on 8 views and tested on 1 to 8 views. We can ob-
serve consistent improvement with the inference view num-
ber increases.
Different 2D joint sets. Fig. 4 presents the accuracy of
different 2D joint sets on the HanCo training and testing
set. Our 2D predictions are extremely better than OpenPose
2D pseudo label used for training.
Iteratively training. Our approach can use the previous
predictions as pseudo labels for iterative training. We find
it helpful till iteration 3 and get saturated afterward. From 1
to 3 iterations, NMPJPE is 7.75, 7.68, and 7.64.
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Figure 5. 2D prediction (overlayed in the images) comparisons
between OpenPose, ours, and ground-truth on the HanCo dataset.
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Figure 6. 3D prediction comparisons between our method, Epipo-
larPose, and CanonPose on the HanCo dataset. Our prediction and
ground-truth are shown in solid red and dashed green respectively.

5. Conclusion and Future Work
To our best knowledge, we present the first self-

supervised framework that aims to learn a single-view 3D
hand estimator from unlabeled multi-view data. At the
core of our approach, a cross-view interaction network is
carefully designed to supervise the single-view output by
leveraging the collaboration among multi-views. Specif-
ically, the network captures the interdependencies of fea-
tures among different views, resulting in improved accuracy
of hand pose estimation after cross-view interaction. Addi-
tionally, the multi-view results are fused to supervise the
single-view output for self-distillation. The effectiveness
and versatility of the proposed framework are extensively
evaluated through experiments, which demonstrate that our
method not only establishes a new benchmark for self-
supervised 3D hand pose estimation from single-view input
but also offers flexible multi-view inference with state-of-
the-art performance.

We focused on hand pose estimation without heavy oc-
clusions in this work. Extending our work to more challeng-
ing scenarios, such as hand-object interaction or relaxing
the synchronization constraints in multi-view inputs, would
be interesting topics for further study.

Acknowledgement
This work was supported in part by the National Natu-

ral Science Foundation of China under Grants (62071067,
62171057, 62201072), in part by the Ministry of Education
and China Mobile Joint Fund (MCM20200202), Beijing
University of Posts and Telecommunications-China Mobile
Research Institute Joint Innovation Center, in part by the
Project funded by China Postdoctoral Science Foundation
(2023TQ0039).

20770



References
[1] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Push-

ing the envelope for rgb-based dense 3d hand pose estimation
via neural rendering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1067–1076, 2019. 2, 3

[2] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
Weakly-supervised domain adaptation via gan and mesh
model for estimating 3d hand poses interacting objects. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6121–6131, 2020. 2

[3] Kristijan Bartol, David Bojanić, Tomislav Petković, and
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